Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Sci Immunol ; 8(83): eadh3455, 2023 05 12.
Article in English | MEDLINE | ID: covidwho-2312885

ABSTRACT

Rare immune-mediated cardiac tissue inflammation can occur after vaccination, including after SARS-CoV-2 mRNA vaccines. However, the underlying immune cellular and molecular mechanisms driving this pathology remain poorly understood. Here, we investigated a cohort of patients who developed myocarditis and/or pericarditis with elevated troponin, B-type natriuretic peptide, and C-reactive protein levels as well as cardiac imaging abnormalities shortly after SARS-CoV-2 mRNA vaccination. Contrary to early hypotheses, patients did not demonstrate features of hypersensitivity myocarditis, nor did they have exaggerated SARS-CoV-2-specific or neutralizing antibody responses consistent with a hyperimmune humoral mechanism. We additionally found no evidence of cardiac-targeted autoantibodies. Instead, unbiased systematic immune serum profiling revealed elevations in circulating interleukins (IL-1ß, IL-1RA, and IL-15), chemokines (CCL4, CXCL1, and CXCL10), and matrix metalloproteases (MMP1, MMP8, MMP9, and TIMP1). Subsequent deep immune profiling using single-cell RNA and repertoire sequencing of peripheral blood mononuclear cells during acute disease revealed expansion of activated CXCR3+ cytotoxic T cells and NK cells, both phenotypically resembling cytokine-driven killer cells. In addition, patients displayed signatures of inflammatory and profibrotic CCR2+ CD163+ monocytes, coupled with elevated serum-soluble CD163, that may be linked to the late gadolinium enhancement on cardiac MRI, which can persist for months after vaccination. Together, our results demonstrate up-regulation in inflammatory cytokines and corresponding lymphocytes with tissue-damaging capabilities, suggesting a cytokine-dependent pathology, which may further be accompanied by myeloid cell-associated cardiac fibrosis. These findings likely rule out some previously proposed mechanisms of mRNA vaccine--associated myopericarditis and point to new ones with relevance to vaccine development and clinical care.


Subject(s)
Antineoplastic Agents , COVID-19 , Myocarditis , Humans , Myocarditis/etiology , SARS-CoV-2 , Leukocytes, Mononuclear , COVID-19 Vaccines/adverse effects , Contrast Media , COVID-19/prevention & control , Gadolinium , Killer Cells, Natural , Cytokines
2.
Eur Radiol ; 33(6): 3867-3877, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2312112

ABSTRACT

OBJECTIVE: COVID-19 infection is a systemic disease with various cardiovascular symptoms and complications. Cardiac MRI with late gadolinium enhancement is the modality of choice for the assessment of myocardial involvement. T1 and T2 mapping can increase diagnostic accuracy and improve further management. Our study aimed to evaluate the different aspects of myocardial damage in cases of COVID-19 infection using cardiac MRI. METHODS: This descriptive retrospective study included 86 cases, with a history of COVID-19 infection confirmed by positive RT-PCR, who met the inclusion criteria. Patients had progressive chest pain or dyspnoea with a suspected underlying cardiac cause, either by an abnormal electrocardiogram or elevated troponin levels. Cardiac MRI was performed with late contrast-enhanced (LGE) imaging, followed by T1 and T2 mapping. RESULTS: Twenty-four patients have elevated hsTnT with a median hsTnT value of 133 ng/L (IQR: 102 to 159 ng/L); normal value < 14 ng/L. Other sixty-two patients showed elevated hsTnI with a median hsTnI value of 1637 ng/L (IQR: 1340 to 2540 ng/L); normal value < 40 ng/L. CMR showed 52 patients with acute myocarditis, 23 with Takotsubo cardiomyopathy, and 11 with myocardial infarction. Invasive coronary angiography was performed only in selected patients. CONCLUSION: Different COVID-19-related cardiac injuries may cause similar clinical symptoms. Cardiac MRI is the modality of choice to differentiate between the different types of myocardial injury such as Takotsubo cardiomyopathy and infection-related cardiomyopathy or even acute coronary syndrome secondary to vasculitis or oxygen-demand mismatch. KEY POINTS: • It is essential to detect early COVID-related cardiac injury using different cardiac biomarkers and cardiac imaging, as it has a significant impact on patient management and outcome. • Cardiac MRI is the modality of choice to differentiate between the different aspects of COVID-related myocardial injury.


Subject(s)
COVID-19 , Myocarditis , Takotsubo Cardiomyopathy , Humans , Retrospective Studies , Contrast Media , COVID-19/complications , Gadolinium , Magnetic Resonance Imaging/methods , Myocarditis/complications , Myocarditis/diagnostic imaging , Predictive Value of Tests , Magnetic Resonance Imaging, Cine/adverse effects
3.
Medicine (Baltimore) ; 101(51): e32286, 2022 Dec 23.
Article in English | MEDLINE | ID: covidwho-2311749

ABSTRACT

The sudden contrast dye shortage, precipitated by a temporary forced closure of healthcare plant, has limited the supply of iodinated contrast media to Australia. Furthering the impact of the coronavirus disease 2019 pandemic, this new crisis has increased burden on the radiology system. Lessons from the strategies applied during the shortage should be used as building blocks as safeguards for the future. A pragmatic approach to education and training is required in an ever-changing environment. Our relationships between medical specialties and manufacturers are paramount to maintaining an effective workflow. An ongoing commitment to a strong workforce will be the backbone to overcome another challenge in these uncertain times.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Contrast Media/adverse effects , Delivery of Health Care , Workforce
4.
Radiology ; 307(3): e220788, 2023 05.
Article in English | MEDLINE | ID: covidwho-2304416

ABSTRACT

HISTORY: A 44-year-old previously healthy man with a 9-month history of progressive cognitive decline, depression, urinary incontinence, and inability to perform tasks of daily living presented to the emergency department with worsening cognitive and neuropsychiatric symptoms. He had become more distressed, and his family noticed him departing the house without closing doors, leaving water faucets running, and sending his children to school on Sundays. History taken from the patient's wife revealed that his brother had passed away in his late 30s after a slowly progressing functional and cognitive decline over the course of 5 years. No further detailed family history could be obtained. The review of systems was negative; he had no prior medical, psychiatric, or surgical history; and he denied any history of recent travel, camping, hiking, or vaccination. The patient was not taking any dietary supplements, nor was he taking any over-the-counter or prescription medication. Examination revealed vital signs were within normal limits. Neurocognitive assessment revealed a conscious, coherent, and alert patient with impaired memory and concentration. He showed poor attention, depressed mood, and restricted affect. He was unable to spell the word world forward, nor was he able to understand a request to spell it backward. The rest of the physical and neurologic examination revealed no abnormalities. Extensive laboratory work-up was conducted and included the following: toxicology screening; screening for HIV-1, HIV-2, and syphilis treponemal antibodies; COVID-19 polymerase chain reaction; and measurement of B1 and B12 levels. The results of screening were negative. Cerebrospinal fluid (CSF) assays, including CSF oligoclonal bands and CSF flow cytometry, revealed values within normal limits. CT of the brain without intravenous contrast material was performed in the emergency department to rule out acute intracranial abnormality (Fig 1). Multiplanar multisequence MRI of the brain without and with intravenous contrast material was ordered for further assessment (Figs 2-4). CT images of chest, abdomen, and pelvis were unremarkable (images not shown).


Subject(s)
COVID-19 , Mental Disorders , Humans , Male , Child , Adult , Contrast Media , Brain , Magnetic Resonance Imaging
5.
Cardiovasc Intervent Radiol ; 46(3): 327-336, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2301473

ABSTRACT

PURPOSE: The aim of this study was to analyze the impact of using intra-procedural pre-ablation contrast-enhanced CT prior to percutaneous thermal ablation (pre-ablation CECT) of colorectal liver metastases (CLM) on local outcomes. MATERIALS AND METHODS: This retrospective analysis of a prospectively collected liver ablation registry included 144 consecutive patients (median age 57 years IQR [49, 65], 60% men) who underwent 173 CT-guided ablation sessions for 250 CLM between October 2015 and March 2020. In addition to oncologic outcomes, technical success was retrospectively evaluated using a biomechanical deformable image registration software for 3D-minimal ablative margin (3D-MAM) quantification. Bayesian regression was used to estimate effects of pre-ablation CECT on residual unablated tumor, 3D-MAM, and local tumor progression-free survival (LTPFS). RESULTS: Pre-ablation CECT was acquired in 71/173 (41%) sessions. Residual unablated tumor was present in one (0.9%) versus nine tumors (6.6%) ablated with versus without using pre-ablation CECT, respectively (p = 0.024). Pre-ablation CECT use decreased the odds of residual disease on first follow-up by 78% (CI95% [5, 86]) and incomplete ablation (3D-MAM ≤ 0 mm) by 58% (CI95% [13, 122]). The odds ratio for residual unablated tumor for larger CLM was lower when pre-ablation CECT was used (odds ratio 1.0 with pre-ablation CECT vs. 2.52 without). Pre-ablation CECT use was not associated with improvements on LTPFS. CONCLUSIONS: Pre-ablation CECT is associated with improved immediate outcomes by significantly reducing the incidence of residual unablated tumor and by mitigating the risk of incomplete ablation for larger CLM. We recommend performing baseline intra-procedural pre-ablation CECT as a standard imaging protocol. LEVEL OF EVIDENCE: Level 3 (retrospective cohort study).


Subject(s)
Catheter Ablation , Colorectal Neoplasms , Liver Neoplasms , Male , Humans , Middle Aged , Female , Retrospective Studies , Contrast Media , Bayes Theorem , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Tomography, X-Ray Computed/methods , Colorectal Neoplasms/pathology , Catheter Ablation/methods , Treatment Outcome
6.
J Clin Ultrasound ; 51(4): 613-621, 2023 May.
Article in English | MEDLINE | ID: covidwho-2301433

ABSTRACT

INTRODUCTION: Cardiac injury is commonly reported in COVID-19 patients, resulting associated to pre-existing cardiovascular disease, disease severity, and unfavorable outcome. Aim is to report cardiac magnetic resonance (CMR) findings in patients with myocarditis-like syndrome during the acute phase of SARS-CoV-2 infection (AMCovS) and post-acute phase (cPACS). METHODS: Between September 2020 and January 2022, 39 consecutive patients (24 males, 58%) were referred to our department to perform a CMR for the suspicion of myocarditis related to AMCovS (n = 17) and cPACS (n = 22) at multimodality evaluation (clinical, laboratory, ECG, and echocardiography). CMR was performed for the assessment of volume, function, edema and fibrosis with standard sequences and mapping techniques. CMR diagnosis and the extension and amount of CMR alterations were recorded. RESULTS: Patients with suspected myocarditis in acute and post-COVID settings were mainly men (10 (59%) and 12 (54.5%), respectively) with older age in AMCovS (58 [48-64]) compared to cPACS (38 [26-53]). Myocarditis was confirmed by CMR in most of cases: 53% of AMCovS and 50% of cPACS with negligible LGE burden (3 [IQR, 1-5] % and 2 [IQR, 1-4] %, respectively). Myocardial infarction was identified in 4/17 (24%) patients with AMCovS. Cardiomyopathies were identified in 12% (3/17) and 27% (6/22) of patients with AMCovS and cPACS, including DCM, HCM and mitral valve prolapse. CONCLUSIONS: In patients with acute and post-acute COVID-19 related suspected myocarditis, CMR improves diagnostic accuracy characterizing ischemic and non-ischemic injury and unraveling subclinical cardiomyopathies.


Subject(s)
COVID-19 , Cardiomyopathies , Myocarditis , Male , Humans , Female , Myocarditis/complications , Myocarditis/diagnostic imaging , COVID-19/complications , Predictive Value of Tests , SARS-CoV-2 , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Contrast Media
7.
Int J Cardiovasc Imaging ; 39(4): 821-830, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2301369

ABSTRACT

The coronavirus disease of 2019 (COVID-19)-related myocardial injury is an increasingly recognized complication and cardiac magnetic resonance imaging (MRI) has become the most commonly used non-invasive imaging technique for myocardial involvement. This study aims to assess myocardial structure by T2*-mapping which is a non-invasive gold-standard imaging tool for the assessment of cardiac iron deposition in patients with COVID-19 pneumonia without significant cardiac symptoms. Twenty-five patients with COVID-19 pneumonia and 20 healthy subjects were prospectively enrolled.Cardiac volume and function parameters, myocardial native-T1, and T2*-mapping were measured. The association of serum ferritin level and myocardial mapping was analyzed. There was no difference in terms of cardiac volume and function parameters. The T2*-mapping values were lower in patients with COVID-19 compared to controls (35.37 [IQR 31.67-41.20] ms vs. 43.98 [IQR 41.97-46.88] ms; p < 0.0001), while no significant difference was found in terms of native-T1 mapping value(p = 0.701). There was a positive correlation with T2*mapping and native-T1 mapping values (r = 0.522, p = 0.007) and negative correlation with serum ferritin values (r = - 0.653, p = 0.000), while no correlation between cardiac native-T1 mapping and serum ferritin level. Negative correlation between serum ferritin level and T2*-mapping values in COVID-19 patients may provide a non-contrast-enhanced alternative to assess tissue structural changes in patients with COVID-19. T2*-mapping may provide a non-contrast-enhanced alternative to assess tissue alterations in patients with COVID-19. Adding T2*-mapping cardiac MRI in patients with myocardial pathologies would improve the revealing of underlying mechanisms. Further in vivo and ex vivo animal or human studies designed with larger patient cohorts should be planned.


Subject(s)
COVID-19 , Humans , COVID-19/complications , Predictive Value of Tests , Magnetic Resonance Imaging/methods , Myocardium/pathology , Magnetic Resonance Spectroscopy , Ferritins , Magnetic Resonance Imaging, Cine/methods , Contrast Media
8.
Urol Pract ; 10(3): 271-277, 2023 May.
Article in English | MEDLINE | ID: covidwho-2298469

ABSTRACT

INTRODUCTION: In April 2022, GE Healthcare announced a COVID-19-related interruption in iohexol manufacturing, leading to an international iodinated contrast shortage. The shortage greatly impacted urological practice, highlighting the value of alternative contrast agents and imaging/procedure alternatives. These alternatives are reviewed in this work. METHODS: A review of existing literature describing the use of alternative contrast agents, alternative imaging procedures, and contrast conservation strategies in urological care was performed using the PubMed database. The review was not performed systematically. RESULTS: Older iodinated contrast agents such as ioxaglate and diatrizoate can replace iohexol for intravascular imaging in patients without renal impairment. These agents, along with gadolinium-based agents such as Gadavist, have been used intraluminally for urological procedures and diagnostic imaging. Several lesser-known imaging and procedure alternatives are described and include air contrast pyelography, contrast-enhanced ultrasound, voiding urosonography, and low tube voltage CT urography. Conservation strategies include contrast dose reductions and use of contrast management devices for contrast vial splitting. CONCLUSIONS: The COVID-19-related iohexol shortage caused significant hardship for urological care internationally, leading to delayed contrasted imaging studies and urological procedures. Alternative contrast agents, imaging/procedure alternatives, and conservation strategies are reviewed in this work with the goal of equipping the urologist to mitigate the current iodinated contrast shortage and to prepare in the event of a future shortage.


Subject(s)
COVID-19 , Iohexol , Humans , Contrast Media , Urologists , Diatrizoate
9.
Environ Int ; 173: 107868, 2023 03.
Article in English | MEDLINE | ID: covidwho-2276167

ABSTRACT

Marine ecosystems are exposed to a multitude of stresses, including emerging metals as Rare Earth Elements. The management of these emerging contaminants represents a significant environmental issue. For the past three decades, the increasing medical use of gadolinium-based contrast agents (GBCAs) has contributed to their widespread dispersion in hydrosystems, raising concerns for ocean conservation. In order to control GBCA contamination pathways, a better understanding of the cycle of these elements is needed, based on the reliable characterization of fluxes from watersheds. Our study proposes an unprecedented annual flux model for anthropogenic gadolinium (Gdanth) based on GBCA consumption, demographics and medical uses. This model enabled the mapping of Gdanth fluxes for 48 European countries. The results show that 43 % of Gdanth is exported to the Atlantic Ocean, 24 % to the Black Sea, 23 % to the Mediterranean Sea and 9 % to the Baltic Sea. Together, Germany, France and Italy contribute 40 % of Europe's annual flux. Our study was therefore able to identify the current and future major contributors to Gdanth flux in Europe and identify abrupt changes related to the COVID-19 pandemic.


Subject(s)
COVID-19 , Gadolinium , Humans , Gadolinium/analysis , Ecosystem , Pandemics , Mediterranean Sea , Contrast Media
10.
PLoS One ; 18(3): e0282394, 2023.
Article in English | MEDLINE | ID: covidwho-2287689

ABSTRACT

BACKGROUND: Long-term symptoms are frequent after coronavirus disease 2019 (COVID-19). We studied the prevalence of post-acute myocardial scar on cardiac magnetic resonance imaging (CMR) in patients hospitalized due to COVID-19 and its association with long-term symptoms. MATERIALS AND METHODS: In this prospective observational single-center study, 95 formerly hospitalized COVID-19 patients underwent CMR imaging at the median of 9 months after acute COVID-19. In addition, 43 control subjects were imaged. Myocardial scar characteristic of myocardial infarction or myocarditis were noted from late gadolinium enhancement images (LGE). Patient symptoms were screened using a questionnaire. Data are presented as mean ± standard deviation or median (interquartile range). RESULTS: The presence of any LGE was higher in COVID-19 patients (66% vs. 37%, p<0.01) as was the presence of LGE suggestive of previous myocarditis (29% vs. 9%, p = 0.01). The prevalence of ischemic scar was comparable (8% vs. 2%, p = 0.13). Only two COVID-19 patients (7%) had myocarditis scar combined with left ventricular dysfunction (EF <50%). Myocardial edema was not detected in any participant. The need for intensive care unit (ICU) treatment during initial hospitalization was comparable in patients with and without myocarditis scar (47% vs. 67%, p = 0.44). Dyspnea, chest pain, and arrhythmias were prevalent in COVID-19 patients at follow-up (64%, 31%, and 41%, respectively) but not associated with myocarditis scar on CMR. CONCLUSIONS: Myocardial scar suggestive of possible previous myocarditis was detected in almost one-third of hospital-treated COVID-19 patients. It was not associated with the need for ICU treatment, greater symptomatic burden, or ventricular dysfunction at 9 months follow-up. Thus, post-acute myocarditis scar on COVID-19 patients seems to be a subclinical imaging finding and does not commonly require further clinical evaluation.


Subject(s)
COVID-19 , Heart Injuries , Myocarditis , Humans , Myocarditis/complications , Contrast Media , Cicatrix/complications , Ventricular Function, Left , COVID-19/complications , Gadolinium , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Heart Injuries/complications , Magnetic Resonance Imaging, Cine/methods , Predictive Value of Tests
11.
Nanomedicine (Lond) ; 17(25): 1981-2005, 2022 10.
Article in English | MEDLINE | ID: covidwho-2271158

ABSTRACT

The development of rapid, noninvasive diagnostics to detect lung diseases is a great need after the COVID-2019 outbreak. The nanotechnology-based approach has improved imaging and facilitates the early diagnosis of inflammatory lung diseases. The multifunctional properties of nanoprobes enable better spatial-temporal resolution and a high signal-to-noise ratio in imaging. Targeted nanoimaging agents have been used to bind specific tissues in inflammatory lungs for early-stage diagnosis. However, nanobased imaging approaches for inflammatory lung diseases are still in their infancy. This review provides a solution-focused approach to exploring medical imaging technologies and nanoprobes for the detection of inflammatory lung diseases. Prospects for the development of contrast agents for lung disease detection are also discussed.


Subject(s)
Antineoplastic Agents , COVID-19 , Nanoparticles , Humans , COVID-19/diagnostic imaging , Nanotechnology/methods , Diagnostic Imaging/methods , Contrast Media , COVID-19 Testing
12.
Ren Fail ; 45(1): 2178821, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2256906

ABSTRACT

Contrast-induced acute kidney injury (CI-AKI), which occurs after the use of iodinated contrast media, has become the third leading cause of hospital-acquired acute kidney injury (AKI). It is associated with prolonged hospitalization and increased risks of end-stage renal disease and mortality. The pathogenesis of CI-AKI is unclear and effective treatments are lacking. By comparing different post-nephrectomy times and dehydration times, we constructed a new, short-course CI-AKI model using dehydration for 24 h two weeks after unilateral nephrectomy. We found that the low-osmolality contrast media iohexol caused more severe renal function decline, renal morphological damage, and mitochondrial ultrastructural alterations compared to the iso-osmolality contrast media iodixanol. The shotgun proteomics based on Tandem Mass Tag (TMT) was used to conduct proteomics research on renal tissue in the new CI-AKI model, and 604 distinct proteins were identified, mainly involving complement and coagulation cascade, COVID-19, PPAR signalling pathway, mineral absorption, cholesterol metabolism, ferroptosis, staphylococcus aureus infection, systemic lupus erythematosus, folate biosynthesis, and proximal tubule bicarbonate reclamation. Then, using parallel reaction monitoring (PRM), we validate 16 candidate proteins, of which five were novel candidates (Serpina1, Apoa1, F2, Plg, Hrg) previously unrelated to AKI and associated with an acute response as well as fibrinolysis. The pathway analysis and 16 candidate proteins may help to discover new mechanisms in the pathogenesis of CI-AKI, allowing for early diagnosis and outcome prediction.


Subject(s)
Acute Kidney Injury , Proteomics , Animals , Rats , Acute Kidney Injury/chemically induced , Acute Kidney Injury/diagnosis , Contrast Media/adverse effects , Dehydration/pathology , Kidney
14.
Anticancer Res ; 43(2): 557-567, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2253287

ABSTRACT

BACKGROUND/AIM: Sentinel lymph node (SLN) procedures have gained popularity in early breast cancer thanks to the reduction of surgical side-effects. The standard SLN mapping procedure uses 99mTc-nanocolloid human serum albumin with/without blue dye; limitations include logistical challenges and adverse reactions. Recently, contrast-enhanced ultrasound (CEUS) using sulfur hexafluoride has emerged as a promising technique for SLN mapping. Our study aimed to compare the CEUS technique with the standard isotope method. MATERIALS AND METHODS: AX-CES, a prospective, monocentric, single-arm phase-3 study was designed (EudraCT: 2020-000393-20). Inclusion criteria were histologically diagnosed early breast cancer eligible for upfront surgery and SLN resection, bodyweight 40-85 kg, and no prior history of ipsilateral surgery or radiotherapy. All patients underwent CEUS prior to surgery and blue dye injection was performed in areas with contrast accumulation. After the experimental procedure, all patients underwent the standard mapping procedure and SLN frozen section assessment was performed. Data on the success rate, systemic reactions, mean procedure time, CEUS appearance, SLN number, and concordance with standard mapping procedure were collected. RESULTS: Among 16 cases, a median of two SLNs were identified during CEUS. In all cases, at least one SLN was identified by CEUS (100%). In six cases, SLNs were classified during CEUS as abnormal, which was confirmed by definitive staining in four cases. After the standard mapping technique, in 15 out of the 16 cases (87.50%), at least one SLN from the standard mapping procedure was marked with blue dye in the CEUS procedure. In our series, sensitivity and specificity of SLN detection by CEUS were 75% and 100%, respectively. CONCLUSION: CEUS is a safe and manageable intraoperative procedure. When compared with standard techniques, US appearance during CEUS may provide additional information when associated with histological assessment.


Subject(s)
Breast Neoplasms , Sentinel Lymph Node , Female , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Contrast Media , Lymph Nodes/diagnostic imaging , Lymph Nodes/surgery , Lymph Nodes/pathology , Microbubbles , Prospective Studies , Sentinel Lymph Node/diagnostic imaging , Sentinel Lymph Node/surgery , Sentinel Lymph Node/pathology , Sentinel Lymph Node Biopsy/methods , Sulfur Hexafluoride
15.
J Am Heart Assoc ; 12(6): e027801, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2264637

ABSTRACT

Background Meta-analysis can identify biological factors that moderate cardiac magnetic resonance myocardial tissue markers such as native T1 (longitudinal magnetization relaxation time constant) and T2 (transverse magnetization relaxation time constant) in cohorts recovering from COVID-19 infection. Methods and Results Cardiac magnetic resonance studies of patients with COVID-19 using myocardial T1, T2 mapping, extracellular volume, and late gadolinium enhancement were identified by database searches. Pooled effect sizes and interstudy heterogeneity (I2) were estimated with random effects models. Moderators of interstudy heterogeneity were analyzed by meta-regression of the percent difference of native T1 and T2 between COVID-19 and control groups (%ΔT1 [percent difference of the study-level means of myocardial T1 in patients with COVID-19 and controls] and %ΔT2 [percent difference of the study-level means of myocardial T2 in patients with COVID-19 and controls]), extracellular volume, and the proportion of late gadolinium enhancement. Interstudy heterogeneities of %ΔT1 (I2=76%) and %ΔT2 (I2=88%) were significantly lower than for native T1 and T2, respectively, independent of field strength, with pooled effect sizes of %ΔT1=1.24% (95% CI, 0.54%-1.9%) and %ΔT2=3.77% (95% CI, 1.79%-5.79%). %ΔT1 was lower for studies in children (median age: 12.7 years) and athletes (median age: 21 years), compared with older adults (median age: 48 years). Duration of recovery from COVID-19, cardiac troponins, C-reactive protein, and age were significant moderators for %ΔT1 and/or %ΔT2. Extracellular volume, adjusted by age, was moderated by recovery duration. Age, diabetes, and hypertension were significant moderators of the proportion of late gadolinium enhancement in adults. Conclusions T1 and T2 are dynamic markers of cardiac involvement in COVID-19 that reflect the regression of cardiomyocyte injury and myocardial inflammation during recovery. Late gadolinium enhancement and to a lesser extent extracellular volume, are more static biomarkers moderated by preexisting risk factors linked to adverse myocardial tissue remodeling.


Subject(s)
COVID-19 , Contrast Media , Child , Humans , Aged , Young Adult , Adult , Middle Aged , Gadolinium , Magnetic Resonance Imaging, Cine/methods , Myocardium/pathology , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Predictive Value of Tests
17.
Abdom Radiol (NY) ; 48(3): 1164-1172, 2023 03.
Article in English | MEDLINE | ID: covidwho-2209315

ABSTRACT

INTRODUCTION: Spontaneous bleeding into the soft tissues of the abdominal and thoracic wall is described as complication of anticoagulant therapy. Computed tomography (CT) allows to detect the presence of extravasation of the contrast agent into a hematoma, which is indicated as a sign of ongoing bleeding. Other specific CT signs of such coagulopathic bleeding have been described earlier. AIM OF THE STUDY: To evaluate the significance of specific coagulopathic CT signs for predicting the dynamics of spontaneous bleeding into soft tissues in patients with COVID-19. MATERIALS AND METHODS: A retrospective study included 60 patients with COVID-19 with spontaneous bleeding into soft tissues and extravasation of a contrast agent on CT. In addition to extravasation, a "hematocrit effect" was detected in 43 patients on CT. Of these, 39 had extravasation in the form of a "signal flare." All patients underwent transarterial catheter angiography (TCA). To assess the prognostic value of CT signs, the results of CT and TCA compared. The absence of extravasation on the TCA more often corresponded to stopped bleeding. RESULTS: Extravasation on TCA found in 27 (45%) patients. The presence of the "hematocrit effect" or the combination of this sign with the phenomenon of a "signal flare" on CT (n = 43) led to more frequent confirmation of extravasation on TCA than in their absence (n = 17): 23.5% vs. 53.4% (p = 0.028). CONCLUSION: The presence of a fluid level and the phenomenon of a "signal flare" on CT in the structure of spontaneous hematomas of the soft tissues of the abdominal and thoracic wall in COVID-19 patients more often corresponded to ongoing bleeding on the TCA. The absence of coagulopathic CT signs more often corresponded to stopped bleeding.


Subject(s)
COVID-19 , Embolization, Therapeutic , Humans , Contrast Media , Retrospective Studies , Reproducibility of Results , Hemorrhage/therapy , Tomography, X-Ray Computed/methods , Embolization, Therapeutic/methods
18.
Pediatr Radiol ; 53(5): 892-899, 2023 05.
Article in English | MEDLINE | ID: covidwho-2174046

ABSTRACT

BACKGROUND: Rare cases of cardiac inflammation following vaccination for severe acute respiratory coronavirus 2 (SARS-CoV-2) have been reported. OBJECTIVE: To study paediatric patients with clinical findings of acute inflammation post coronavirus disease 2019 (COVID-19) Pfizer/BioNTech vaccination using cardiovascular magnetic resonance imaging (MRI) in acute and subacute phases. MATERIALS AND METHODS: We enrolled adolescents younger than 18 years who presented at one of two institutions between July 2021 and August 2022 with clinical and laboratory findings of acute myocarditis shortly following COVID-19 Pfizer/BioNTech vaccination. They all underwent cardiovascular MRI using the institutional myocarditis protocol. RESULTS: Five adolescents (four boys) underwent eight scans between 3 days and 109 days (mean 49 days) after the onset of symptoms following COVID-19 vaccination. Myocardial oedema appeared on short tau inversion recovery (STIR) T2-weighted images in three adolescents at presentation (3-12 days after symptom onset). In these children, the myocardial oedema/acute inflammation had resolved at follow-up cardiovascular MRI (53-68 days after first MRI). However, in all three adolescents, a persistent area of late gadolinium enhancement was evident at follow-up, suggesting post-myocarditic fibrosis. One adolescent scanned only once, 66 days after being symptomatic, had no acute inflammation but persistent fibrotic changes. This last adolescent, who underwent the first scan 109 days after symptom onset, had findings compatible with an episode of previous myocarditis, with mild ongoing regional myocardial oedema/inflammation. CONCLUSION: This study on post-vaccine myocarditis demonstrates residual lesions with persistent areas of late gadolinium enhancement/myocardial fibrosis with ongoing myocardial oedema after resolution of the initial myocardial oedema a few weeks after Pfizer/BioNTech vaccination. There is an urgent need to recognise and fully investigate the outcome of post-vaccination myocarditis.


Subject(s)
COVID-19 , Myocarditis , Male , Humans , Adolescent , Child , Myocarditis/diagnostic imaging , Myocarditis/etiology , COVID-19 Vaccines/adverse effects , Gadolinium/adverse effects , Contrast Media/adverse effects , SARS-CoV-2 , Magnetic Resonance Imaging/methods , Edema , Inflammation
19.
Infect Dis (Lond) ; 55(3): 199-206, 2023 03.
Article in English | MEDLINE | ID: covidwho-2187931

ABSTRACT

BACKGROUND: There is limited data on the pattern and severity of myocardial injury in patients with COVID-19 vaccination associated myocarditis. OBJECTIVE: We aimed to define the myocardial damage occurring after BNT162b2 vaccination, raise awareness about adverse reactions developing after vaccination, and determine the patterns and scope of Cardiac magnetic resonance imaging (MRI) findings. PATIENTS/METHODS: A total of 9 patients diagnosed with vaccine-associated myopericarditis were followed up. RESULTS: The mean age of the patient at diagnosis was 15.3 ± 1.0 (range: 14-17) years, and all patients were male. Seven patients presented with myocarditis symptoms after their second vaccine dose, one patient presented with pericarditis symptoms after his first dose, and the other patient presented with myocarditis symptoms after his booster dose. The median time at presenting to the hospital was 3 (range: 2-22) days. Seven (77.7%) patients had abnormal electrocardiography (ECG) findings, and the most prevalent finding was diffuse ST-segment elevation. Initial cardiac MRI results were abnormal in all patients, where 8 (88.8%) patients had late gadolinium enhancement, and 5 (55.5%) had myocardial edoema. Three patients showed local left ventricular wall-motion abnormalities. In their follow-up MRIs 3-6 months later, myocardial edoema was present in 2 (28.5%) patients, while late gadolinium enhancement was present in all patients (7/7, 100%, 2 patients did not have control MRI time). Hypokinetic segments were still present in one of the 3 patients. No negative cardiac events were observed in the short-term follow-up of any patient. CONCLUSION: Further follow-up evaluation and larger multicenter studies are needed to determine the clinical significance of persistent cardiac MRI abnormalities.


Subject(s)
COVID-19 Vaccines , COVID-19 , Myocarditis , Adolescent , Female , Humans , Male , BNT162 Vaccine , Contrast Media , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Follow-Up Studies , Gadolinium , Magnetic Resonance Imaging , Myocarditis/diagnostic imaging , Myocarditis/etiology , Vaccines
20.
Khirurgiia (Mosk) ; (12): 11-19, 2022.
Article in Russian | MEDLINE | ID: covidwho-2155914

ABSTRACT

OBJECTIVE: To investigate the results of therapeutic and prophylactic endovascular hemostasis of spontaneous bleeding into soft tissues of abdominal, chest wall and retroperitoneal space in patients with COVID-19. MATERIAL AND METHODS: We retrospectively studied 35 patients with COVID-19 complicated by spontaneous bleeding into soft tissues of abdominal, chest wall and retroperitoneal space. According to CT data, the volume of hematoma was 1193.4±706.1 ml. In all patients, CT signs of ongoing bleeding were detected. Moreover, contrast agent extravasation in all phases of examination was established in 15 patients. In other ones, extravasation was detected in late phases or study phase was not identified. All patients underwent angiography. Ongoing bleeding was detected in 12 (34.3%) patients (group 1). They underwent embolization of the target vessel. In 23 patients, bleeding was not established during angiography. Of these, 13 ones underwent prophylactic embolization (group 2). No embolization was carried out in 10 patients (group 3). All groups differed in hematoma localization and COVID-19 severity. RESULTS: Fourteen (40%) patients died in postoperative period. Mortality was similar in all groups. The most common cause of death was progressive respiratory failure following pneumonia. The last one was established by autopsy in 10 (71.4%) patients. CONCLUSION: Angiography confirmed MR signs of contrast agent extravasation in 34.3% of patients. In case of extravasation in all CT phases, ongoing bleeding was confirmed in 66.7% of patients. Endovascular embolization is effective for arterial bleeding into soft tissues. However, large-scale studies are needed to assess the effect of this technique on survival.


Subject(s)
COVID-19 , Embolization, Therapeutic , Thoracic Wall , Humans , Retroperitoneal Space , Contrast Media , COVID-19/complications , COVID-19/diagnosis , Retrospective Studies , Hemorrhage/diagnosis , Hemorrhage/etiology , Hemorrhage/therapy , Embolization, Therapeutic/adverse effects , Embolization, Therapeutic/methods , Hematoma/diagnostic imaging , Hematoma/etiology , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL