Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Arch Microbiol ; 204(8): 536, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-1976800

ABSTRACT

The present study aimed to explore if bovine coronavirus nucleocapsid (BCoV N) impacts IFN-ß production in the host cells and to reveal further molecular mechanism of BCoV pathogenesis. Human embryonic kidney (HEK) 293 T cells were transiently transfected with pMyc-BCoV-N recombinant plasmids, then infected with the vesicular stomatitis virus (VSV). Expression levels of beta interferon (IFN-ß) mRNA were detected using RT-qPCR. The results showed that BCoV N gene was 1347 bp that was consistent with the expected size. pMyc-BCoV-N recombinant protein was 1347 bp which was successfully transcribed and overexpressed in HEK 293 T cells. BCoV-N recombinant protein inhibited dose-dependently VSV-induced IFN-ß production (p < 0.01). MDA5, MAVS, TBK1 and IRF3 could promote transcription levels of IFN-ß mRNA. But, BCoV-N protein demoted IFN-ß transcription levels induced by MDA5, MAVS, TBK1 and IRF3. Furthermore, expression levels of MDA5, MAVS, TBK1 and IRF3 mRNAs were reduced in RIG-I-like receptor (RLR) pathway. In conclusion, BCoV-N reduced IFN-ß levels in RIG-I-like receptor (RLR) pathway in HEK 293 T cells which were induced by MDA5, MAVS, TBK1 and IRF3(5D). BCoV-N protein inhibited IFN-ß production and activation of RIG-I-like receptors (RLRs) signal pathway. Our findings demonstrated BCoV N protein is an IFN-ß antagonist through inhibition of MDA5, MAVS, TBK1 and IRF3(5D) in RLRs pathway, also revealed a new mechanism of BCoV N protein to evade host innate immune response by inhibiting type I IFN production, which is beneficial to developing novel prevention strategy for BCoV disease in the animals and humans.


Subject(s)
Coronavirus, Bovine , Animals , Cattle , Coronavirus, Bovine/genetics , HEK293 Cells , Host-Pathogen Interactions , Humans , Interferon-beta/genetics , Nucleocapsid , RNA, Messenger , Recombinant Proteins
2.
Viruses ; 14(5)2022 05 21.
Article in English | MEDLINE | ID: covidwho-1964101

ABSTRACT

Bovine coronavirus (BCoV) is a causative agent of enteric and respiratory disease in cattle. BCoV has also been reported to cause a variety of animal diseases and is closely related to human coronaviruses, which has attracted extensive attention from both cattle farmers and researchers. However, there are few comprehensive epidemiological reviews, and key information regarding the effect of S-gene differences on tissue tendency and potential cross-species transmission remain unclear. In this review, we summarize BCoV epidemiology, including the transmission, infection-associated factors, co-infection, pathogenicity, genetic evolution, and potential cross-species transmission. Furthermore, the potential two-receptor binding motif system for BCoV entry and the association between BCoV and SARS-CoV-2 are also discussed in this review. Our aim is to provide valuable information for the prevention and treatment of BCoV infection throughout the world.


Subject(s)
COVID-19 , Cattle Diseases , Coronavirus, Bovine , Animals , COVID-19/veterinary , Cattle , Cattle Diseases/epidemiology , Coronavirus, Bovine/genetics , Evolution, Molecular , SARS-CoV-2/genetics
3.
Arch Microbiol ; 204(8): 526, 2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1958972

ABSTRACT

Viral infections are linked to a variety of human diseases. Despite the achievements made in drug and vaccine development, several viruses still lack preventive vaccines and efficient antiviral compounds. Thus, developing novel antiviral agents is of great concern, particularly the natural products that are promising candidates for such discoveries. In this study, we have purified an approximately 15 kDa basic phospholipase A2 (PLA2) enzyme from the Egyptian cobra Naja haje haje venom. The purified N. haje PLA2 showed a specific activity of 22 units/mg protein against 6 units/mg protein for the whole crude venom with 3.67-fold purification. The antiviral activity of purified N. haje PLA2 has been investigated in vitro against bovine coronavirus (BCoV) and simian rotavirus (RV SA-11). Our results showed that the CC50 of PLA2 were 33.6 and 29 µg/ml against MDBK and MA104 cell lines, respectively. Antiviral analysis of N. haje PLA2 showed an inhibition of BCoV and RV SA-11 infections with a therapeutic index equal to 33.6 and 16, respectively. Moreover, N. haje PLA2 decreased the BCoV and RV SA-11 titers by 4.25 log10 TCID50 and 2.5 log10 TCID50, respectively. Thus, this research suggests the potential antiviral activity of purified N. haje PLA2 against BCoV and RV SA-11 infections in vitro.


Subject(s)
Antiviral Agents , Coronavirus, Bovine , Elapid Venoms , Phospholipases A2 , Rotavirus , Animals , Antiviral Agents/pharmacology , Coronavirus, Bovine/drug effects , Elapid Venoms/pharmacology , Naja haje , Phospholipases A2/pharmacology , Rotavirus/drug effects
4.
Sci Rep ; 12(1): 10624, 2022 Jun 23.
Article in English | MEDLINE | ID: covidwho-1900661

ABSTRACT

Aerosols or saliva containing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can contaminate living environments, and viruses can be indirectly transmitted. To understand the survival potential of the virus, the viral titers of bovine coronavirus (BCoV), as a model virus, and SARS-CoV-2 were measured on porous and non-porous surfaces. The amount of infectious BCoV recovered remained relatively high on non-porous substrates. However, it quickly decreased on several non-porous surfaces such as nitrile rubber. The time taken to reach the limit of detection on non-woven masks, as a porous substrate, was longer than that of non-porous substrates. On porous substrates other than non-woven masks, the amount of virus recovered quickly decreased, and then remained at a low level. Representative substrates were tested with SARS-CoV-2. The decrease in the amount of infectious virus recovered was similar to that of BCoV, although that of SARS-CoV-2 was more rapid. RNA derived from SARS-CoV-2 was also detected using real-time PCR, and it remained on surfaces much longer than infectious virus, on all substrates. Therefore, it is important to measure the viral titer to avoid the overestimation of infectious virus contamination in the environments. Our results suggest that the surface structure was not directly related to viral survivability.


Subject(s)
COVID-19 , Coronavirus, Bovine , Aerosols , Humans , Masks , SARS-CoV-2
5.
Viruses ; 14(5)2022 05 15.
Article in English | MEDLINE | ID: covidwho-1855824

ABSTRACT

Bovine coronaviruses (BCoVs), which cause gastrointestinal and respiratory diseases in cattle, and are genetically related to the human coronavirus HCoV-OC43, which is responsible for up to 10% of common colds, attract increased attention. We applied the method of photodynamic inactivation with cationic photosensitizers (PSs) to reduce the titers of BCoV and studied the morphological structure of viral particles under various modes of photodynamic exposure. The samples of virus containing liquid with an initial virus titer of 5 Log10 TCID50/mL were incubated with methylene blue (MB) or octakis(cholinyl)zinc phthalocyanine (Zn-PcChol8+) at concentrations of 1-5 µM for 10 min in the dark at room temperature. After incubation, samples were irradiated with LED (emission with maximum at 663 nm for MB or at 686 nm for Zn-PcChol8+) with light doses of 1.5 or 4 J/cm2. Next, the irradiation titrated virus containing liquid was studied using negative staining transmission electron microscopy. MB and Zn-PcChol8+ at concentrations of 1-5 µM, in combination with red light from LED sources in the low doses of 1.5-4.0 J/cm2, led to a decrease in BCoV titers by at least four orders of magnitude from the initial titer 5 Log10 TCID50/mL. Morphological changes in photodamaged BCoVs with increasing PS concentrations were loss of spikes, change in shape, decreased size of virus particles, destruction of the envelope, and complete disintegration of viruses. BCoV has been found to be sensitive to MB, which is the well-known approved drug, even in the absence of light.


Subject(s)
Coronavirus OC43, Human , Coronavirus, Bovine , Animals , Cations , Cattle , Methylene Blue , Photosensitizing Agents/pharmacology , Virion
6.
Viruses ; 14(3)2022 03 07.
Article in English | MEDLINE | ID: covidwho-1732248

ABSTRACT

Coronaviruses constitute a global threat to the human population; therefore, effective pan-coronavirus antiviral drugs are required to tackle future re-emerging virus outbreaks. Protein kinase CK2 has been suggested as a promising therapeutic target in COVID-19 owing to the in vitro antiviral activity observed after both pharmacologic and genetic inhibition of the enzyme. Here, we explored the putative antiviral effect of the anti-CK2 peptide CIGB-325 on bovine coronavirus (BCoV) infection using different in vitro viral infected cell-based assays. The impact of the peptide on viral mRNA and protein levels was determined by qRT-PCR and Western blot, respectively. Finally, pull-down experiments followed by Western blot and/or mass spectrometry analysis were performed to identify CIGB-325-interacting proteins. We found that CIGB-325 inhibited both the cytopathic effect and the number of plaque-forming units. Accordingly, intracellular viral protein levels were clearly reduced after treatment of BCoV-infected cells, with CIGB-325 determined by immunocytochemistry. Pull-down assay data revealed the physical interaction of CIGB-325 with viral nucleocapsid (N) protein and a group of bona fide CK2 cellular substrates. Our findings evidence in vitro antiviral activity of CIGB-325 against bovine coronavirus as well as some molecular clues that might support such effect. Altogether, data provided here strengthen the rationale of inhibiting CK2 to treat betacoronavirus infections.


Subject(s)
Coronavirus, Bovine , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Casein Kinase II/metabolism , Cattle , Peptides/pharmacology , Phosphorylation
7.
Viruses ; 14(2)2022 02 17.
Article in English | MEDLINE | ID: covidwho-1703374

ABSTRACT

Coronaviruses (CoVs) are common among humans and many animals, causing respiratory or gastrointestinal diseases. Currently, only a few antiviral drugs against CoVs are available. Especially for SARS-CoV-2, new compounds for treatment of COVID-19 are urgently needed. In this study, we characterize the antiviral effects of two high-sulfated glycosaminoglycan (GAG) derivatives against SARS-CoV-2 and bovine coronaviruses (BCoV), which are both members of the Betacoronavirus genus. The investigated compounds are based on hyaluronan (HA) and chondroitin sulfate (CS) and exhibit a strong inhibitory effect against both CoVs. Yield assays were performed using BCoV-infected PT cells in the presence and absence of the compounds. While the high-sulfated HA (sHA3) led to an inhibition of viral growth early after infection, high-sulfated CS (sCS3) had a slightly smaller effect. Time of addition assays, where sHA3 and sCS3 were added to PT cells before, during or after infection, demonstrated an inhibitory effect during all phases of infection, whereas sHA3 showed a stronger effect even after virus absorbance. Furthermore, attachment analyses with prechilled PT cells revealed that virus attachment is not blocked. In addition, sHA3 and sCS3 inactivated BCoV by stable binding. Analysis by quantitative real-time RT PCR underlines the high potency of the inhibitors against BCoV, as well as B.1-lineage, Alpha and Beta SARS-CoV-2 viruses. Taken together, these results demonstrated that the two high-sulfated GAG derivatives exhibit low cytotoxicity and represent promising candidates for an anti-CoV therapy.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/veterinary , Coronavirus, Bovine/drug effects , Glycosaminoglycans/pharmacology , SARS-CoV-2/drug effects , Animals , COVID-19/drug therapy , Cattle , Cell Line , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/pharmacology , Coronavirus Infections/drug therapy , Glycosaminoglycans/chemistry , Glycosaminoglycans/metabolism , Humans , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Sulfates/chemistry , Sulfates/pharmacology , Virus Attachment/drug effects
8.
Virus Res ; 305: 198575, 2021 11.
Article in English | MEDLINE | ID: covidwho-1433886

ABSTRACT

Saliva is an appropriate specimen for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) diagnosis. The possibility of pooling samples of saliva, using non-invasive bibula strips for sampling, was explored employing Bovine coronavirus (BCoV) spiked saliva. In laboratory, up to 30 saliva-soaked strips were pooled in a single tube with 2 mL of medium. After quick adsorption with the medium and vortexing, the liquid was collected and tested with a quantitative molecular assay to quantify viral RNA genome copies. On testing of single and pooled strips, the difference between the median threshold cycles (Ct) value of test performed on the single positive saliva sample and the median Ct value obtained on the pool of 30 strips, was 3.21 cycles. Saliva pooling with bibula strips could allow monitoring of COVID-19 on a large scale, reducing costs for the health bodies in terms of medical material and skilled personnel. Finally, saliva sampling is noninvasive and less traumatic than nasopharyngeal swabs and can be self-collected.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Coronavirus, Bovine/genetics , Genome, Viral , RNA, Viral/genetics , Specimen Handling/methods , COVID-19/virology , COVID-19 Nucleic Acid Testing/economics , Humans , Limit of Detection , Reagent Strips/analysis , SARS-CoV-2/genetics , Saliva/virology
9.
Arch Virol ; 166(9): 2461-2468, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1292555

ABSTRACT

Bovine coronavirus (BCoV) can be spread by animal activity. Although cattle farming is widespread in Turkey, there are few studies of BCoV. The aim of this study was to evaluate the current situation regarding BCoV in Turkey. This is the first study reporting the full-length nucleotide sequences of BCoV spike (S) genes in Turkey. Samples were collected from 119 cattle with clinical signs of respiratory (n = 78) or digestive tract (n = 41) infection on different farms located across widely separated provinces in Turkey. The samples were screened for BCoV using RT-nested PCR targeting the N gene, which identified BCoV in 35 samples (9 faeces and 26 nasal discharge). RT-PCR analysis of the S gene produced partial/full-length S gene sequences from 11 samples (8 faeces and 3 nasal discharge samples). A phylogenetic tree of the S gene sequences was made to analyze the genetic relationships among BCoVs from Turkey and other countries. The results showed that the local strains present in faeces and nasal discharge samples had many different amino acid changes. Some of these changes were shown in previous studies to be critical for tropism. This study provides new data on BCoV in Turkey that will be valuable in designing effective vaccine approaches and control strategies.


Subject(s)
Cattle Diseases/epidemiology , Coronavirus Infections/veterinary , Coronavirus, Bovine/genetics , Diarrhea/veterinary , RNA, Viral/genetics , Respiratory Tract Infections/veterinary , Spike Glycoprotein, Coronavirus/genetics , Agriculture , Amino Acid Substitution , Animals , Cattle , Cattle Diseases/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus, Bovine/classification , Diarrhea/epidemiology , Diarrhea/virology , Epidemiological Monitoring/veterinary , Evolution, Molecular , Feces/virology , Humans , Mutation , Nasal Cavity/virology , Phylogeny , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Turkey/epidemiology
10.
J Hosp Infect ; 112: 108-113, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1185068

ABSTRACT

BACKGROUND: The presence of coronaviruses on surfaces in the patient environment is a potential source of indirect transmission. Manual cleaning and disinfection measures do not always achieve sufficient removal of surface contamination. This increases the importance of automated solutions in the context of final disinfection of rooms in the hospital setting. Ozone is a highly effective disinfectant which, combined with high humidity, is an effective agent against respiratory viruses. Current devices allow continuous nebulization for high room humidity as well as ozone production without any consumables. AIM: In the following study, the effectiveness of a fully automatic room decontamination system based on ozone was tested against bacteriophage Φ6 (phi 6) and bovine coronavirus L9, as surrogate viruses for the pandemic coronavirus SARS-CoV-2. METHODS: For this purpose, various surfaces (ceramic tile, stainless steel surface and furniture board) were soiled with the surrogate viruses and placed at two different levels in a gas-tight test room. After using the automatic decontamination device according to the manufacturer's instructions, the surrogate viruses were recovered from the surfaces and examined by quantitative cultures. Then, reduction factors were calculated. FINDINGS: The ozone-based room decontamination device achieved virucidal efficacy (reduction factor >4 log10) against both surrogate organisms regardless of the different surfaces and positions confirming a high activity under the used conditions. CONCLUSION: Ozone is highly active against SARS-CoV-2 surrogate organisms. Further investigations are necessary for a safe application and efficacy in practice as well as integration into routine processes.


Subject(s)
Automation/instrumentation , COVID-19/prevention & control , Disinfectants/pharmacology , Disinfection/instrumentation , Disinfection/methods , Ozone/pharmacology , Animals , Bacteriophages/drug effects , COVID-19/transmission , Cattle , Coronavirus, Bovine/drug effects , Cross Infection/prevention & control , Cross Infection/virology , Decontamination/instrumentation , Decontamination/methods , Equipment and Supplies, Hospital/virology , Hospitals , Humans , SARS-CoV-2/drug effects
11.
Viruses ; 13(4)2021 04 15.
Article in English | MEDLINE | ID: covidwho-1184510

ABSTRACT

Coronaviruses (CoV) are widely distributed pathogens of human and animals and can cause mild or severe respiratory and gastrointestinal disease. Antigenic and genetic similarity of some CoVs within the Betacoronavirus genus is evident. Therefore, for the first time in Slovenia, we investigated the genetic diversity of partial 390-nucleotides of RNA-dependent-RNA polymerase gene (RdRp) for 66 human (HCoV) and 24 bovine CoV (BCoV) positive samples, collected between 2010 and 2016 from human patients and cattle with respiratory disease. The characterized CoV strains belong to four different clusters, in three separate human clusters HCoV-HKU1 (n = 34), HCoV-OC43 (n = 31) and HCoV 229E (n = 1) and bovine grouping only as BCoVs (n = 24). BCoVs from cattle and HCoV-OC43 were genetically the most closely related and share 96.4-97.1% nucleotide and 96.9-98.5% amino acid identity.


Subject(s)
Cattle Diseases/virology , Coronavirus/classification , Coronavirus/genetics , Animals , Cattle , Cattle Diseases/transmission , Coronavirus 229E, Human/genetics , Coronavirus Infections/transmission , Coronavirus OC43, Human/genetics , Coronavirus, Bovine/genetics , Female , Genetic Variation , Humans , Male , Slovenia
12.
Front Immunol ; 12: 637152, 2021.
Article in English | MEDLINE | ID: covidwho-1175542

ABSTRACT

After a year of evolution of the SARS-CoV-2 epidemic, there is still no specific effective treatment for the disease. Although the majority of infected people experience mild disease, some patients develop a serious disease, especially when other pathologies concur. For this reason, it would be very convenient to find pharmacological and immunological mechanisms that help control SARS-CoV-2 infection. Since the COVID-19 and BCoV viruses are very close phylogenetically, different studies demonstrate the existence of cross-immunity as they retain shared epitopes in their structure. As a possible control measure against COVID-19, we propose the use of cow's milk immune to BCoV. Thus, the antigenic recognition of some highly conserved structures of viral proteins, particularly M and S2, by anti-BCoV antibodies present in milk would cause a total or partial inactivation of SARS-COV-2 (acting as a particular vaccine) and be addressed more easily by GALT's highly specialized antigen-presenting cells, thus helping the specific immune response.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Coronavirus, Bovine/immunology , SARS-CoV-2/immunology , Animals , Cattle
13.
Int J Nanomedicine ; 16: 1789-1804, 2021.
Article in English | MEDLINE | ID: covidwho-1124835

ABSTRACT

BACKGROUND: SARS-COVID-2 has recently been one of the most life-threatening problems which urgently needs new therapeutic antiviral agents, especially those of herbal origin. PURPOSE: The study aimed to load acaciin (ACA) into the new self-assembled nanofibers (NFs) followed by investigating their possible antiviral effect against bovine coronavirus (BCV) as a surrogate model for SARS-COV-2. METHODS: ACA was identified using 1H-NMR and DEPT-Q 13C-NMR spectroscopy, the molecular docking study was performed using Autodock 4 and a modification of the traditional solvent injection method was applied for the synthesis of the biodegradable NFs. Different characterization techniques were used to inspect the formation of the NFs, which is followed by antiviral investigation against BCV as well as MTT assay using MDBK cells. RESULTS: Core/shell NFs, ranging between 80-330 nm with tiny thorn-like branches, were formed which attained an enhanced encapsulation efficiency (97.5 ± 0.53%, P<0.05) and a dual controlled release (a burst release of 65% at 1 h and a sustained release up to >24 h). The antiviral investigation of the formed NFs revealed a significant inhibition of 98.88 ± 0.16% (P<0.05) with IC50 of 12.6 µM against BCV cells. CONCLUSION: The results introduced a new, time/cost-saving strategy for the synthesis of biodegradable NFs without the need for electric current or hazardous cross-linking agents. Moreover, it provided an innovative avenue for the discovery of drugs of herbal origin for the fight against SARS-CoV-2 infection.


Subject(s)
Coronavirus, Bovine/drug effects , Glycosides/pharmacology , Nanofibers/chemistry , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/virology , Cell Line , Glycosides/chemistry , Glycosides/isolation & purification , Glycosides/therapeutic use , Humans , Ligands , Models, Biological , Molecular Docking Simulation , Nanofibers/ultrastructure , Solvents , Ultraviolet Rays
14.
Viruses ; 13(2)2021 02 20.
Article in English | MEDLINE | ID: covidwho-1090285

ABSTRACT

In the face of new emerging respiratory viruses, such as SARS-CoV2, vaccines and drug therapies are not immediately available to curb the spread of infection. Non-pharmaceutical interventions, such as mask-wearing and social distance, can slow the transmission. However, both mask and social distance have not prevented the spread of respiratory viruses SARS-CoV2 within the US. There is an urgent need to develop an intervention that could reduce the spread of respiratory viruses. The key to preventing transmission is to eliminate the emission of SARS-CoV2 from an infected person and stop the virus from propagating in the human population. Rhamnolipids are environmentally friendly surfactants that are less toxic than the synthetic surfactants. In this study, rhamnolipid products, 222B, were investigated as disinfectants against enveloped viruses, such as bovine coronavirus and herpes simplex virus 1 (HSV-1). The 222B at 0.009% and 0.0045% completely inactivated 6 and 4 log PFU/mL of HSV-1 in 5-10 min, respectively. 222B at or below 0.005% is also biologically safe. Moreover, 50 µL of 222B at 0.005% on ~1 cm2 mask fabrics or plastic surface can inactivate ~103 PFU HSV-1 in 3-5 min. These results suggest that 222B coated on masks or plastic surface can reduce the emission of SARS-CoV2 from an infected person and stop the spread of SARS-CoV2.


Subject(s)
COVID-19 , Coronavirus, Bovine/drug effects , Disinfectants/pharmacology , Glycolipids/pharmacology , Herpesvirus 1, Human/drug effects , Surface-Active Agents/pharmacology , COVID-19/prevention & control , COVID-19/transmission , Humans
15.
J Dairy Sci ; 104(2): 2151-2163, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1031655

ABSTRACT

The objective of this prospective cohort study was to investigate the effect of bovine coronavirus (BCoV), bovine rotavirus (BRoV), and Cryptosporidiumparvum on dairy calf health and performance and to determine the prevalence of these pathogens. A total of 198 male dairy calves housed at a grain-fed veal facility were examined from June 11, 2018, to October 9, 2018. Calves were fed milk replacer twice daily and housed individually until weaning at 56 d. Once weaned, calves were moved into groups of 5 until they were moved to a finishing facility at 77 d. At the grain-fed veal facility, calves were scored for fecal consistency for the first 28 d and had fecal samples taken on arrival and at 7 and 14 d. Fecal samples were frozen and submitted to a commercial laboratory, where they were tested for BCoV, C.parvum, and 2 groups of BRoV: group A (BRoV A) and group B (BRoV B). Calves were weighed on arrival and at 14, 49, 56, and 77 d using a digital body scale. Treatments for disease and mortalities that occurred over the 77 d were also recorded. Statistical models, including Cox proportional hazards and repeated measures models, were built to determine the effect of infection with 1 of the pathogens. Over the 3 sampling points, 151 (85.8%), 178 (94.2%), 3 (1.5%), and 97 (57.4%) calves tested positive at least once for BCoV, BRoV A, BRoV B, and C.parvum, respectively. The source of the calves and the level of serum total protein measured on arrival were associated with testing positive for a pathogen. Calves that tested positive for C.parvum had an increased proportion of days with diarrhea and severe diarrhea; calves that tested positive for BCoV and BRoV A had an increased proportion of days with severe diarrhea. In addition, calves that tested positive for C.parvum had a higher hazard of being treated for respiratory disease. With respect to body weight, calves that had diarrhea or severe diarrhea had lower body weight at 49, 56, and 77 d. Specifically, calves that had an increased proportion of days with diarrhea showed a reduction in weight gain of up to 15 kg compared to calves without diarrhea. Calves that tested positive for C.parvum had a lower body weight at 49, 56, and 77 d; calves that tested positive for BCoV had a lower body weight at 56 and 77 d. This study demonstrates that the prevalence of BCoV, BRoV A, and C.parvum infection is high in this population of calves and has significant effects on the occurrence of diarrhea and body weight gain. Future studies should evaluate approaches for minimizing the effect of infection with these pathogens to improve the welfare, health, and productivity of dairy calves.


Subject(s)
Cattle Diseases/physiopathology , Coronavirus Infections/veterinary , Coronavirus, Bovine , Cryptosporidiosis/physiopathology , Cryptosporidium parvum , Rotavirus Infections/veterinary , Animals , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Cattle Diseases/virology , Cohort Studies , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Cryptosporidiosis/parasitology , Diarrhea/parasitology , Diarrhea/veterinary , Diarrhea/virology , Feces/chemistry , Feces/parasitology , Feces/virology , Male , Prevalence , Prospective Studies , Respiratory Tract Diseases/therapy , Respiratory Tract Diseases/veterinary , Rotavirus , Rotavirus Infections/epidemiology , Rotavirus Infections/physiopathology , Weight Gain
16.
Prev Vet Med ; 181: 104494, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-761798

ABSTRACT

A national control program against bovine respiratory syncytial virus (BRSV) and bovine coronavirus (BCV) was launched in Norway in 2016. A key strategy in the program is to test for presence of antibodies and protect test-negative herds from infection. Because these viruses are endemic, the rate of re-introduction can be high, and a disease-free status will become more uncertain as time from testing elapses. The aim of this study was to estimate the probability of freedom (PostPFree) from BRSV and BCV antibodies over time by use of bulk tank milk (BTM) antibody-testing, geographic information and animal movement data, and to validate the herd-level estimates against subsequent BTM testing. BTM samples were collected from 1148 study herds in West Norway in 2013 and 2016, and these were analyzed for BRSV and BCV antibodies. PostPFree was calculated for herds that were negative in 2013/2014, and updated periodically with new probabilities every three months. Input variables were test sensitivity, the probability of introduction through animal purchase and local transmission. Probability of introduction through animal purchase was calculated by using real animal movement data and herd prevalence in the region of the source herd. The PostPFree from the final three months in 2015 was compared to BTM test results from March 2016 using a Wilcoxon Rank Sum Test. The probability of freedom was generally high for test-negative herds immediately after testing, reflecting the high sensitivity of the tests. It did however, decrease with time since testing, and was greatly affected by purchase of livestock. When comparing the median PostPFree for the final three months to the test results in 2016, it was significantly lower (p < 0.01) for test positive herds. Furthermore, there was a large difference in the proportion of test positive herds between the first and fourth quartile of PostPFree. The results show that PostPFree provides a better estimate of herd-level BTM status for both BRSV and BCV than what can be achieved by relying solely on the previous test-result.


Subject(s)
Cattle Diseases/prevention & control , Coronavirus Infections/veterinary , Coronavirus, Bovine , Respiratory Syncytial Virus Infections/veterinary , Respiratory Syncytial Virus, Bovine , Animals , Antibodies, Viral/immunology , Cattle/virology , Cattle Diseases/epidemiology , Cattle Diseases/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Female , Infection Control/methods , Milk/immunology , Norway/epidemiology , Probability , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control
17.
J Clin Microbiol ; 58(8)2020 Jul 23.
Article in English | MEDLINE | ID: covidwho-1006147

ABSTRACT

Discovery of bats with severe acute respiratory syndrome (SARS)-related coronaviruses (CoVs) raised the specter of potential future outbreaks of zoonotic SARS-CoV-like disease in humans, which largely went unheeded. Nevertheless, the novel SARS-CoV-2 of bat ancestral origin emerged to infect humans in Wuhan, China, in late 2019 and then became a global pandemic. Less than 5 months after its emergence, millions of people worldwide have been infected asymptomatically or symptomatically and at least 360,000 have died. Coronavirus disease 2019 (COVID-19) in severely affected patients includes atypical pneumonia characterized by a dry cough, persistent fever, and progressive dyspnea and hypoxia, sometimes accompanied by diarrhea and often followed by multiple organ failure, especially of the respiratory and cardiovascular systems. In this minireview, we focus on two endemic respiratory CoV infections of livestock: bovine coronavirus (BCoV) and porcine respiratory coronavirus (PRCV). Both animal respiratory CoVs share some common features with SARS-CoV and SARS-CoV-2. BCoV has a broad host range including wild ruminants and a zoonotic potential. BCoV also has a dual tropism for the respiratory and gastrointestinal tracts. These aspects, their interspecies transmission, and certain factors that impact disease severity in cattle parallel related facets of SARS-CoV or SARS-CoV-2 in humans. PRCV has a tissue tropism for the upper and lower respiratory tracts and a cellular tropism for type 1 and 2 pneumocytes in lung but is generally a mild infection unless complicated by other exacerbating factors, such as bacterial or viral coinfections and immunosuppression (corticosteroids).


Subject(s)
Betacoronavirus/growth & development , Cattle Diseases/physiopathology , Coronavirus Infections/veterinary , Coronavirus, Bovine/growth & development , Pneumonia, Viral/physiopathology , Respiratory Tract Infections/veterinary , Swine Diseases/physiopathology , Animals , Betacoronavirus/pathogenicity , COVID-19 , Cattle , Cattle Diseases/pathology , Cattle Diseases/virology , Coronavirus Infections/pathology , Coronavirus Infections/physiopathology , Coronavirus, Bovine/pathogenicity , Host Specificity , Humans , Pandemics , Pneumonia, Viral/pathology , Porcine Respiratory Coronavirus/growth & development , Porcine Respiratory Coronavirus/pathogenicity , Respiratory Tract Infections/pathology , Respiratory Tract Infections/physiopathology , SARS-CoV-2 , Swine , Swine Diseases/pathology , Swine Diseases/virology , Viral Tropism
18.
J Dairy Sci ; 104(2): 2151-2163, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-973226

ABSTRACT

The objective of this prospective cohort study was to investigate the effect of bovine coronavirus (BCoV), bovine rotavirus (BRoV), and Cryptosporidiumparvum on dairy calf health and performance and to determine the prevalence of these pathogens. A total of 198 male dairy calves housed at a grain-fed veal facility were examined from June 11, 2018, to October 9, 2018. Calves were fed milk replacer twice daily and housed individually until weaning at 56 d. Once weaned, calves were moved into groups of 5 until they were moved to a finishing facility at 77 d. At the grain-fed veal facility, calves were scored for fecal consistency for the first 28 d and had fecal samples taken on arrival and at 7 and 14 d. Fecal samples were frozen and submitted to a commercial laboratory, where they were tested for BCoV, C.parvum, and 2 groups of BRoV: group A (BRoV A) and group B (BRoV B). Calves were weighed on arrival and at 14, 49, 56, and 77 d using a digital body scale. Treatments for disease and mortalities that occurred over the 77 d were also recorded. Statistical models, including Cox proportional hazards and repeated measures models, were built to determine the effect of infection with 1 of the pathogens. Over the 3 sampling points, 151 (85.8%), 178 (94.2%), 3 (1.5%), and 97 (57.4%) calves tested positive at least once for BCoV, BRoV A, BRoV B, and C.parvum, respectively. The source of the calves and the level of serum total protein measured on arrival were associated with testing positive for a pathogen. Calves that tested positive for C.parvum had an increased proportion of days with diarrhea and severe diarrhea; calves that tested positive for BCoV and BRoV A had an increased proportion of days with severe diarrhea. In addition, calves that tested positive for C.parvum had a higher hazard of being treated for respiratory disease. With respect to body weight, calves that had diarrhea or severe diarrhea had lower body weight at 49, 56, and 77 d. Specifically, calves that had an increased proportion of days with diarrhea showed a reduction in weight gain of up to 15 kg compared to calves without diarrhea. Calves that tested positive for C.parvum had a lower body weight at 49, 56, and 77 d; calves that tested positive for BCoV had a lower body weight at 56 and 77 d. This study demonstrates that the prevalence of BCoV, BRoV A, and C.parvum infection is high in this population of calves and has significant effects on the occurrence of diarrhea and body weight gain. Future studies should evaluate approaches for minimizing the effect of infection with these pathogens to improve the welfare, health, and productivity of dairy calves.


Subject(s)
Cattle Diseases/physiopathology , Coronavirus Infections/veterinary , Coronavirus, Bovine , Cryptosporidiosis/physiopathology , Cryptosporidium parvum , Rotavirus Infections/veterinary , Animals , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Cattle Diseases/virology , Cohort Studies , Coronavirus Infections/epidemiology , Coronavirus Infections/physiopathology , Cryptosporidiosis/parasitology , Diarrhea/parasitology , Diarrhea/veterinary , Diarrhea/virology , Feces/chemistry , Feces/parasitology , Feces/virology , Male , Prevalence , Prospective Studies , Respiratory Tract Diseases/therapy , Respiratory Tract Diseases/veterinary , Rotavirus , Rotavirus Infections/epidemiology , Rotavirus Infections/physiopathology , Weight Gain
19.
Cells ; 9(10)2020 10 19.
Article in English | MEDLINE | ID: covidwho-962878

ABSTRACT

Coronaviruses are able to establish persistence. However, how coronaviruses react to persistence and whether the selected viruses have altered their characteristics remain unclear. In this study, we found that the persistent infection of bovine coronavirus (BCoV), which is in the same genus as SARS-COV-2, led to alterations of genome structure, attenuation of gene expression, and the synthesis of subgenomic mRNA (sgmRNA) with a previously unidentified pattern. Subsequent analyses revealed that the altered genome structures were associated with the attenuation of gene expression. In addition, the genome structure at the 5' terminus and the cellular environment during the persistence were responsible for the sgmRNA synthesis, solving the previously unanswered question regarding the selection of transcription regulatory sequence for synthesis of BCoV sgmRNA 12.7. Although the BCoV variants (BCoV-p95) selected under the persistence replicated efficiently in cells without persistent infection, its pathogenicity was still lower than that of wild-type (wt) BCoV. Furthermore, in comparison with wt BCoV, the variant BCoV-p95 was not able to efficiently adapt to the challenges of alternative environments, suggesting wt BCoV is genetically robust. We anticipate that the findings derived from this fundamental research can contribute to the disease control and treatments against coronavirus infection including SARS-CoV-2.


Subject(s)
Coronavirus, Bovine/genetics , Gene Expression Regulation, Viral/genetics , Genome, Viral/genetics , Regulatory Sequences, Ribonucleic Acid/genetics , Animals , Betacoronavirus/genetics , Cattle , Cell Line , Computational Biology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , RNA, Messenger/genetics , RNA, Viral/genetics , SARS-CoV-2 , Transcription, Genetic/genetics
20.
Viruses ; 12(12)2020 11 30.
Article in English | MEDLINE | ID: covidwho-948865

ABSTRACT

Bovine coronavirus (BCoV), a major causative pathogen of bovine enteric and respiratory diseases and a zoonotic pathogen transmissible between animals and humans, has led to severe economic losses in numerous countries. BCoV belongs to the genus Betacoronavirus, which is a model of a pathogen that is threatening human health and includes severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, and Middle East respiratory syndrome coronavirus. This study aimed to determine whether photocatalytic material effectively reduces CoVs in the environment. Using the film adhesion method of photocatalytic materials, we assessed its antiviral activity and the effect of visible light irradiation according to methods defined by the International Organization for Standardization. Consequently, photocatalytic material was found to have antiviral activity, reducing the viral loads by 2.7 log TCID50 (tissue culture infective dose 50)/0.1 mL (500 lux), 2.8 log TCID50/0.1 mL (1000 lux), and 2.4 log TCID50/0.1 mL (3000 lux). Hence, this photocatalytic material might be applicable not only to reducing CoVs in the cattle breeding environment but also perhaps in other indoor spaces, such as offices and hospital rooms. To our knowledge, this study is the first to evaluate the antiviral activity of a photocatalytic material against CoV.


Subject(s)
Antiviral Agents/radiation effects , Coronavirus, Bovine/radiation effects , Virus Inactivation/radiation effects , Animals , Cattle , Cell Line, Tumor , Coronavirus Infections/prevention & control , Humans , Light , Photochemical Processes , Titanium/chemistry , Titanium/radiation effects , Viral Load/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL