Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 2.340
Filter
Add filters

Document Type
Year range
1.
J Gen Virol ; 102(10)2021 10.
Article in English | MEDLINE | ID: covidwho-1490495

ABSTRACT

The highly pathogenic Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a severe respiratory virus. Recent reports indicate additional central nervous system (CNS) involvement. In this study, human DPP4 transgenic mice were infected with MERS-CoV, and viral antigens were first detected in the midbrain-hindbrain 4 days post-infection, suggesting the virus may enter the brainstem via peripheral nerves. Neurons and astrocytes throughout the brain were infected, followed by damage of the blood brain barrier (BBB), as well as microglial activation and inflammatory cell infiltration, which may be caused by complement activation based on the observation of deposition of complement activation product C3 and high expression of C3a receptor (C3aR) and C5a receptor (C5aR1) in neurons and glial cells. It may be concluded that these effects were mediated by complement activation in the brain, because of their reduction resulted from the treatment with mouse C5aR1-specific mAb. Such mAb significantly reduced nucleoprotein expression, suppressed microglial activation and decreased activation of caspase-3 in neurons and p38 phosphorylation in the brain. Collectively, these results suggest that MERS-CoV infection of CNS triggers complement activation, leading to inflammation-mediated damage of brain tissue, and regulating of complement activation could be a promising intervention and adjunctive treatment for CNS injury by MERS-CoV and other coronaviruses.


Subject(s)
Brain/pathology , Complement System Proteins/immunology , Coronavirus Infections/pathology , Dipeptidyl Peptidase 4/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Animals , Blood-Brain Barrier/immunology , Blood-Brain Barrier/pathology , Brain/blood supply , Brain/immunology , Brain/virology , Complement Activation/drug effects , Complement Inactivating Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/virology , Disease Models, Animal , Humans , Inflammation , Mice , Mice, Transgenic , Microglia/immunology , Microglia/pathology
3.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: covidwho-1481965

ABSTRACT

Self-amplifying RNA replicons are promising platforms for vaccine generation. Their defects in one or more essential functions for viral replication, particle assembly, or dissemination make them highly safe as vaccines. We previously showed that the deletion of the envelope (E) gene from the Middle East respiratory syndrome coronavirus (MERS-CoV) produces a replication-competent propagation-defective RNA replicon (MERS-CoV-ΔE). Evaluation of this replicon in mice expressing human dipeptidyl peptidase 4, the virus receptor, showed that the single deletion of the E gene generated an attenuated mutant. The combined deletion of the E gene with accessory open reading frames (ORFs) 3, 4a, 4b, and 5 resulted in a highly attenuated propagation-defective RNA replicon (MERS-CoV-Δ[3,4a,4b,5,E]). This RNA replicon induced sterilizing immunity in mice after challenge with a lethal dose of a virulent MERS-CoV, as no histopathological damage or infectious virus was detected in the lungs of challenged mice. The four mutants lacking the E gene were genetically stable, did not recombine with the E gene provided in trans during their passage in cell culture, and showed a propagation-defective phenotype in vivo. In addition, immunization with MERS-CoV-Δ[3,4a,4b,5,E] induced significant levels of neutralizing antibodies, indicating that MERS-CoV RNA replicons are highly safe and promising vaccine candidates.


Subject(s)
Coronavirus Infections/prevention & control , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , RNA, Viral/administration & dosage , Replicon , Viral Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/biosynthesis , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Coronavirus Infections/virology , Defective Viruses/genetics , Defective Viruses/immunology , Female , Gene Deletion , Genes, env , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/pathogenicity , RNA, Viral/genetics , RNA, Viral/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology , Virulence/genetics , Virulence/immunology
4.
J Virol ; 95(22): e0127621, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1494956

ABSTRACT

The emergence of life-threatening zoonotic diseases caused by betacoronaviruses, including the ongoing coronavirus disease 19 (COVID-19) pandemic, has highlighted the need for developing preclinical models mirroring respiratory and systemic pathophysiological manifestations seen in infected humans. Here, we showed that C57BL/6J wild-type mice intranasally inoculated with the murine betacoronavirus murine hepatitis coronavirus 3 (MHV-3) develop a robust inflammatory response leading to acute lung injuries, including alveolar edema, hemorrhage, and fibrin thrombi. Although such histopathological changes seemed to resolve as the infection advanced, they efficiently impaired respiratory function, as the infected mice displayed restricted lung distention and increased respiratory frequency and ventilation. Following respiratory manifestation, the MHV-3 infection became systemic, and a high virus burden could be detected in multiple organs along with morphological changes. The systemic manifestation of MHV-3 infection was also marked by a sharp drop in the number of circulating platelets and lymphocytes, besides the augmented concentration of the proinflammatory cytokines interleukin 1 beta (IL-1ß), IL-6, IL-12, gamma interferon (IFN-γ), and tumor necrosis factor (TNF), thereby mirroring some clinical features observed in moderate and severe cases of COVID-19. Importantly, both respiratory and systemic changes triggered by MHV-3 infection were greatly prevented by blocking TNF signaling, either via genetic or pharmacologic approaches. In line with this, TNF blockage also diminished the infection-mediated release of proinflammatory cytokines and virus replication of human epithelial lung cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Collectively, results show that MHV-3 respiratory infection leads to a large range of clinical manifestations in mice and may constitute an attractive, lower-cost, biosafety level 2 (BSL2) in vivo platform for evaluating the respiratory and multiorgan involvement of betacoronavirus infections. IMPORTANCE Mouse models have long been used as valuable in vivo platforms to investigate the pathogenesis of viral infections and effective countermeasures. The natural resistance of mice to the novel betacoronavirus SARS-CoV-2, the causative agent of COVID-19, has launched a race toward the characterization of SARS-CoV-2 infection in other animals (e.g., hamsters, cats, ferrets, bats, and monkeys), as well as adaptation of the mouse model, by modifying either the host or the virus. In the present study, we utilized a natural pathogen of mice, MHV, as a prototype to model betacoronavirus-induced acute lung injure and multiorgan involvement under biosafety level 2 conditions. We showed that C57BL/6J mice intranasally inoculated with MHV-3 develops severe disease, which includes acute lung damage and respiratory distress that precede systemic inflammation and death. Accordingly, the proposed animal model may provide a useful tool for studies regarding betacoronavirus respiratory infection and related diseases.


Subject(s)
Coronavirus Infections/pathology , Disease Models, Animal , Lung/pathology , Murine hepatitis virus/pathogenicity , Animals , Cell Line , Containment of Biohazards , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/metabolism , Humans , Inflammation , Liver/pathology , Liver/virology , Lung/virology , Mice , Murine hepatitis virus/drug effects , Murine hepatitis virus/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Virus Replication/drug effects
6.
Shock ; 56(5): 667-672, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1470219

ABSTRACT

BACKGROUND: "Cytokine storm" has been used to implicate increased cytokine levels in the pathogenesis of serious clinical conditions. Similarities with Severe Acute Respiratory Syndrome Coronoavirus-2 (SARS CoV-2) and the 2012 Middle Eastern Respiratory Syndrome led early investigators to suspect a "cytokine storm" resulting in an unregulated inflammatory response associated with the significant morbidity and mortality induced by SARS CoV-2. The threshold of blood cytokines necessary to qualify as a "cytokine storm" has yet to be defined. METHODS: A literature review was conducted to identify cytokine levels released during 11 assorted clinical conditions or diseases. Weighted averages for various cytokines were calculated by multiplying the number of patients in the paper by the average concentration of each cytokine. Correlation between cytokine levels for individual conditions or diseases were assessed using Pearson correlation coefficient. RESULTS: The literature was reviewed to determine blood levels of cytokines in a wide variety of clinical conditions. These conditions ranged from exercise and autoimmune disease to septic shock and therapy with chimeric antigen receptor T cells. The most frequently measured cytokine was IL-6 which ranged from 24,123 pg/mL in septic shock to 11 pg/mL after exercise. In patients with severe SARS CoV-2 infections, blood levels of IL-6 were only 43 pg/mL, nearly three magnitudes lower than IL-6 levels in patients with septic shock. The clinical presentations of these different diseases do not correlate with blood levels of cytokines. Additionally, there is poor correlation between the concentrations of different cytokines among the different diseases. Specifically, blood levels of IL-6 did not correlate with levels of IL-8, IL-10, or TNF. Septic shock had the highest concentrations of cytokines, yet multiple cytokine inhibitors have failed to demonstrate improved outcomes in multiple clinical trials. Patients with autoimmune diseases have very low blood levels of cytokines (rheumatoid arthritis, IL-6 = 34 pg/mL; Crohn's disease, IL-6 = 5 pg/mL), yet respond dramatically to cytokine inhibitors. CONCLUSION: The misleading term "cytokine storm" implies increased blood levels of cytokines are responsible for a grave clinical condition. Not all inflammatory conditions resulting in worsened disease states are correlated with significantly elevated cytokine levels, despite an association with the term "cytokine storm". "Cytokine storm" should be removed from the medical lexicon since it does not reflect the mediators driving the disease nor does it predict which diseases will respond to cytokine inhibitors.


Subject(s)
COVID-19/immunology , Coronavirus Infections/immunology , Cytokine Release Syndrome , Cytokines/blood , COVID-19/blood , Coronavirus Infections/blood , Humans , Inflammation , Interleukin-6/blood , Receptors, Chimeric Antigen/immunology , SARS-CoV-2 , Shock, Septic/blood , Shock, Septic/immunology , T-Lymphocytes/immunology
7.
Viruses ; 13(10)2021 10 14.
Article in English | MEDLINE | ID: covidwho-1469383

ABSTRACT

The human Betacoronavirus OC43 is a common cause of respiratory viral infections in adults and children. Lung infections with OC43 are associated with mortality, especially in hematopoietic stem cell transplant recipients. Neutralizing antibodies play a major role in protection against many respiratory viral infections, but to date a live viral neutralization assay for OC43 has not been described. We isolated a human monoclonal antibody (OC2) that binds to the spike protein of OC43 and neutralizes the live virus derived from the original isolate of OC43. We used this monoclonal antibody to develop and test the performance of two readily accessible in vitro assays for measuring antibody neutralization, one utilizing cytopathic effect and another utilizing an ELISA of infected cells. We used both methods to measure the neutralizing activity of the OC2 monoclonal antibody and of human plasma. These assays could prove useful for studying humoral responses to OC43 and cross-neutralization with other medically important betacoronaviruses.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coronavirus OC43, Human/immunology , Neutralization Tests/methods , Spike Glycoprotein, Coronavirus/immunology , Cell Line , Common Cold/immunology , Common Cold/pathology , Common Cold/virology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Enzyme-Linked Immunosorbent Assay/methods , Humans
8.
Cell Rep ; 37(5): 109929, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1466097

ABSTRACT

Current coronavirus (CoV) vaccines primarily target immunodominant epitopes in the S1 subunit, which are poorly conserved and susceptible to escape mutations, thus threatening vaccine efficacy. Here, we use structure-guided protein engineering to remove the S1 subunit from the Middle East respiratory syndrome (MERS)-CoV spike (S) glycoprotein and develop stabilized stem (SS) antigens. Vaccination with MERS SS elicits cross-reactive ß-CoV antibody responses and protects mice against lethal MERS-CoV challenge. High-throughput screening of antibody-secreting cells from MERS SS-immunized mice led to the discovery of a panel of cross-reactive monoclonal antibodies. Among them, antibody IgG22 binds with high affinity to both MERS-CoV and severe acute respiratory syndrome (SARS)-CoV-2 S proteins, and a combination of electron microscopy and crystal structures localizes the epitope to a conserved coiled-coil region in the S2 subunit. Passive transfer of IgG22 protects mice against both MERS-CoV and SARS-CoV-2 challenge. Collectively, these results provide a proof of principle for cross-reactive CoV antibodies and inform the development of pan-CoV vaccines and therapeutic antibodies.


Subject(s)
Antibodies, Viral/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Cell Line , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cross Reactions , Drug Design , Epitope Mapping , Female , Immunoglobulin G/immunology , Male , Mice , Mice, Inbred BALB C , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Viral Vaccines/immunology
10.
Front Immunol ; 12: 652252, 2021.
Article in English | MEDLINE | ID: covidwho-1463468

ABSTRACT

The rapid outbreak of COVID-19 caused by the novel coronavirus SARS-CoV-2 in Wuhan, China, has become a worldwide pandemic affecting almost 204 million people and causing more than 4.3 million deaths as of August 11 2021. This pandemic has placed a substantial burden on the global healthcare system and the global economy. Availability of novel prophylactic and therapeutic approaches are crucially needed to prevent development of severe disease leading to major complications both acutely and chronically. The success in fighting this virus results from three main achievements: (a) Direct killing of the SARS-CoV-2 virus; (b) Development of a specific vaccine, and (c) Enhancement of the host's immune system. A fundamental necessity to win the battle against the virus involves a better understanding of the host's innate and adaptive immune response to the virus. Although the role of the adaptive immune response is directly involved in the generation of a vaccine, the role of innate immunity on RNA viruses in general, and coronaviruses in particular, is mostly unknown. In this review, we will consider the structure of RNA viruses, mainly coronaviruses, and their capacity to affect the lungs and the cardiovascular system. We will also consider the effects of the pattern recognition protein (PRP) trident composed by (a) Surfactant proteins A and D, mannose-binding lectin (MBL) and complement component 1q (C1q), (b) C-reactive protein, and (c) Innate and adaptive IgM antibodies, upon clearance of viral particles and apoptotic cells in lungs and atherosclerotic lesions. We emphasize on the role of pattern recognition protein immune therapies as a combination treatment to prevent development of severe respiratory syndrome and to reduce pulmonary and cardiovascular complications in patients with SARS-CoV-2 and summarize the need of a combined therapeutic approach that takes into account all aspects of immunity against SARS-CoV-2 virus and COVID-19 disease to allow mankind to beat this pandemic killer.


Subject(s)
COVID-19/immunology , Cardiovascular System/virology , Coronavirus Infections/immunology , Coronavirus/physiology , Immunotherapy/methods , Lung/virology , Receptors, Pattern Recognition/metabolism , SARS-CoV-2/physiology , Severe Acute Respiratory Syndrome/immunology , Animals , Cardiovascular System/pathology , Humans , Immunity, Innate , Lung/pathology
11.
Acta Med Acad ; 49(2): 130-143, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1414828

ABSTRACT

In this review, we discuss the latest developments in research pertaining to virus-induced asthma exacerbations and consider recent advances in treatment options. Asthma is a chronic disease of the airways that continues to impose a substantial clinical burden worldwide. Asthma exacerbations, characterised by an acute deterioration in respiratory symptoms and airflow obstruction, are associated with significant morbidity and mortality. These episodes are most commonly triggered by respiratory virus infections. The mechanisms underlying the pathogenesis of virus-induced exacerbations have been the focus of extensive biomedical research. Developing a robust understanding of the interplay between respiratory viruses and the host immune response will be critical for developing more efficacious, targeted therapies for exacerbations. CONCLUSION: There has been significant recent progress in our understanding of the mechanisms underlying virus-induced airway inflammation in asthma and these advances will underpin the development of future clinical therapies.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Antiviral Agents/therapeutic use , Asthma/drug therapy , Respiratory Tract Infections/drug therapy , Virus Diseases/drug therapy , Adenovirus Infections, Human/drug therapy , Adenovirus Infections, Human/immunology , Adenovirus Infections, Human/physiopathology , Administration, Inhalation , Asthma/immunology , Asthma/physiopathology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Disease Progression , Humans , Influenza, Human/drug therapy , Influenza, Human/immunology , Influenza, Human/physiopathology , Interferon-beta/therapeutic use , Macrolides/therapeutic use , Omalizumab/therapeutic use , Paramyxoviridae Infections/drug therapy , Paramyxoviridae Infections/immunology , Paramyxoviridae Infections/physiopathology , Picornaviridae Infections/drug therapy , Picornaviridae Infections/immunology , Picornaviridae Infections/physiopathology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/physiopathology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/physiopathology , Virus Diseases/immunology , Virus Diseases/physiopathology
14.
Pharmazie ; 75(8): 375-380, 2020 08 01.
Article in English | MEDLINE | ID: covidwho-1435671

ABSTRACT

Diabetes mellitus (DM) is one of the major risk factors for COVID-19 complications as it is one of the chronic immune-compromising conditions especially if patients have uncontrolled diabetes, poor HbA1c and/or irregular blood glucose levels. Diabetic patients' mortality rates with COVID-19 are higher than those of cardiovascular or cancer patients. Recently, Bacillus Calmette-Guérin (BCG) vaccine has shown successful results in reversing diabetes in both rats and clinical trials based on different mechanisms from aerobic glycolysis to beta cells regeneration. BCG is a multi-face vaccine that has been used extensively in protection from tuberculosis (TB) and leprosy and has been repositioned for treatment of bladder cancer, diabetes and multiple sclerosis. Recently, COVID-19 epidemiological studies confirmed that universal BCG vaccination reduced morbidity and mortality in certain geographical areas. Countries without universal policies of BCG vaccination (Italy, Nederland, USA) have been more severely affected compared to countries with universal and long-standing BCG policies that have shown low numbers of reported COVID-19 cases. Some countries have started clinical trials that included a single dose BCG vaccine as prophylaxis from COVID-19 or an attempt to minimize its side effects. This proposed research aims to use BCG vaccine as a double-edged weapon countering both COVID-19 and diabetes, not only as protection but also as therapeutic vaccination. The work includes a case study of regenerated pancreatic beta cells based on improved C-peptide and PCPRI laboratory findings after BCG vaccination for a 9 year old patient. The patient was re-vaccinated based on a negative tuberculin test and no scar at the site of injection of the 1st BCG vaccination at birth. The authors suggest and invite the scientific community to take into consideration the concept of direct BCG re-vaccination (after 4 weeks) because of the reported gene expressions and exaggerated innate immunity consequently. As the diabetic MODY-5 patient (mutation of HNF1B, Val2Leu) was on low dose Riomet® while eliminating insulin gradually, a simple analytical method for metformin assay was recommended to ensure its concentration before use as it is not approved yet by the Egyptian QC labs.


Subject(s)
BCG Vaccine/administration & dosage , Coronavirus Infections/immunology , Diabetes Mellitus/immunology , Insulin-Secreting Cells/cytology , Pneumonia, Viral/immunology , Animals , BCG Vaccine/immunology , COVID-19 , Child , Coronavirus Infections/complications , Diabetes Mellitus/physiopathology , Humans , Male , Pandemics , Pneumonia, Viral/complications , Rats , Regeneration/immunology , Risk Factors , Vaccination/methods
15.
J Clin Invest ; 130(11): 6151-6157, 2020 11 02.
Article in English | MEDLINE | ID: covidwho-1435146

ABSTRACT

Emerging data indicate that complement and neutrophils contribute to the maladaptive immune response that fuels hyperinflammation and thrombotic microangiopathy, thereby increasing coronavirus 2019 (COVID-19) mortality. Here, we investigated how complement interacts with the platelet/neutrophil extracellular traps (NETs)/thrombin axis, using COVID-19 specimens, cell-based inhibition studies, and NET/human aortic endothelial cell (HAEC) cocultures. Increased plasma levels of NETs, tissue factor (TF) activity, and sC5b-9 were detected in patients. Neutrophils of patients yielded high TF expression and released NETs carrying active TF. Treatment of control neutrophils with COVID-19 platelet-rich plasma generated TF-bearing NETs that induced thrombotic activity of HAECs. Thrombin or NETosis inhibition or C5aR1 blockade attenuated platelet-mediated NET-driven thrombogenicity. COVID-19 serum induced complement activation in vitro, consistent with high complement activity in clinical samples. Complement C3 inhibition with compstatin Cp40 disrupted TF expression in neutrophils. In conclusion, we provide a mechanistic basis for a pivotal role of complement and NETs in COVID-19 immunothrombosis. This study supports strategies against severe acute respiratory syndrome coronavirus 2 that exploit complement or NETosis inhibition.


Subject(s)
Betacoronavirus , Complement Membrane Attack Complex , Coronavirus Infections , Extracellular Traps , Neutrophils , Pandemics , Pneumonia, Viral , Thromboplastin , Thrombosis , Aged , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Complement Activation/drug effects , Complement Membrane Attack Complex/immunology , Complement Membrane Attack Complex/metabolism , Coronavirus Infections/blood , Coronavirus Infections/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Female , Humans , Male , Middle Aged , Neutrophils/immunology , Neutrophils/metabolism , Peptides, Cyclic/pharmacology , Pneumonia, Viral/blood , Pneumonia, Viral/immunology , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/blood , Receptor, Anaphylatoxin C5a/immunology , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Thrombin/immunology , Thrombin/metabolism , Thromboplastin/immunology , Thromboplastin/metabolism , Thrombosis/blood , Thrombosis/immunology , Thrombosis/virology
16.
Arch Immunol Ther Exp (Warsz) ; 69(1): 25, 2021 Sep 16.
Article in English | MEDLINE | ID: covidwho-1411512

ABSTRACT

The term host defense peptides arose at the beginning to refer to those peptides that are part of the host's immunity. Because of their broad antimicrobial capacity and immunomodulatory activity, nowadays, they emerge as a hope to combat resistant multi-drug microorganisms and emerging viruses, such as the case of coronaviruses. Since the beginning of this century, coronaviruses have been part of different outbreaks and a pandemic, and they will be surely part of the next pandemics, this review analyses whether these peptides and their derivatives are ready to be part of the treatment of the next coronavirus pandemic.


Subject(s)
Antimicrobial Cationic Peptides/therapeutic use , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Pandemics , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/immunology , Anti-Inflammatory Agents/therapeutic use , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/immunology , Antiviral Agents/chemical synthesis , Antiviral Agents/immunology , Clinical Trials as Topic , Coronavirus/drug effects , Coronavirus/physiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Humans , Immunomodulation , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology
17.
PLoS One ; 16(9): e0252849, 2021.
Article in English | MEDLINE | ID: covidwho-1403295

ABSTRACT

Reverse vaccinology is an evolving approach for improving vaccine effectiveness and minimizing adverse responses by limiting immunizations to critical epitopes. Towards this goal, we sought to identify immunogenic amino acid motifs and linear epitopes of the SARS-CoV-2 spike protein that elicit IgG in COVID-19 mRNA vaccine recipients. Paired pre/post vaccination samples from N = 20 healthy adults, and post-vaccine samples from an additional N = 13 individuals were used to immunoprecipitate IgG targets expressed by a bacterial display random peptide library, and preferentially recognized peptides were mapped to the spike primary sequence. The data identify several distinct amino acid motifs recognized by vaccine-induced IgG, a subset of those targeted by IgG from natural infection, which may mimic 3-dimensional conformation (mimotopes). Dominant linear epitopes were identified in the C-terminal domains of the S1 and S2 subunits (aa 558-569, 627-638, and 1148-1159) which have been previously associated with SARS-CoV-2 neutralization in vitro and demonstrate identity to bat coronavirus and SARS-CoV, but limited homology to non-pathogenic human coronavirus. The identified COVID-19 mRNA vaccine epitopes should be considered in the context of variants, immune escape and vaccine and therapy design moving forward.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Epitope Mapping , Amino Acid Motifs , Amino Acid Sequence , Coronavirus Infections/immunology , Humans , Immunoglobulin G/blood , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Sequence Alignment , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
18.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: covidwho-1392993

ABSTRACT

COVID-19 induces a robust, extended inflammatory "cytokine storm" that contributes to an increased morbidity and mortality, particularly in patients with type 2 diabetes (T2D). Macrophages are a key innate immune cell population responsible for the cytokine storm that has been shown, in T2D, to promote excess inflammation in response to infection. Using peripheral monocytes and sera from human patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and a murine hepatitis coronavirus (MHV-A59) (an established murine model of SARS), we identified that coronavirus induces an increased Mφ-mediated inflammatory response due to a coronavirus-induced decrease in the histone methyltransferase, SETDB2. This decrease in SETDB2 upon coronavirus infection results in a decrease of the repressive trimethylation of histone 3 lysine 9 (H3K9me3) at NFkB binding sites on inflammatory gene promoters, effectively increasing inflammation. Mφs isolated from mice with a myeloid-specific deletion of SETDB2 displayed increased pathologic inflammation following coronavirus infection. Further, IFNß directly regulates SETDB2 in Mφs via JaK1/STAT3 signaling, as blockade of this pathway altered SETDB2 and the inflammatory response to coronavirus infection. Importantly, we also found that loss of SETDB2 mediates an increased inflammatory response in diabetic Mϕs in response to coronavirus infection. Treatment of coronavirus-infected diabetic Mφs with IFNß reversed the inflammatory cytokine production via up-regulation of SETDB2/H3K9me3 on inflammatory gene promoters. Together, these results describe a potential mechanism for the increased Mφ-mediated cytokine storm in patients with T2D in response to COVID-19 and suggest that therapeutic targeting of the IFNß/SETDB2 axis in T2D patients may decrease pathologic inflammation associated with COVID-19.


Subject(s)
Coronavirus/metabolism , Diabetes Mellitus, Type 2/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Inflammation Mediators/metabolism , Inflammation/virology , Macrophages/metabolism , Animals , COVID-19/immunology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Cytokine Release Syndrome , Cytokines/metabolism , Diabetes Mellitus, Type 2/genetics , Female , Histone-Lysine N-Methyltransferase/genetics , Humans , Inflammation/metabolism , Inflammation/physiopathology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , SARS-CoV-2/metabolism , Signal Transduction
19.
Virol Sin ; 35(3): 280-289, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-1384632

ABSTRACT

Cancer cell lines have been used widely in cancer biology, and as biological or functional cell systems in many biomedical research fields. These cells are usually defective for many normal activities or functions due to significant genetic and epigenetic changes. Normal primary cell yields and viability from any original tissue specimens are usually relatively low or highly variable. These normal cells cease after a few passages or population doublings due to very limited proliferative capacity. Animal models (ferret, mouse, etc.) are often used to study virus-host interaction. However, viruses usually need to be adapted to the animals by several passages due to tropism restrictions including viral receptors and intracellular restrictions. Here we summarize applications of conditionally reprogrammed cells (CRCs), long-term cultures of normal airway epithelial cells from human nose to lung generated by conditional cell reprogramming (CR) technology, as an ex vivo model in studies of emerging viruses. CR allows to robustly propagate cells from non-invasive or minimally invasive specimens, for example, nasal or endobronchial brushing. This process is rapid (2 days) and conditional. The CRCs maintain their differentiation potential and lineage functions, and have been used for studies of adenovirus, rhinovirus, respiratory syncytial virus, influenza viruses, parvovirus, and SARS-CoV. The CRCs can be easily used for air-liquid interface (ALI) polarized 3D cultures, and these coupled CRC/ALI cultures mimic physiological conditions and are suitable for studies of viral entry including receptor binding and internalization, innate immune responses, viral replications, and drug discovery as an ex vivo model for emerging viruses.


Subject(s)
Cellular Reprogramming Techniques , Models, Biological , Respiratory Mucosa/cytology , Respiratory Mucosa/virology , Betacoronavirus/physiology , COVID-19 , Cell Differentiation , Cell Lineage , Cells, Cultured , Coronavirus Infections/immunology , Coronavirus Infections/virology , Epithelial Cells/cytology , Epithelial Cells/virology , Humans , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...