Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add filters

Document Type
Year range
1.
ACS Appl Mater Interfaces ; 13(50): 60612-60624, 2021 Dec 22.
Article in English | MEDLINE | ID: covidwho-1569206

ABSTRACT

New analytical techniques that overcome major drawbacks of current routinely used viral infection diagnosis methods, i.e., the long analysis time and laboriousness of real-time reverse-transcription polymerase chain reaction (qRT-PCR) and the insufficient sensitivity of "antigen tests", are urgently needed in the context of SARS-CoV-2 and other highly contagious viruses. Here, we report on an antifouling terpolymer-brush biointerface that enables the rapid and sensitive detection of SARS-CoV-2 in untreated clinical samples. The developed biointerface carries a tailored composition of zwitterionic and non-ionic moieties and allows for the significant improvement of antifouling capabilities when postmodified with biorecognition elements and exposed to complex media. When deployed on a surface of piezoelectric sensor and postmodified with human-cell-expressed antibodies specific to the nucleocapsid (N) protein of SARS-CoV-2, it made possible the quantitative analysis of untreated samples by a direct detection assay format without the need of additional amplification steps. Natively occurring N-protein-vRNA complexes, usually disrupted during the sample pre-treatment steps, were detected in the untreated clinical samples. This biosensor design improved the bioassay sensitivity to a clinically relevant limit of detection of 1.3 × 104 PFU/mL within a detection time of only 20 min. The high specificity toward N-protein-vRNA complexes was validated both by mass spectrometry and qRT-PCR. The performance characteristics were confirmed by qRT-PCR through a comparative study using a set of clinical nasopharyngeal swab samples. We further demonstrate the extraordinary fouling resistance of this biointerface through exposure to other commonly used crude biological samples (including blood plasma, oropharyngeal, stool, and nasopharyngeal swabs), measured via both the surface plasmon resonance and piezoelectric measurements, which highlights the potential to serve as a generic platform for a wide range of biosensing applications.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , Nasal Mucosa/virology , Polymers/chemistry , RNA, Viral/metabolism , SARS-CoV-2 , Biofouling , Biological Assay , Biosensing Techniques , Humans , Ions , Limit of Detection , Mass Spectrometry , Nasopharynx/virology , Phosphoproteins/chemistry , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Specimen Handling
2.
J Virol ; 95(16): e0018721, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1486048

ABSTRACT

Subversion of the host cell cycle to facilitate viral replication is a common feature of coronavirus infections. Coronavirus nucleocapsid (N) protein can modulate the host cell cycle, but the mechanistic details remain largely unknown. Here, we investigated the effects of manipulation of porcine epidemic diarrhea virus (PEDV) N protein on the cell cycle and the influence on viral replication. Results indicated that PEDV N induced Vero E6 cell cycle arrest at S-phase, which promoted viral replication (P < 0.05). S-phase arrest was dependent on the N protein nuclear localization signal S71NWHFYYLGTGPHADLRYRT90 and the interaction between N protein and p53. In the nucleus, the binding of N protein to p53 maintained consistently high-level expression of p53, which activated the p53-DREAM pathway. The key domain of the N protein interacting with p53 was revealed to be S171RGNSQNRGNNQGRGASQNRGGNN194 (NS171-N194), in which G183RG185 are core residues. NS171-N194 and G183RG185 were essential for N-induced S-phase arrest. Moreover, small molecular drugs targeting the NS171-N194 domain of the PEDV N protein were screened through molecular docking. Hyperoside could antagonize N protein-induced S-phase arrest by interfering with interaction between N protein and p53 and inhibit viral replication (P < 0.05). The above-described experiments were also validated in porcine intestinal cells, and data were in line with results in Vero E6 cells. Therefore, these results reveal the PEDV N protein interacts with p53 to activate the p53-DREAM pathway, and subsequently induces S-phase arrest to create a favorable environment for virus replication. These findings provide new insight into the PEDV-host interaction and the design of novel antiviral strategies against PEDV. IMPORTANCE Many viruses subvert the host cell cycle to create a cellular environment that promotes viral growth. PEDV, an emerging and reemerging coronavirus, has led to substantial economic loss in the global swine industry. Our study is the first to demonstrate that PEDV N-induced cell cycle arrest during the S-phase promotes viral replication. We identified a novel mechanism of PEDV N-induced S-phase arrest, where the binding of PEDV N protein to p53 maintains consistently high levels of p53 expression in the nucleus to mediate S-phase arrest by activating the p53-DREAM pathway. Furthermore, a small molecular compound, hyperoside, targeted the PEDV N protein, interfering with the interaction between the N protein and p53 and, importantly, inhibited PEDV replication by antagonizing cell cycle arrest. This study reveals a new mechanism of PEDV-host interaction and also provides a novel antiviral strategy for PEDV. These data provide a foundation for further research into coronavirus-host interactions.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Nucleocapsid Proteins/chemistry , Host-Pathogen Interactions/drug effects , Porcine epidemic diarrhea virus/drug effects , Quercetin/analogs & derivatives , Tumor Suppressor Protein p53/chemistry , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Binding Sites , Cell Line , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Coronavirus Infections/genetics , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Epithelial Cells/drug effects , Epithelial Cells/virology , Gene Expression Regulation , High-Throughput Screening Assays , Host-Pathogen Interactions/genetics , Molecular Docking Simulation , Nuclear Localization Signals , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/metabolism , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Quercetin/chemistry , Quercetin/pharmacology , S Phase Cell Cycle Checkpoints/drug effects , S Phase Cell Cycle Checkpoints/genetics , Signal Transduction , Swine , Swine Diseases/drug therapy , Swine Diseases/genetics , Swine Diseases/metabolism , Swine Diseases/virology , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Vero Cells , Virus Replication/drug effects
3.
Glycobiology ; 31(9): 1080-1092, 2021 09 20.
Article in English | MEDLINE | ID: covidwho-1434394

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), started in 2019 in China and quickly spread into a global pandemic. Nucleocapsid protein (N protein) is highly conserved and is the most abundant protein in coronaviruses and is thus a potential target for both vaccine and point-of-care diagnostics. N Protein has been suggested in the literature as having posttranslational modifications (PTMs), and accurately defining these PTMs is critical for its potential use in medicine. Reports of phosphorylation of N protein have failed to provide detailed site-specific information. We have performed comprehensive glycomics, glycoproteomics and proteomics experiments on two different N protein preparations. Both were expressed in HEK293 cells; one was in-house expressed and purified without a signal peptide (SP) sequence, and the other was commercially produced with a SP channeling it through the secretory pathway. Our results show completely different PTMs on the two N protein preparations. The commercial product contained extensive N- and O-linked glycosylation as well as O-phosphorylation on site Thr393. Conversely, the native N Protein model had O-phosphorylation at Ser176 and no glycosylation, highlighting the importance of knowing the provenance of any commercial protein to be used for scientific or clinical studies. Recent studies have indicated that N protein can serve as an important diagnostic marker for COVID-19 and as a major immunogen by priming protective immune responses. Thus, detailed structural characterization of N protein may provide useful insights for understanding the roles of PTMs on viral pathogenesis, vaccine design and development of point-of-care diagnostics.


Subject(s)
Coronavirus Nucleocapsid Proteins/metabolism , Protein Processing, Post-Translational/physiology , SARS-CoV-2/metabolism , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Coronavirus Nucleocapsid Proteins/chemistry , Glycosylation , HEK293 Cells , Humans , Phosphorylation , SARS-CoV-2/chemistry
4.
Chem Commun (Camb) ; 57(79): 10222-10225, 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1408635

ABSTRACT

We developed a one-minute, one-step SARS-CoV-2 antigen assay based on protein-induced fluorescence enhancement of a DNA aptamer. The system showed significant selectivity and sensitivity towards both nucleocapsid protein and SARS-CoV-2 virus lysate, but with marked improvements in speed and manufacturability. We hence propose this platform as a mix-and-read testing strategy for SARS-CoV-2 that can be applied to POC diagnostics in clinical settings, especially in low- and middle-income countries.


Subject(s)
Antigens, Viral/chemistry , Aptamers, Nucleotide/chemistry , COVID-19 Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , SARS-CoV-2 , Biological Assay , Carbocyanines/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Phosphoproteins/chemistry
5.
Mol Syst Biol ; 17(9): e10079, 2021 09.
Article in English | MEDLINE | ID: covidwho-1406892

ABSTRACT

We modeled 3D structures of all SARS-CoV-2 proteins, generating 2,060 models that span 69% of the viral proteome and provide details not available elsewhere. We found that ˜6% of the proteome mimicked human proteins, while ˜7% was implicated in hijacking mechanisms that reverse post-translational modifications, block host translation, and disable host defenses; a further ˜29% self-assembled into heteromeric states that provided insight into how the viral replication and translation complex forms. To make these 3D models more accessible, we devised a structural coverage map, a novel visualization method to show what is-and is not-known about the 3D structure of the viral proteome. We integrated the coverage map into an accompanying online resource (https://aquaria.ws/covid) that can be used to find and explore models corresponding to the 79 structural states identified in this work. The resulting Aquaria-COVID resource helps scientists use emerging structural data to understand the mechanisms underlying coronavirus infection and draws attention to the 31% of the viral proteome that remains structurally unknown or dark.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Host-Pathogen Interactions/genetics , Protein Processing, Post-Translational , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Transport Systems, Neutral/chemistry , Amino Acid Transport Systems, Neutral/genetics , Amino Acid Transport Systems, Neutral/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Binding Sites , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Computational Biology/methods , Coronavirus Envelope Proteins/chemistry , Coronavirus Envelope Proteins/genetics , Coronavirus Envelope Proteins/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Models, Molecular , Molecular Mimicry , Neuropilin-1/chemistry , Neuropilin-1/genetics , Neuropilin-1/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Interaction Mapping/methods , Protein Multimerization , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Viroporin Proteins/chemistry , Viroporin Proteins/genetics , Viroporin Proteins/metabolism , Virus Replication
6.
Int J Biol Macromol ; 190: 636-648, 2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1401500

ABSTRACT

SARS-CoV-2 nucleocapsid (N) protein undergoes RNA-induced phase separation (LLPS) and sequesters the host key stress granule (SG) proteins, Ras-GTPase-activating protein SH3-domain-binding protein 1 and 2 (G3BP1 and G3BP2) to inhibit SG formation. This will allow viral packaging and propagation in host cells. Based on a genomic-guided meta-analysis, here we identify upstream regulatory elements modulating the expression of G3BP1 and G3BP2 (collectively called G3BP1/2). Using this strategy, we have identified FOXA1, YY1, SYK, E2F-1, and TGFBR2 as activators and SIN3A, SRF, and AKT-1 as repressors of G3BP1/2 genes. Panels of the activators and repressors were then used to identify drugs that change their gene expression signatures. Two drugs, imatinib, and decitabine have been identified as putative modulators of G3BP1/2 genes and their regulators, suggesting their role as COVID-19 mitigation agents. Molecular docking analysis suggests that both drugs bind to G3BP1/2 with a much higher affinity than the SARS-CoV-2 N protein. This study reports imatinib and decitabine as candidate drugs against N protein and G3BP1/2 protein.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , COVID-19/drug therapy , Coronavirus Nucleocapsid Proteins/chemistry , DNA Helicases/chemistry , Decitabine/chemistry , Imatinib Mesylate/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Poly-ADP-Ribose Binding Proteins/chemistry , RNA Helicases/chemistry , RNA Recognition Motif Proteins/chemistry , RNA-Binding Proteins/chemistry , SARS-CoV-2/chemistry , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , DNA Helicases/antagonists & inhibitors , DNA Helicases/metabolism , Decitabine/pharmacology , Drug Delivery Systems , Genomics , Imatinib Mesylate/pharmacology , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Poly-ADP-Ribose Binding Proteins/antagonists & inhibitors , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/antagonists & inhibitors , RNA Helicases/metabolism , RNA Recognition Motif Proteins/antagonists & inhibitors , RNA Recognition Motif Proteins/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/metabolism , SARS-CoV-2/metabolism
7.
Nat Commun ; 12(1): 1936, 2021 03 29.
Article in English | MEDLINE | ID: covidwho-1387331

ABSTRACT

The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA-binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA-binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.


Subject(s)
Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , RNA, Viral/chemistry , RNA, Viral/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Binding Sites , COVID-19/virology , Dimerization , Molecular Dynamics Simulation , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Protein Conformation , Protein Domains
8.
Nat Commun ; 12(1): 502, 2021 01 21.
Article in English | MEDLINE | ID: covidwho-1387327

ABSTRACT

The multifunctional nucleocapsid (N) protein in SARS-CoV-2 binds the ~30 kb viral RNA genome to aid its packaging into the 80-90 nm membrane-enveloped virion. The N protein is composed of N-terminal RNA-binding and C-terminal dimerization domains that are flanked by three intrinsically disordered regions. Here we demonstrate that the N protein's central disordered domain drives phase separation with RNA, and that phosphorylation of an adjacent serine/arginine rich region modulates the physical properties of the resulting condensates. In cells, N forms condensates that recruit the stress granule protein G3BP1, highlighting a potential role for N in G3BP1 sequestration and stress granule inhibition. The SARS-CoV-2 membrane (M) protein independently induces N protein phase separation, and three-component mixtures of N + M + RNA form condensates with mutually exclusive compartments containing N + M or N + RNA, including annular structures in which the M protein coats the outside of an N + RNA condensate. These findings support a model in which phase separation of the SARS-CoV-2 N protein contributes both to suppression of the G3BP1-dependent host immune response and to packaging genomic RNA during virion assembly.


Subject(s)
COVID-19/virology , Coronavirus Nucleocapsid Proteins/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Viral Matrix Proteins/metabolism , COVID-19/genetics , COVID-19/metabolism , Cell Membrane/virology , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , DNA Helicases/genetics , DNA Helicases/metabolism , Humans , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Binding , Protein Domains , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Recognition Motif Proteins/genetics , RNA Recognition Motif Proteins/metabolism , RNA, Viral/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics
9.
Biomol NMR Assign ; 15(1): 219-227, 2021 04.
Article in English | MEDLINE | ID: covidwho-1384623

ABSTRACT

The nucleocapsid protein N from SARS-CoV-2 is one of the most highly expressed proteins by the virus and plays a number of important roles in the transcription and assembly of the virion within the infected host cell. It is expected to be characterized by a highly dynamic and heterogeneous structure as can be inferred by bioinformatics analyses as well as from the data available for the homologous protein from SARS-CoV. The two globular domains of the protein (NTD and CTD) have been investigated while no high-resolution information is available yet for the flexible regions of the protein. We focus here on the 1-248 construct which comprises two disordered fragments (IDR1 and IDR2) in addition to the N-terminal globular domain (NTD) and report the sequence-specific assignment of the two disordered regions, a step forward towards the complete characterization of the whole protein.


Subject(s)
Coronavirus Nucleocapsid Proteins/chemistry , Magnetic Resonance Spectroscopy , SARS-CoV-2/chemistry , Carbon Isotopes , Computational Biology , Hydrogen , Nitrogen Isotopes , Phosphoproteins/chemistry , Protein Binding , Protein Domains , Protein Structure, Secondary
10.
Anal Bioanal Chem ; 413(18): 4635-4644, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1384376

ABSTRACT

Pd-Ir nanocubes are promising peroxidase-mimicking nanozymes for immunoassays, enabled by their excellent stability, relatively high catalytic activity, and reproducible performance. A key step involved in the preparation of Pd-Ir nanocubes is the synthesis of Pd nanocubes. However, the traditional method to synthesize Pd nanocubes requires sophisticated and expensive equipment to precisely control the reaction temperature and highly skilled technicians to achieve satisfactory and reproducible product yields. Herein, we report a simple, cost-effective, high-yield (> 99%) and one-pot strategy to synthesize Pd nanocubes with sizes of 7, 18, and 51 nm for the preparation of Pd-Ir nanocubes. The resulting 18 nm Pd-Ir nanocubes display three orders of magnitude higher peroxidase activity compared to horseradish peroxidase, leading to a significantly increased detection sensitivity when applied in the immunoassay of nucleocapsid protein from SARS-CoV-2. Due to the simplicity in both material synthesis and assaying procedures and the excellent detection sensitivity, our method should allow for the generalized application of Pd-Ir nanocube-based immunoassays for the diagnosis of human diseases.


Subject(s)
COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/chemistry , Immunoassay/methods , Iridium/chemistry , Palladium/chemistry , SARS-CoV-2 , Antibodies, Viral , Cost-Benefit Analysis , Humans , Immunoassay/economics , Molecular Structure , Nanostructures/chemistry , Nanostructures/economics , Phosphoproteins/chemistry
11.
FASEB J ; 34(8): 9832-9842, 2020 08.
Article in English | MEDLINE | ID: covidwho-1388029

ABSTRACT

To date, the recently discovered SARS-CoV-2 virus has afflicted >6.9 million people worldwide and disrupted the global economy. Development of effective vaccines or treatments for SARS-CoV-2 infection will be aided by a molecular-level understanding of SARS-CoV-2 proteins and their interactions with host cell proteins. The SARS-CoV-2 nucleocapsid (N) protein is highly homologous to the N protein of SARS-CoV, which is essential for viral RNA replication and packaging into new virions. Emerging models indicate that nucleocapsid proteins of other viruses can form biomolecular condensates to spatiotemporally regulate N protein localization and function. Our bioinformatic analyses, in combination with pre-existing experimental evidence, suggest that the SARS-CoV-2 N protein is capable of forming or regulating biomolecular condensates in vivo by interaction with RNA and key host cell proteins. We discuss multiple models, whereby the N protein of SARS-CoV-2 may harness this activity to regulate viral life cycle and host cell response to viral infection.


Subject(s)
Coronavirus Nucleocapsid Proteins/chemistry , SARS-CoV-2/chemistry , Binding Sites , Computational Biology , Cytoplasmic Granules/chemistry , Humans , Phosphoproteins/chemistry , Protein Binding , Protein Domains , Protein Kinases/chemistry , SARS-CoV-2/physiology , Virus Assembly , Virus Replication
12.
Mol Cell ; 80(6): 1092-1103.e4, 2020 12 17.
Article in English | MEDLINE | ID: covidwho-1386332

ABSTRACT

The nucleocapsid (N) protein of coronaviruses serves two major functions: compaction of the RNA genome in the virion and regulation of viral gene transcription. It is not clear how the N protein mediates such distinct functions. The N protein contains two RNA-binding domains surrounded by regions of intrinsic disorder. Phosphorylation of the central disordered region promotes the protein's transcriptional function, but the underlying mechanism is not known. Here, we show that the N protein of SARS-CoV-2, together with viral RNA, forms biomolecular condensates. Unmodified N protein forms partially ordered gel-like condensates and discrete 15-nm particles based on multivalent RNA-protein and protein-protein interactions. Phosphorylation reduces these interactions, generating a more liquid-like droplet. We propose that distinct oligomeric states support the two functions of the N protein: unmodified protein forms a structured oligomer that is suited for nucleocapsid assembly, and phosphorylated protein forms a liquid-like compartment for viral genome processing.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins/chemistry , Protein Multimerization , RNA, Viral/chemistry , SARS-CoV-2/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Protein Domains , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
13.
Int J Biol Macromol ; 188: 391-403, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1347646

ABSTRACT

One of the main structural proteins of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the nucleocapsid protein (N). The basic function of this protein is to bind genomic RNA and to form a protective nucleocapsid in the mature virion. The intrinsic ability of the N protein to interact with nucleic acids makes its purification very challenging. Therefore, typically employed purification methods appear to be insufficient for removing nucleic acid contamination. In this study, we present a novel purification protocol that enables the N protein to be prepared without any bound nucleic acids. We also performed comparative structural analysis of the N protein contaminated with nucleic acids and free of contamination and showed significant differences in the structural and phase separation properties of the protein. These results indicate that nucleic-acid contamination may severely affect molecular properties of the purified N protein. In addition, the notable ability of the N protein to form condensates whose morphology and behaviour suggest more ordered forms resembling gel-like or solid structures is described.


Subject(s)
Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/isolation & purification , Liquid-Liquid Extraction/methods , SARS-CoV-2/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/isolation & purification , Intrinsically Disordered Proteins/metabolism , Nucleic Acids/chemistry , Nucleic Acids/metabolism , Protein Aggregates , Protein Structure, Quaternary , Protein Structure, Secondary
14.
EBioMedicine ; 69: 103465, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1293743

ABSTRACT

BACKGROUND: The COVID-19 pandemic caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has overwhelmed health systems worldwide and highlighted limitations of diagnostic testing. Several types of diagnostic tests including RT-PCR-based assays and antigen detection by lateral flow assays, each with their own strengths and weaknesses, have been developed and deployed in a short time. METHODS: Here, we describe an immunoaffinity purification approach followed a by high resolution mass spectrometry-based targeted qualitative assay capable of detecting SARS-CoV-2 viral antigen from nasopharyngeal swab samples. Based on our discovery experiments using purified virus, recombinant viral protein and nasopharyngeal swab samples from COVID-19 positive patients, nucleocapsid protein was selected as a target antigen. We then developed an automated antibody capture-based workflow coupled to targeted high-field asymmetric waveform ion mobility spectrometry (FAIMS) - parallel reaction monitoring (PRM) assay on an Orbitrap Exploris 480 mass spectrometer. An ensemble machine learning-based model for determining COVID-19 positive samples was developed using fragment ion intensities from the PRM data. FINDINGS: The optimized targeted assay, which was used to analyze 88 positive and 88 negative nasopharyngeal swab samples for validation, resulted in 98% (95% CI = 0.922-0.997) (86/88) sensitivity and 100% (95% CI = 0.958-1.000) (88/88) specificity using RT-PCR-based molecular testing as the reference method. INTERPRETATION: Our results demonstrate that direct detection of infectious agents from clinical samples by tandem mass spectrometry-based assays have potential to be deployed as diagnostic assays in clinical laboratories, which has hitherto been limited to analysis of pure microbial cultures. FUNDING: This study was supported by DBT/Wellcome Trust India Alliance Margdarshi Fellowship grant IA/M/15/1/502023 awarded to AP and the generosity of Eric and Wendy Schmidt.


Subject(s)
COVID-19 Serological Testing/methods , Immunoassay/methods , Mass Spectrometry/methods , Animals , Antigens, Viral/chemistry , Antigens, Viral/immunology , Automation, Laboratory/methods , Automation, Laboratory/standards , COVID-19 Serological Testing/standards , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immunoassay/standards , Machine Learning , Mass Spectrometry/standards , Phosphoproteins/chemistry , Phosphoproteins/immunology , Sensitivity and Specificity
15.
Molecules ; 26(13)2021 Jun 25.
Article in English | MEDLINE | ID: covidwho-1288960

ABSTRACT

(1) Background: The COVID-19 pandemic lacks treatments; for this reason, the search for potential compounds against therapeutic targets is still necessary. Bioinformatics tools have allowed the rapid in silico screening of possible new metabolite candidates from natural resources or repurposing known ones. Thus, in this work, we aimed to select phytochemical candidates from Peruvian plants with antiviral potential against three therapeutical targets of SARS-CoV-2. (2) Methods: We applied in silico technics, such as virtual screening, molecular docking, molecular dynamics simulation, and MM/GBSA estimation. (3) Results: Rutin, a compound present in Peruvian native plants, showed affinity against three targets of SARS-CoV-2. The molecular dynamics simulation demonstrated the high stability of receptor-ligand systems during the time of the simulation. Our results showed that the Mpro-Rutin system exhibited higher binding free energy than PLpro-Rutin and N-Rutin systems through MM/GBSA analysis. (4) Conclusions: Our study provides insight on natural metabolites from Peruvian plants with therapeutical potential. We found Rutin as a potential candidate with multiple pharmacological properties against SARS-CoV-2.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plants/chemistry , Plants/metabolism , Asteraceae/chemistry , Asteraceae/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/chemistry , Databases, Factual , Humans , Lepidium/chemistry , Lepidium/metabolism , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Peru , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/chemistry , Rutin/chemistry , Rutin/pharmacology , SARS-CoV-2
16.
Clin Exp Immunol ; 205(3): 363-378, 2021 09.
Article in English | MEDLINE | ID: covidwho-1249405

ABSTRACT

Since December 2019, Coronavirus disease-19 (COVID-19) has spread rapidly throughout the world, leading to a global effort to develop vaccines and treatments. Despite extensive progress, there remains a need for treatments to bolster the immune responses in infected immunocompromised individuals, such as cancer patients who recently underwent a haematopoietic stem cell transplantation. Immunological protection against COVID-19 is mediated by both short-lived neutralizing antibodies and long-lasting virus-reactive T cells. Therefore, we propose that T cell therapy may augment efficacy of current treatments. For the greatest efficacy with minimal adverse effects, it is important that any cellular therapy is designed to be as specific and directed as possible. Here, we identify T cells from COVID-19 patients with a potentially protective response to two major antigens of the SARS-CoV-2 virus, Spike and Nucleocapsid protein. By generating clones of highly virus-reactive CD4+ T cells, we were able to confirm a set of nine immunodominant epitopes and characterize T cell responses against these. Accordingly, the sensitivity of T cell clones for their specific epitope, as well as the extent and focus of their cytokine response was examined. Moreover, using an advanced T cell receptor (TCR) sequencing approach, we determined the paired TCR-αß sequences of clones of interest. While these data on a limited population require further expansion for universal application, the results presented here form a crucial first step towards TCR-transgenic CD4+ T cell therapy of COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , COVID-19/immunology , COVID-19/therapy , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Amino Acid Sequence , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , COVID-19/virology , Clone Cells/immunology , Clone Cells/virology , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Cytokines/biosynthesis , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunization, Passive , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/genetics , Immunodominant Epitopes/immunology , Male , Middle Aged , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
17.
Glycobiology ; 31(9): 1080-1092, 2021 09 20.
Article in English | MEDLINE | ID: covidwho-1231033

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), started in 2019 in China and quickly spread into a global pandemic. Nucleocapsid protein (N protein) is highly conserved and is the most abundant protein in coronaviruses and is thus a potential target for both vaccine and point-of-care diagnostics. N Protein has been suggested in the literature as having posttranslational modifications (PTMs), and accurately defining these PTMs is critical for its potential use in medicine. Reports of phosphorylation of N protein have failed to provide detailed site-specific information. We have performed comprehensive glycomics, glycoproteomics and proteomics experiments on two different N protein preparations. Both were expressed in HEK293 cells; one was in-house expressed and purified without a signal peptide (SP) sequence, and the other was commercially produced with a SP channeling it through the secretory pathway. Our results show completely different PTMs on the two N protein preparations. The commercial product contained extensive N- and O-linked glycosylation as well as O-phosphorylation on site Thr393. Conversely, the native N Protein model had O-phosphorylation at Ser176 and no glycosylation, highlighting the importance of knowing the provenance of any commercial protein to be used for scientific or clinical studies. Recent studies have indicated that N protein can serve as an important diagnostic marker for COVID-19 and as a major immunogen by priming protective immune responses. Thus, detailed structural characterization of N protein may provide useful insights for understanding the roles of PTMs on viral pathogenesis, vaccine design and development of point-of-care diagnostics.


Subject(s)
Coronavirus Nucleocapsid Proteins/metabolism , Protein Processing, Post-Translational/physiology , SARS-CoV-2/metabolism , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Coronavirus Nucleocapsid Proteins/chemistry , Glycosylation , HEK293 Cells , Humans , Phosphorylation , SARS-CoV-2/chemistry
18.
Nat Commun ; 12(1): 2843, 2021 05 14.
Article in English | MEDLINE | ID: covidwho-1228252

ABSTRACT

Although the accessory proteins are considered non-essential for coronavirus replication, accumulating evidences demonstrate they are critical to virus-host interaction and pathogenesis. Orf9b is a unique accessory protein of SARS-CoV-2 and SARS-CoV. It is implicated in immune evasion by targeting mitochondria, where it associates with the versatile adapter TOM70. Here, we determined the crystal structure of SARS-CoV-2 orf9b in complex with the cytosolic segment of human TOM70 to 2.2 Å. A central portion of orf9b occupies the deep pocket in the TOM70 C-terminal domain (CTD) and adopts a helical conformation strikingly different from the ß-sheet-rich structure of the orf9b homodimer. Interactions between orf9b and TOM70 CTD are primarily hydrophobic and distinct from the electrostatic interaction between the heat shock protein 90 (Hsp90) EEVD motif and the TOM70 N-terminal domain (NTD). Using isothermal titration calorimetry (ITC), we demonstrated that the orf9b dimer does not bind TOM70, but a synthetic peptide harboring a segment of orf9b (denoted C-peptide) binds TOM70 with nanomolar KD. While the interaction between C-peptide and TOM70 CTD is an endothermic process, the interaction between Hsp90 EEVD and TOM70 NTD is exothermic, which underscores the distinct binding mechanisms at NTD and CTD pockets. Strikingly, the binding affinity of Hsp90 EEVD motif to TOM70 NTD is reduced by ~29-fold when orf9b occupies the pocket of TOM70 CTD, supporting the hypothesis that orf9b allosterically inhibits the Hsp90/TOM70 interaction. Our findings shed light on the mechanism underlying SARS-CoV-2 orf9b mediated suppression of interferon responses.


Subject(s)
Coronavirus Nucleocapsid Proteins/chemistry , Mitochondrial Membrane Transport Proteins/chemistry , Multiprotein Complexes/chemistry , Recombinant Proteins/chemistry , Binding Sites/genetics , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Escherichia coli/genetics , Host Microbial Interactions , Humans , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Models, Molecular , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Binding , Protein Domains , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/physiology
19.
Nat Commun ; 12(1): 2697, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1225508

ABSTRACT

Although human antibodies elicited by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein are profoundly boosted upon infection, little is known about the function of N-reactive antibodies. Herein, we isolate and profile a panel of 32 N protein-specific monoclonal antibodies (mAbs) from a quick recovery coronavirus disease-19 (COVID-19) convalescent patient who has dominant antibody responses to the SARS-CoV-2 N protein rather than to the SARS-CoV-2 spike (S) protein. The complex structure of the N protein RNA binding domain with the highest binding affinity mAb (nCoV396) reveals changes in the epitopes and antigen's allosteric regulation. Functionally, a virus-free complement hyperactivation analysis demonstrates that nCoV396 specifically compromises the N protein-induced complement hyperactivation, which is a risk factor for the morbidity and mortality of COVID-19 patients, thus laying the foundation for the identification of functional anti-N protein mAbs.


Subject(s)
Antibodies, Viral/pharmacology , COVID-19/immunology , Complement Activation/drug effects , Coronavirus Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Allosteric Regulation , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibody Affinity , Antigen-Antibody Complex/chemistry , Convalescence , Coronavirus Nucleocapsid Proteins/chemistry , Crystallography, X-Ray , Epitopes , Humans , Phosphoproteins/chemistry , Phosphoproteins/immunology , Protein Conformation
20.
J Med Virol ; 93(4): 2177-2195, 2021 04.
Article in English | MEDLINE | ID: covidwho-1217372

ABSTRACT

The emerged novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a global health crisis that warrants an accurate and detailed characterization of the rapidly evolving viral genome for understanding its epidemiology, pathogenesis, and containment. Here, we explored 61,485 sequences of the nucleocapsid (N) protein, a potent diagnostic and prophylactic target, for identifying the mutations to review their roles in real-time polymerase chain reaction based diagnosis and observe consequent impacts. Compared to the Wuhan reference strain, a total of 1034 unique nucleotide mutations were identified in the mutant strains (49.15%, n = 30,221) globally. Of these mutations, 367 occupy primer binding sites including the 3'-end mismatch to the primer-pair of 11 well-characterized primer sets. Noteworthily, CDC (USA) recommended the N2 primer set contained a lower mismatch than the other primer sets. Moreover, 684 amino acid (aa) substitutions were located across 317 (75.66% of total aa) unique positions including 82, 21, and 83 of those in the RNA binding N-terminal domain (NTD), SR-rich region, and C-terminal dimerization domain, respectively. Moreover, 11 in-frame deletions, mostly (n = 10) within the highly flexible linker region, were revealed, and the rest was within the NTD region. Furthermore, we predicted the possible consequence of high-frequency mutations (≥20) and deletions on the tertiary structure of the N protein. Remarkably, we observed that a high frequency (67.94% of mutated sequences) co-occuring mutations (R203K and G204R) destabilized and decreased overall structural flexibility. The N protein of SARS-CoV-2 comprises an average of 1.2 mutations per strain compared to 4.4 and 0.4 in Middle East respiratory syndrome-related coronavirus and SARS-CoV, respectively. Despite being proposed as the alternative target to spike protein for vaccine and therapeutics, the ongoing evolution of the N protein may challenge these endeavors, thus needing further immunoinformatics analyses. Therefore, continuous monitoring is required for tracing the ongoing evolution of the SARS-CoV-2 N protein in prophylactic and diagnostic interventions.


Subject(s)
Coronavirus Nucleocapsid Proteins/genetics , SARS-CoV-2/genetics , Amino Acid Substitution , COVID-19/epidemiology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Evolution, Molecular , Genes, Viral , Genome, Viral , Molecular Dynamics Simulation , Mutation , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...