Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 296
Filter
3.
Front Cell Infect Microbiol ; 13: 1181402, 2023.
Article in English | MEDLINE | ID: covidwho-20237417

ABSTRACT

Background: Mycoplasma pneumoniae (MP) is a commonly occurring pathogen causing community-acquired pneumonia (CAP) in children. The global prevalence of macrolide-resistant MP (MRMP) infection, especially in Asian regions, is increasing rapidly. However, the prevalence of MRMP and its clinical significance during the COVID-19 pandemic is not clear. Methods: This study enrolled children with molecularly confirmed macrolide-susceptible MP (MSMP) and MRMP CAP from Beijing Children's Hospital Baoding Hospital, Capital Medical University between August 2021 and July 2022. The clinical characteristics, laboratory findings, chest imaging presentations, and strain genotypes were compared between patients with MSMP and MRMP CAP. Results: A total of 520 hospitalized children with MP-CAP were enrolled in the study, with a macrolide resistance rate of 92.7%. Patients with MRMP infection exhibited more severe clinical manifestations (such as dyspnea and pleural effusion) and had a longer hospital stay than the MSMP group. Furthermore, abnormal blood test results (including increased LDH and D-dimer) were more common in the MRMP group (P<0.05). Multilocus variable-number tandem-repeat analysis (MLVA) was performed on 304 samples based on four loci (Mpn13-16), and M3562 and M4572 were the major types, accounting for 74.0% and 16.8% of the strains, respectively. The macrolide resistance rate of M3562 strains was up to 95.1%. Conclusion: The prevalence of MRMP strains in hospitalized CAP patients was extremely high in the Baoding area, and patients infected with MRMP strains exhibited more severe clinical features and increased LDH and D-dimer. M3562 was the predominant resistant clone.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia, Mycoplasma , Child , Humans , Pneumonia, Mycoplasma/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Macrolides/pharmacology , Clinical Relevance , Pandemics , COVID-19/epidemiology , Drug Resistance, Bacterial/genetics , Mycoplasma pneumoniae/genetics , Community-Acquired Infections/epidemiology
4.
N Engl J Med ; 388(21): 1931-1941, 2023 May 25.
Article in English | MEDLINE | ID: covidwho-20241324

ABSTRACT

BACKGROUND: Whether the antiinflammatory and immunomodulatory effects of glucocorticoids may decrease mortality among patients with severe community-acquired pneumonia is unclear. METHODS: In this phase 3, multicenter, double-blind, randomized, controlled trial, we assigned adults who had been admitted to the intensive care unit (ICU) for severe community-acquired pneumonia to receive intravenous hydrocortisone (200 mg daily for either 4 or 7 days as determined by clinical improvement, followed by tapering for a total of 8 or 14 days) or to receive placebo. All the patients received standard therapy, including antibiotics and supportive care. The primary outcome was death at 28 days. RESULTS: A total of 800 patients had undergone randomization when the trial was stopped after the second planned interim analysis. Data from 795 patients were analyzed. By day 28, death had occurred in 25 of 400 patients (6.2%; 95% confidence interval [CI], 3.9 to 8.6) in the hydrocortisone group and in 47 of 395 patients (11.9%; 95% CI, 8.7 to 15.1) in the placebo group (absolute difference, -5.6 percentage points; 95% CI, -9.6 to -1.7; P = 0.006). Among the patients who were not undergoing mechanical ventilation at baseline, endotracheal intubation was performed in 40 of 222 (18.0%) in the hydrocortisone group and in 65 of 220 (29.5%) in the placebo group (hazard ratio, 0.59; 95% CI, 0.40 to 0.86). Among the patients who were not receiving vasopressors at baseline, such therapy was initiated by day 28 in 55 of 359 (15.3%) of the hydrocortisone group and in 86 of 344 (25.0%) in the placebo group (hazard ratio, 0.59; 95% CI, 0.43 to 0.82). The frequencies of hospital-acquired infections and gastrointestinal bleeding were similar in the two groups; patients in the hydrocortisone group received higher daily doses of insulin during the first week of treatment. CONCLUSIONS: Among patients with severe community-acquired pneumonia being treated in the ICU, those who received hydrocortisone had a lower risk of death by day 28 than those who received placebo. (Funded by the French Ministry of Health; CAPE COD ClinicalTrials.gov number, NCT02517489.).


Subject(s)
Anti-Inflammatory Agents , Community-Acquired Infections , Hydrocortisone , Pneumonia , Adult , Humans , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/therapeutic use , Community-Acquired Infections/drug therapy , Community-Acquired Infections/mortality , Double-Blind Method , Hydrocortisone/adverse effects , Hydrocortisone/therapeutic use , Pneumonia/drug therapy , Pneumonia/mortality , Respiration, Artificial , Treatment Outcome
5.
BMC Infect Dis ; 23(1): 231, 2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2320842

ABSTRACT

BACKGROUND: Community-acquired pneumonia (CAP) is a major public health challenge worldwide. However, the aetiological and disease severity-related pathogens associated with CAP in adults in China are not well established based on the detection of both viral and bacterial agents. METHODS: A multicentre, prospective study was conducted involving 10 hospitals located in nine geographical regions in China from 2014 to 2019. Sputum or bronchoalveolar lavage fluid (BALF) samples were collected from each recruited CAP patient. Multiplex real-time PCR and bacteria culture methods were used to detect respiratory pathogens. The association between detected pathogens and CAP severity was evaluated. RESULTS: Among the 3,403 recruited eligible patients, 462 (13.58%) had severe CAP, and the in-hospital mortality rate was 1.94% (66/3,403). At least one pathogen was detected in 2,054 (60.36%) patients, with two or more pathogens were co-detected in 725 patients. The ten major pathogens detected were Mycoplasma pneumoniae (11.05%), Haemophilus influenzae (10.67%), Klebsiella pneumoniae (10.43%), influenza A virus (9.49%), human rhinovirus (9.02%), Streptococcus pneumoniae (7.43%), Staphylococcus aureus (4.50%), adenovirus (2.94%), respiratory syncytial viruses (2.35%), and Legionella pneumophila (1.03%), which accounted for 76.06-92.52% of all positive detection results across sampling sites. Klebsiella pneumoniae (p < 0.001) and influenza viruses (p = 0.005) were more frequently detected in older patients, whereas Mycoplasma pneumoniae was more frequently detected in younger patients (p < 0.001). Infections with Klebsiella pneumoniae, Staphylococcus aureus, influenza viruses and respiratory syncytial viruses were risk factors for severe CAP. CONCLUSIONS: The major respiratory pathogens causing CAP in adults in China were different from those in USA and European countries, which were consistent across different geographical regions over study years. Given the detection rate of pathogens and their association with severe CAP, we propose to include the ten major pathogens as priorities for clinical pathogen screening in China.


Subject(s)
Community-Acquired Infections , Legionella pneumophila , Pneumonia, Bacterial , Pneumonia , Humans , Adult , Aged , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/epidemiology , Pneumonia, Bacterial/complications , Prospective Studies , Pneumonia/diagnosis , Pneumonia/epidemiology , Pneumonia/etiology , Streptococcus pneumoniae , Mycoplasma pneumoniae , Respiratory Syncytial Viruses , Klebsiella pneumoniae , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Community-Acquired Infections/etiology
7.
Eur Radiol ; 33(6): 4280-4291, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2317195

ABSTRACT

OBJECTIVES: Differentiation between COVID-19 and community-acquired pneumonia (CAP) in computed tomography (CT) is a task that can be performed by human radiologists and artificial intelligence (AI). The present study aims to (1) develop an AI algorithm for differentiating COVID-19 from CAP and (2) evaluate its performance. (3) Evaluate the benefit of using the AI result as assistance for radiological diagnosis and the impact on relevant parameters such as accuracy of the diagnosis, diagnostic time, and confidence. METHODS: We included n = 1591 multicenter, multivendor chest CT scans and divided them into AI training and validation datasets to develop an AI algorithm (n = 991 CT scans; n = 462 COVID-19, and n = 529 CAP) from three centers in China. An independent Chinese and German test dataset of n = 600 CT scans from six centers (COVID-19 / CAP; n = 300 each) was used to test the performance of eight blinded radiologists and the AI algorithm. A subtest dataset (180 CT scans; n = 90 each) was used to evaluate the radiologists' performance without and with AI assistance to quantify changes in diagnostic accuracy, reporting time, and diagnostic confidence. RESULTS: The diagnostic accuracy of the AI algorithm in the Chinese-German test dataset was 76.5%. Without AI assistance, the eight radiologists' diagnostic accuracy was 79.1% and increased with AI assistance to 81.5%, going along with significantly shorter decision times and higher confidence scores. CONCLUSION: This large multicenter study demonstrates that AI assistance in CT-based differentiation of COVID-19 and CAP increases radiological performance with higher accuracy and specificity, faster diagnostic time, and improved diagnostic confidence. KEY POINTS: • AI can help radiologists to get higher diagnostic accuracy, make faster decisions, and improve diagnostic confidence. • The China-German multicenter study demonstrates the advantages of a human-machine interaction using AI in clinical radiology for diagnostic differentiation between COVID-19 and CAP in CT scans.


Subject(s)
COVID-19 , Community-Acquired Infections , Deep Learning , Pneumonia , Humans , Artificial Intelligence , SARS-CoV-2 , Tomography, X-Ray Computed/methods , COVID-19 Testing
8.
Eur Respir Rev ; 31(166)2022 Dec 31.
Article in English | MEDLINE | ID: covidwho-2300932

ABSTRACT

Severe community-acquired pneumonia is the most life-threatening form of community-acquired pneumonia, characterised by intensive care unit admission and high morbidity and mortality. In this review article, we cover in depth six aspects of severe community-acquired pneumonia that are still controversial: use of PCR molecular techniques for microbial diagnosis; the role of biomarkers for initial management; duration of treatment, macrolides or quinolones in the initial empirical antibiotic therapy; the use of prediction scores for drug-resistant pathogens to modify initial empiric therapy; the use of noninvasive mechanical ventilation and high-flow nasal oxygen; and the use of corticosteroids as adjunctive therapy in severe community-acquired pneumonia.


Subject(s)
Community-Acquired Infections , Pneumonia , Humans , Community-Acquired Infections/diagnosis , Community-Acquired Infections/drug therapy , Pneumonia/diagnosis , Pneumonia/drug therapy , Macrolides/adverse effects , Anti-Bacterial Agents/adverse effects , Intensive Care Units
9.
BMC Pulm Med ; 23(1): 146, 2023 Apr 26.
Article in English | MEDLINE | ID: covidwho-2300693

ABSTRACT

BACKGROUND: Although cases of respiratory bacterial infections associated with coronavirus disease 2019 (COVID-19) have often been reported, their impact on the clinical course remains unclear. Herein, we evaluated and analyzed the complication rates of bacterial infections, causative organisms, patient backgrounds, and clinical outcome in Japanese patients with COVID-19. METHODS: We performed a retrospective cohort study that included inpatients with COVID-19 from multiple centers participating in the Japan COVID-19 Taskforce (April 2020 to May 2021) and obtained demographic, epidemiological, and microbiological results and the clinical course and analyzed the cases of COVID-19 complicated by respiratory bacterial infections. RESULTS: Of the 1,863 patients with COVID-19 included in the analysis, 140 (7.5%) had respiratory bacterial infections. Community-acquired co-infection at COVID-19 diagnosis was uncommon (55/1,863, 3.0%) and was mainly caused by Staphylococcus aureus, Klebsiella pneumoniae and Streptococcus pneumoniae. Hospital-acquired bacterial secondary infections, mostly caused by Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia, were diagnosed in 86 patients (4.6%). Severity-associated comorbidities were frequently observed in hospital-acquired secondary infection cases, including hypertension, diabetes, and chronic kidney disease. The study results suggest that the neutrophil-lymphocyte ratio (> 5.28) may be useful in diagnosing complications of respiratory bacterial infections. COVID-19 patients with community-acquired or hospital-acquired secondary infections had significantly increased mortality. CONCLUSIONS: Respiratory bacterial co-infections and secondary infections are uncommon in patients with COVID-19 but may worsen outcomes. Assessment of bacterial complications is important in hospitalized patients with COVID-19, and the study findings are meaningful for the appropriate use of antimicrobial agents and management strategies.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Community-Acquired Infections , Cross Infection , Respiratory Tract Infections , Staphylococcal Infections , Humans , COVID-19/complications , COVID-19/epidemiology , SARS-CoV-2 , Retrospective Studies , Coinfection/epidemiology , COVID-19 Testing , East Asian People , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Respiratory Tract Infections/epidemiology , Community-Acquired Infections/epidemiology , Disease Progression
10.
PLoS One ; 15(12): e0243762, 2020.
Article in English | MEDLINE | ID: covidwho-2279671

ABSTRACT

INTRODUCTION: Multiplex polymerase chain reaction (mPCR) for respiratory virus testing is increasingly used in community-acquired pneumonia (CAP), however data on one-year outcome in intensive care unit (ICU) patients with reference to the causative pathogen are scarce. MATERIALS AND METHODS: We performed a single-center retrospective study in 123 ICU patients who had undergone respiratory virus testing for CAP by mPCR and with known one-year survival status. Functional status including dyspnea (mMRC score), autonomy (ADL Katz score) and need for new home-care ventilatory support was assessed at a one-year post-ICU follow-up. Mortality rates and functional status were compared in patients with CAP of a bacterial, viral or unidentified etiology one year after ICU admission. RESULTS: The bacterial, viral and unidentified groups included 19 (15.4%), 37 (30.1%), and 67 (54.5%) patients, respectively. In multivariate analysis, one-year mortality in the bacterial group was higher compared to the viral group (HR 2.92, 95% CI 1.71-7.28, p = 0.02) and tended to be higher compared to the unidentified etiology group (p = 0.06); but no difference was found between the viral and the unidentified etiology group (p = 0.43). In 64/83 one-year survivors with a post-ICU follow-up consultation, there were no differences in mMRC score, ADL Katz score and new home-care ventilatory support between the groups (p = 0.52, p = 0.37, p = 0.24, respectively). Severe dyspnea (mMRC score = 4 or death), severe autonomy deficiencies (ADL Katz score ≤ 2 or death), and major adverse respiratory events (new home-care ventilatory support or death) were observed in 52/104 (50.0%), 47/104 (45.2%), and 65/104 (62.5%) patients, respectively; with no difference between the bacterial, viral and unidentified group: p = 0.58, p = 0.06, p = 0.61, respectively. CONCLUSIONS: CAP of bacterial origin had a poorer outcome than CAP of viral or unidentified origin. At one-year, impairment of functional status was frequently observed, with no difference according to the etiology.


Subject(s)
Community-Acquired Infections/pathology , Pneumonia, Bacterial/pathology , Pneumonia, Viral/pathology , Activities of Daily Living , Aged , Aged, 80 and over , Community-Acquired Infections/microbiology , Community-Acquired Infections/mortality , Community-Acquired Infections/virology , Dyspnea/etiology , Female , Functional Status , Hospitalization , Humans , Intensive Care Units , Kaplan-Meier Estimate , Male , Middle Aged , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/mortality , Pneumonia, Viral/mortality , Proportional Hazards Models , Respiration, Artificial , Retrospective Studies , Severity of Illness Index
11.
J Infect Chemother ; 29(5): 437-442, 2023 May.
Article in English | MEDLINE | ID: covidwho-2272400

ABSTRACT

INTRODUCTION: The Japanese Respiratory Society (JRS) pneumonia guidelines recommend simple predictive rules, the A-DROP scoring system, for assessment of the severity of community-acquired pneumonia (CAP) and nursing and healthcare-associated pneumonia (NHCAP). We evaluated whether the A-DROP system can be adapted for assessment of the severity of coronavirus disease 2019 (COVID-19) pneumonia. METHODS: Data from 1141 patients with COVID-19 pneumonia were analyzed, comprising 502 patients observed in the 1st to 3rd wave period, 338 patients in the 4th wave and 301 patients in the 5th wave in Japan. RESULTS: The mortality rate and mechanical ventilation rate were 0% and 1.4% in patients classified with mild disease (A-DROP score, 0 point), 3.2% and 46.7% in those with moderate disease (1 or 2 points), 20.8% and 78.3% with severe disease (3 points), and 55.0% and 100% with extremely severe disease (4 or 5 points), indicating an increase in the mortality and mechanical ventilation rates in accordance with severity (Cochran-Armitage trend test; p = <0.001). This significant relationship between the severity in the A-DROP scoring system and either the mortality rate or mechanical ventilation rate was observed in patients with COVID-19 CAP and NHCAP. In each of the five COVID-19 waves, the same significant relationship was observed. CONCLUSIONS: The mortality rate and mechanical ventilation rate in patients with COVID-19 pneumonia increased depending on severity classified according to the A-DROP scoring system. Our results suggest that the A-DROP scoring system can be adapted for the assessment of severity of COVID-19 CAP and NHCAP.


Subject(s)
COVID-19 , Community-Acquired Infections , Cross Infection , Healthcare-Associated Pneumonia , Pneumonia , Humans , Cross Infection/drug therapy , Pneumonia/diagnosis , Community-Acquired Infections/drug therapy , Severity of Illness Index , Retrospective Studies
12.
Respir Res ; 24(1): 62, 2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2275415

ABSTRACT

BACKGROUND: COVID-19 remains a major public health challenge, requiring the development of tools to improve diagnosis and inform therapeutic decisions. As dysregulated inflammation and coagulation responses have been implicated in the pathophysiology of COVID-19 and sepsis, we studied their plasma proteome profiles to delineate similarities from specific features. METHODS: We measured 276 plasma proteins involved in Inflammation, organ damage, immune response and coagulation in healthy controls, COVID-19 patients during acute and convalescence phase, and sepsis patients; the latter included (i) community-acquired pneumonia (CAP) caused by Influenza, (ii) bacterial CAP, (iii) non-pneumonia sepsis, and (iv) septic shock patients. RESULTS: We identified a core response to infection consisting of 42 proteins altered in both COVID-19 and sepsis, although higher levels of cytokine storm-associated proteins were evident in sepsis. Furthermore, microbiologic etiology and clinical endotypes were linked to unique signatures. Finally, through machine learning, we identified biomarkers, such as TRIM21, PTN and CASP8, that accurately differentiated COVID-19 from CAP-sepsis with higher accuracy than standard clinical markers. CONCLUSIONS: This study extends the understanding of host responses underlying sepsis and COVID-19, indicating varying disease mechanisms with unique signatures. These diagnostic and severity signatures are candidates for the development of personalized management of COVID-19 and sepsis.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia , Sepsis , Humans , COVID-19/complications , Proteomics , Inflammation/complications , Biomarkers
13.
Dtsch Med Wochenschr ; 148(6): 335-341, 2023 03.
Article in German | MEDLINE | ID: covidwho-2280377

ABSTRACT

RISK FACTORS FOR SEVERE COURSES: The CRB-65 score is recommended as a risk predictor, as well as consideration of unstable comorbidities and oxygenation. GROUPING OF COMMUNITY-ACQUIRED PNEUMONIA: Community-acquired pneumonia is divided into 3 groups: mild pneumonia, moderate pneumonia, severe pneumonia. Whether there is a curative vs palliative treatment goal should be determined early. DIAGNOSTIC RECOMMENDATION: An X-ray chest radiograph is recommended to confirm the diagnosis, also in the outpatient setting if possible. Sonography of the thorax is an alternative, asking for additional imaging if negative. Streptococcus pneumoniae remains the most common bacterial pathogen. THERAPY: Community-acquired pneumonia continues to be associated with high morbidity and lethality. Prompt diagnosis and prompt initiation of risk-adapted antimicrobial therapy are essential measures. However, in times of COVID-19, as well as the current influenza and RSV epidemic, purely viral pneumonias must also be expected. At least with COVID-19, antibiotics can often be avoided. Antiviral and anti-inflammatory drugs are used here. POST-ACUTE COURSE: Patients after community-acquired pneumonia have increased acute and long-term mortality due to cardiovascular events in particular. The focus of research is on improved pathogen identification, a better understanding of the host response with the potential of developing specific therapeutics, the role of comorbidities, and the long-term consequences of the acute illness.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia, Viral , Humans , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Community-Acquired Infections/diagnosis , Community-Acquired Infections/therapy , Anti-Bacterial Agents/therapeutic use , Antiviral Agents
16.
Respir Res ; 24(1): 60, 2023 Feb 22.
Article in English | MEDLINE | ID: covidwho-2263775

ABSTRACT

BACKGROUND: Inflammatory responses contribute to tissue damage in COVID-19 and community-acquired pneumonia (CAP). Although predictive values of different inflammatory biomarkers have been reported in both, similarities and differences of inflammatory profiles between these conditions remain uncertain. Therefore, we aimed to determine the similarities and differences of the inflammatory profiles between COVID-19 and CAP, and their association with clinical outcomes. METHODS: We report a prospective observational cohort study; conducted in a reference hospital in Latin America. Patients with confirmed COVID-19 pneumonia and CAP were included. Multiplex (Luminex) cytokine assays were used to measure the plasma concentration of 14 cytokines at hospital admission. After comparing similarities and differences in the inflammatory profile between COVID-19 and CAP patients, an unsupervised classification method (i.e., hierarchical clustering) was used to identify subpopulations within COVID-19 and CAP patients. RESULTS: A total of 160 patients were included, 62.5% were diagnosed with COVID-19 (100/160), and 37.5% with CAP (60/160). Using the hierarchical clustering, COVID-19 and CAP patients were divided based on its inflammatory profile: pauci, moderate, and hyper-inflammatory immune response. COVID-19 hyper-inflammatory subpopulation had the highest mortality. COVID-19 hyper-inflammatory subpopulation, compared to pauci-inflammatory, had higher levels of IL-10 (median [IQR] 61.4 [42.0-109.4] vs 13.0 [5.0-24.9], P: < 0.001), IL-6 (48.1 [22.3-82.6] vs 9.1 [0.1-30.4], P: < 0.001), among others. Hyper-inflammatory vs pauci-inflammatory CAP patients were characterized by elevation of IFN2 (48.8 [29.7-110.5] vs 3.0 [1.7-10.3], P: < 0.001), TNFα (36.3 [24.8-53.4] vs 13.1 [11.3-16.9], P: < 0.001), among others. Hyper-inflammatory subpopulations in COVID-19 and CAP compared to the corresponding pauci-inflammatory subpopulations had higher MCP-1. CONCLUSIONS: Our data highlights three distinct subpopulations in COVID-19 and CAP, with differences in inflammatory marker profiles and risks of adverse clinical outcomes. TRIAL REGISTRATION: This is a prospective study, therefore no health care intervention were applied to participants and trial registration is not applicable.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia , Humans , Prospective Studies , COVID-19/complications , Pneumonia/diagnosis , Cytokines , Hospitalization , Community-Acquired Infections/diagnosis
17.
PLoS One ; 18(2): e0281590, 2023.
Article in English | MEDLINE | ID: covidwho-2263362

ABSTRACT

BACKGROUND: Compared with children and immunocompromised patients, Adenovirus pneumonia in immunocompetent adults is less common. Evaluation of the applicability of severity score in predicting intensive care unit (ICU) admission of Adenovirus pneumonia is limited. METHODS: We retrospectively reviewed 50 Adenovirus pneumonia inpatients in Xiangtan Central Hospital from 2018 to 2020. Hospitalized patients with no pneumonia or immunosuppression were excluded. Clinical characteristics and chest image at the admission of all patients were collected. Severity scores, including Pneumonia severity index (PSI), CURB-65, SMART-COP, and PaO2/FiO2 combined lymphocyte were evaluated to compare the performance of ICU admission. RESULTS: Fifty inpatients with Adenovirus pneumonia were selected, 27 (54%) non-ICU and 23 (46%) ICU. Most patients were men (40 [80.00%]). Age median was 46.0 (IQR 31.0-56.0). Patients who required ICU care (n = 23) were more likely to report dyspnea (13[56.52%] vs 6[22.22%]; P = 0.002) and have lower transcutaneous oxygen saturation ([90% (IQR, 90-96), 95% (IQR, 93-96)]; P = 0.032). 76% (38/50) of patients had bilateral parenchymal abnormalities, including 91.30% (21/23) of ICU patients and 62.96% (17/27) of non-ICU patients. 23 Adenovirus pneumonia patients had bacterial infections, 17 had other viruses, and 5 had fungi. Coinfection with virus was more common in non-ICU patients than ICU patients (13[48.15%]VS 4[17.39%], P = 0.024), while bacteria and fungi not. SMART-COP exhibited the best ICU admission evaluation performance in Adenovirus pneumonia patients (AUC = 0.873, p < 0.001) and distributed similar in coinfections and no coinfections (p = 0.26). CONCLUSIONS: In summary, Adenovirus pneumonia is not uncommon in immunocompetent adult patients who are susceptible to coinfection with other etiological illnesses. The initial SMART-COP score is still a reliable and valuable predictor of ICU admission in non-immunocompromised adult inpatients with adenovirus pneumonia.


Subject(s)
Adenoviridae Infections , Community-Acquired Infections , Pneumonia, Viral , Male , Child , Humans , Adult , Female , Retrospective Studies , Pneumonia, Viral/diagnosis , Hospitalization , Intensive Care Units , Adenoviridae Infections/diagnosis , Adenoviridae , Severity of Illness Index
18.
Semin Respir Crit Care Med ; 44(1): 8-20, 2023 02.
Article in English | MEDLINE | ID: covidwho-2260012

ABSTRACT

Community-acquired pneumonia (CAP) is a significant cause of morbidity and mortality, one of the most common reasons for infection-related death worldwide. Causes of CAP include numerous viral, bacterial, and fungal pathogens, though frequently no specific organism is found. Beginning in 2019, the COVID-19 pandemic has caused incredible morbidity and mortality. COVID-19 has many features typical of CAP such as fever, respiratory distress, and cough, and can be difficult to distinguish from other types of CAP. Here, we highlight unique clinical features of COVID-19 pneumonia such as olfactory and gustatory dysfunction, lymphopenia, and distinct imaging appearance.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia, Bacterial , Humans , COVID-19/complications , Pneumonia, Bacterial/epidemiology , Pandemics , Community-Acquired Infections/epidemiology
19.
Swiss Med Wkly ; 153: 40040, 2023 02 20.
Article in English | MEDLINE | ID: covidwho-2266874

ABSTRACT

AIMS OF THE STUDY: Globally, since the introduction of conjugate-vaccines against encapsulated bacteria, respiratory viruses have caused most hospitalisations for community-acquired pneumonia. The aim of this study was to describe pathogens detected and their association with clinical findings in Switzerland. METHODS: Baseline data were analysed for all trial participants enrolled between September 2018 and September 2020 into the KIDS-STEP Trial, a randomised controlled superiority trial on the effect of betamethasone on clinical stabilisation of children admitted with community-acquired pneumonia. Data included clinical presentation, antibiotic use and results of pathogen detection. In addition to routine sampling, nasopharyngeal specimens were analysed for respiratory pathogens using a panel polymerase chain reaction test covering 18 viral and 4 bacterial pathogens. RESULTS: 138 children with a median age of 3 years were enrolled at the eight trial sites. Fever (obligatory for enrolment) had been present for median 5 days before admission. Most common symptoms were reduced activity (129, 93.5%) and reduced oral intake (108, 78.3%). Oxygen saturation <92% was found in 43 (31.2%). Forty-three participants (29.0%) were already on antibiotic treatment prior to admission and 104 participants (75.4%) received antibiotic treatment on admission. Pathogen testing results were available from 132 children: 31 (23.5%) had respiratory syncytial virus detected, 21 (15.9%) human metapneumovirus. The pathogens detected showed expected seasonal and age preponderance and were not associated with chest X-ray findings. CONCLUSIONS: In the context of the predominantly viral pathogens detected, the majority of antibiotic treatment is probably unnecessary. The ongoing trial, as well as other studies, will be able to provide comparative pathogen detection data to compare pre- and post-COVID-19-pandemic settings.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia , Child , Humans , Child, Preschool , Child, Hospitalized , Switzerland , Hospitalization , Community-Acquired Infections/drug therapy
20.
Zhonghua Jie He He Hu Xi Za Zhi ; 46(2): 168-171, 2023 Feb 12.
Article in Chinese | MEDLINE | ID: covidwho-2246531

ABSTRACT

In 2022, coronavirus disease 2019 (COVID-19) remains rampant across the world. Several remarkable studies concerning pulmonary infectious diseases have been published during this pandemic. This review summarized the representative academic and translational medical progress over the past year (from October 1, 2021, to September 30, 2022), including COVID-19, community/hospital-acquired pneumonia, tuberculosis, and other respiratory viral infections.


Subject(s)
COVID-19 , Communicable Diseases , Community-Acquired Infections , Influenza, Human , Pneumonia , Humans , SARS-CoV-2 , Lung , Communicable Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL