Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add filters

Document Type
Year range
1.
Cell Rep ; 37(13): 110169, 2021 12 28.
Article in English | MEDLINE | ID: covidwho-1616407

ABSTRACT

The importance of pre-existing immune responses to seasonal endemic coronaviruses (HCoVs) for the susceptibility to SARS-CoV-2 infection and the course of COVID-19 is the subject of an ongoing scientific debate. Recent studies postulate that immune responses to previous HCoV infections can either have a slightly protective or no effect on SARS-CoV-2 pathogenesis and, consequently, be neglected for COVID-19 risk stratification. Challenging this notion, we provide evidence that pre-existing, anti-nucleocapsid antibodies against endemic α-coronaviruses and S2 domain-specific anti-spike antibodies against ß-coronavirus HCoV-OC43 are elevated in patients with COVID-19 compared to pre-pandemic donors. This finding is particularly pronounced in males and in critically ill patients. Longitudinal evaluation reveals that antibody cross-reactivity or polyclonal stimulation by SARS-CoV-2 infection are unlikely to be confounders. Thus, specific pre-existing immunity to seasonal coronaviruses may increase susceptibility to SARS-CoV-2 and predispose individuals to an adverse COVID-19 outcome, guiding risk management and supporting the development of universal coronavirus vaccines.


Subject(s)
COVID-19/immunology , Coronavirus/immunology , SARS-CoV-2/immunology , Adult , Antibodies/immunology , Antibodies, Viral/immunology , COVID-19/etiology , Coronavirus Infections/immunology , Coronavirus OC43, Human/immunology , Coronavirus OC43, Human/pathogenicity , Cross Reactions/immunology , Female , Germany , Humans , Immunity, Humoral/immunology , Immunoglobulin G/immunology , Longitudinal Studies , Male , Middle Aged , Pandemics , SARS-CoV-2/pathogenicity , Seasons , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
2.
Curr Top Med Chem ; 21(14): 1235-1250, 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1441869

ABSTRACT

BACKGROUND: Virus-like Particles (VLPs) are non-genetic multimeric nanoparticles synthesized through in vitro or in vivo self-assembly of one or more viral structural proteins. Immunogenicity and safety of VLPs make them ideal candidates for vaccine development and efficient nanocarriers for foreign antigens or adjuvants to activate the immune system. AIMS: The present study aimed to design and synthesize a chimeric VLP vaccine of the phage Qbeta (Qß) coat protein presenting the universal epitope of the coronavirus. METHODS: The RNA phage Qß coat protein was designed and synthesized, denoted as Qbeta. The CoV epitope, a universal epitope of coronavirus, was inserted into the C-terminal of Qbeta using genetic recombination, designated as Qbeta-CoV. The N-terminal of Qbeta-CoV was successively inserted into the TEV restriction site using mCherry red fluorescent label and modified affinity purified histidine label 6xHE, which was denoted as HE-Qbeta-CoV. Isopropyl ß-D-1-thiogalactopyranoside (IPTG) assessment revealed the expression of Qbeta, Qbeta-CoV, and HE-Qbeta-CoV in the BL21 (DE3) cells. The fusion protein was purified by salting out using ammonium sulfate and affinity chromatography. The morphology of particles was observed using electron microscopy. The female BALB/C mice were immunized intraperitoneally with the Qbeta-CoV and HE-Qbeta-- CoV chimeric VLPs vaccines and their sera were collected for the detection of antibody level and antibody titer using ELISA. The serum is used for the neutralization test of the three viruses of MHV, PEDV, and PDCoV. RESULTS: The results revealed that the fusion proteins Qbeta, Qbeta-CoV, and HE-Qbeta-CoV could all obtain successful expression. Particles with high purity were obtained after purification; the chimeric particles of Qbeta-CoV and HE-Qbeta-CoV were found to be similar to Qbeta particles in morphology and formed chimeric VLPs. In addition, two chimeric VLP vaccines induced specific antibody responses in mice and the antibodies showed certain neutralizing activity. CONCLUSION: The successful construction of the chimeric VLPs of the phage Qß coat protein presenting the universal epitope of coronavirus provides a vaccine form with potential clinical applications for the treatment of coronavirus disease.


Subject(s)
Antibodies, Neutralizing/immunology , Capsid Proteins/immunology , Coronavirus/immunology , Vaccines, Virus-Like Particle/immunology , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Enzyme-Linked Immunosorbent Assay , Female , Mice, Inbred BALB C , Microscopy, Electron, Scanning , Phylogeny , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Vaccines, Virus-Like Particle/genetics , Viral Proteins/genetics
3.
J Clin Invest ; 131(21)2021 11 01.
Article in English | MEDLINE | ID: covidwho-1403157

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19). Little is known about the interplay between preexisting immunity to endemic seasonal coronaviruses and the development of a SARS-CoV-2-specific IgG response. We investigated the kinetics, breadth, magnitude, and level of cross-reactivity of IgG antibodies against SARS-CoV-2 and heterologous seasonal and epidemic coronaviruses at the clonal level in patients with mild or severe COVID-19 as well as in disease control patients. We assessed antibody reactivity to nucleocapsid and spike antigens and correlated this IgG response to SARS-CoV-2 neutralization. Patients with COVID-19 mounted a mostly type-specific SARS-CoV-2 response. Additionally, IgG clones directed against a seasonal coronavirus were boosted in patients with severe COVID-19. These boosted clones showed limited cross-reactivity and did not neutralize SARS-CoV-2. These findings indicate a boost of poorly protective CoV-specific antibodies in patients with COVID-19 that correlated with disease severity, revealing "original antigenic sin."


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/virology , COVID-19/immunology , COVID-19/virology , Coronavirus/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Specificity , Case-Control Studies , Coronavirus Infections/immunology , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins/immunology , Cross Reactions , Female , Host Microbial Interactions/immunology , Humans , Immunoglobulin G/blood , Longitudinal Studies , Male , Middle Aged , Pandemics , Phosphoproteins/immunology , Seasons , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology
4.
Best Pract Res Clin Anaesthesiol ; 35(3): 269-292, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1401261

ABSTRACT

Coronaviruses belong to the family Coronaviridae order Nidovirales and are known causes of respiratory and intestinal disease in various mammalian and avian species. Species of coronaviruses known to infect humans are referred to as human coronaviruses (HCoVs). While traditionally, HCoVs have been a significant cause of the common cold, more recently, emergent viruses, including severe acute respiratory syndrome coronavirus (SARS-CoV-2) has caused a global pandemic. Here, we discuss coronavirus disease (COVID-19) biology, pathology, epidemiology, signs and symptoms, diagnosis, treatment, and recent clinical trials involving promising treatments.


Subject(s)
Antiviral Agents/administration & dosage , COVID-19/epidemiology , COVID-19/therapy , SARS-CoV-2 , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/analogs & derivatives , Adrenal Cortex Hormones/administration & dosage , Alanine/administration & dosage , Alanine/analogs & derivatives , Animals , COVID-19/diagnosis , COVID-19/immunology , Coronavirus/drug effects , Coronavirus/immunology , Cough/epidemiology , Cough/therapy , Diabetes Mellitus/epidemiology , Diabetes Mellitus/therapy , Fatigue/epidemiology , Fatigue/therapy , Fever , Heart Diseases/epidemiology , Heart Diseases/therapy , Humans , Positive-Pressure Respiration/methods , Prognosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/therapy , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Treatment Outcome
5.
Infect Genet Evol ; 89: 104729, 2021 04.
Article in English | MEDLINE | ID: covidwho-1386287

ABSTRACT

In recent years, a total of seven human pathogenic coronaviruses (HCoVs) strains were identified, i.e., SARS-CoV, SARS-CoV-2, MERS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1. Here, we performed an analysis of the protease recognition sites and antigenic variation of the S-protein of these HCoVs. We showed tissue-specific expression pattern, functions, and a number of recognition sites of proteases in S-proteins from seven strains of HCoVs. In the case of SARS-CoV-2, we found two new protease recognition sites, each of calpain-2, pepsin-A, and caspase-8, and one new protease recognition site each of caspase-6, caspase-3, and furin. Our antigenic mapping study of the S-protein of these HCoVs showed that the SARS-CoV-2 virus strain has the most potent antigenic epitopes (highest antigenicity score with maximum numbers of epitope regions). Additionally, the other six strains of HCoVs show common antigenic epitopes (both B-cell and T-cell), with low antigenicity scores compared to SARS-CoV-2. We suggest that the molecular evolution of structural proteins of human CoV can be classified, such as (i) HCoV-NL63 and HCoV-229E, (ii) SARS-CoV-2, and SARS-CoV and (iii) HCoV-OC43 and HCoV-HKU1. In conclusion, we can presume that our study might help to prepare the interventions for the possible HCoVs outbreaks in the future.


Subject(s)
Coronavirus/metabolism , Peptide Hydrolases/metabolism , Phylogeny , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Antigenic Variation , Binding Sites , Coronavirus/classification , Coronavirus/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Humans , SARS-CoV-2/classification , SARS-CoV-2/immunology
6.
Clin Exp Allergy ; 50(10): 1122-1126, 2020 10.
Article in English | MEDLINE | ID: covidwho-1388225

ABSTRACT

Human coronaviruses (HCoVs) such as HCoV-229E or OC43 are responsible for mild upper airway infections, whereas highly pathogenic HCoVs, including SARS-CoV, MERS-CoV and SARS-CoV-2, often evoke acute, heavy pneumonias. They tend to induce immune responses based on interferon and host inflammatory cytokine production and promotion of T1 immune profile. Less is known about their effect on T2-type immunity. Unlike human rhinoviruses (HRV) and Respiratory Syncytial Virus (RSV), HCoVs are not considered as a dominant risk factor of severe exacerbations of asthma, mostly T2-type chronic inflammatory disease. The relationship between coronaviruses and T2-type immunity, especially in asthma and allergy, is not well understood. This review aims to summarize currently available knowledge about the relationship of HCoVs, including novel SARS-CoV-2, with asthma and allergic inflammation.


Subject(s)
Asthma/immunology , COVID-19/immunology , Hypersensitivity/immunology , SARS-CoV-2/immunology , Asthma/virology , Coronavirus/immunology , Humans , Hypersensitivity/virology
7.
Front Immunol ; 12: 696370, 2021.
Article in English | MEDLINE | ID: covidwho-1357528

ABSTRACT

The COVID-19 pandemic is caused by SARS-CoV-2, a novel zoonotic coronavirus. Emerging evidence indicates that preexisting humoral immunity against other seasonal human coronaviruses (HCoVs) plays a critical role in the specific antibody response to SARS-CoV-2. However, current work to assess the effects of preexisting and cross-reactive anti-HCoVs antibodies has been limited. To address this issue, we have adapted our previously reported multiplex assay to simultaneously and quantitatively measure anti-HCoV antibodies. The full mPlex-CoV panel covers the spike (S) and nucleocapsid (N) proteins of three highly pathogenic HCoVs (SARS-CoV-1, SARS-CoV-2, MERS) and four human seasonal strains (OC43, HKU1, NL63, 229E). Combining this assay with volumetric absorptive microsampling (VAMS), we measured the anti-HCoV IgG, IgA, and IgM antibodies in fingerstick blood samples. The results demonstrate that the mPlex-CoV assay has high specificity and sensitivity. It can detect strain-specific anti-HCoV antibodies down to 0.1 ng/ml with 4 log assay range and with low intra- and inter-assay coefficients of variation (%CV). We also estimate multiple strain HCoVs IgG, IgA and IgM concentration in VAMS samples in three categories of subjects: pre-COVID-19 (n=21), post-COVID-19 convalescents (n=19), and COVID-19 vaccine recipients (n=14). Using metric multidimensional scaling (MDS) analysis, HCoVs IgG concentrations in fingerstick blood samples were well separated between the pre-COVID-19, post-COVID-19 convalescents, and COVID-19 vaccine recipients. In addition, we demonstrate how multi-dimensional scaling analysis can be used to visualize IgG mediated antibody immunity against multiple human coronaviruses. We conclude that the combination of VAMS and the mPlex-Cov assay is well suited to performing remote study sample collection under pandemic conditions to monitor HCoVs antibody responses in population studies.


Subject(s)
Antibodies, Viral/blood , Coronavirus/immunology , Cross Reactions/immunology , Immunoassay/methods , Antibodies, Viral/immunology , Betacoronavirus/immunology , COVID-19/immunology , Coronavirus 229E, Human/immunology , Coronavirus NL63, Human/immunology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus OC43, Human/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , SARS Virus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
8.
Viruses ; 13(8)2021 08 10.
Article in English | MEDLINE | ID: covidwho-1348697

ABSTRACT

The novel coronavirus SARS-CoV-2 is the seventh identified human coronavirus. Understanding the extent of pre-existing immunity induced by seropositivity to endemic seasonal coronaviruses and the impact of cross-reactivity on COVID-19 disease progression remains a key research question in immunity to SARS-CoV-2 and the immunopathology of COVID-2019 disease. This paper describes a panel of lentiviral pseudotypes bearing the spike (S) proteins for each of the seven human coronaviruses (HCoVs), generated under similar conditions optimized for high titre production allowing a high-throughput investigation of antibody neutralization breadth. Optimal production conditions and most readily available permissive target cell lines were determined for spike-mediated entry by each HCoV pseudotype: SARS-CoV-1, SARS-CoV-2 and HCoV-NL63 best transduced HEK293T/17 cells transfected with ACE2 and TMPRSS2, HCoV-229E and MERS-CoV preferentially entered HUH7 cells, and CHO cells were most permissive for the seasonal betacoronavirus HCoV-HKU1. Entry of ACE2 using pseudotypes was enhanced by ACE2 and TMPRSS2 expression in target cells, whilst TMPRSS2 transfection rendered HEK293T/17 cells permissive for HCoV-HKU1 and HCoV-OC43 entry. Additionally, pseudotype viruses were produced bearing additional coronavirus surface proteins, including the SARS-CoV-2 Envelope (E) and Membrane (M) proteins and HCoV-OC43/HCoV-HKU1 Haemagglutinin-Esterase (HE) proteins. This panel of lentiviral pseudotypes provides a safe, rapidly quantifiable and high-throughput tool for serological comparison of pan-coronavirus neutralizing responses; this can be used to elucidate antibody dynamics against individual coronaviruses and the effects of antibody cross-reactivity on clinical outcome following natural infection or vaccination.


Subject(s)
Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Coronavirus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/blood , Broadly Neutralizing Antibodies/blood , Cell Line , Coronavirus 229E, Human/immunology , Coronavirus 229E, Human/physiology , Coronavirus NL63, Human/immunology , Coronavirus NL63, Human/physiology , Coronavirus OC43, Human/immunology , Coronavirus OC43, Human/physiology , Cross Reactions , Humans , Lentivirus/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/physiology , Neutralization Tests , Plasmids , SARS-CoV-2/physiology , Transfection , Virus Internalization
9.
Viral Immunol ; 34(5): 321-329, 2021 06.
Article in English | MEDLINE | ID: covidwho-1343607

ABSTRACT

Since the end of 2019, the emergence of novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has accelerated the research on host immune responses toward the coronaviruses. When there is no approved drug or vaccine to use against these culprits, host immunity is the major strategy to fight such infections. Type I interferons are an integral part of the host innate immune system and define one of the first lines of innate immune defense against viral infections. The in vitro antiviral role of type I IFNs against Middle East respiratory syndrome coronavirus (MERS-CoV) and SARS-CoV (severe acute respiratory syndrome coronavirus) is well established. Moreover, the involvement of type I IFNs in disease pathology has also been reported. In this study, we have reviewed the protective and the immunopathogenic role of type I IFNs in the pathogenesis of MERS-CoV, SARS-CoV, and SARS-CoV-2. This review will also enlighten the potential implications of type I IFNs for the treatment of COVID-19 when used in combination with IFN-γ.


Subject(s)
Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/pathology , Coronavirus/immunology , Interferon Type I/therapeutic use , Interferon-gamma/therapeutic use , Animals , COVID-19/drug therapy , COVID-19/immunology , COVID-19/pathology , Coronavirus/classification , Coronavirus/drug effects , Coronavirus Infections/immunology , Humans , Interferon Type I/immunology , Interferon-gamma/immunology , Mice , Middle East Respiratory Syndrome Coronavirus , Virus Replication/drug effects
10.
Sci Immunol ; 6(61)2021 07 29.
Article in English | MEDLINE | ID: covidwho-1334534

ABSTRACT

The spillover of animal coronaviruses (aCoVs) to humans has caused SARS, MERS, and COVID-19. While antibody responses displaying cross-reactivity between SARS-CoV-2 and seasonal/common cold human coronaviruses (hCoVs) have been reported, potential cross-reactivity with aCoVs and the diagnostic implications are incompletely understood. Here, we probed for antibody binding against all seven hCoVs and 49 aCoVs represented as 12,924 peptides within a phage-displayed antigen library. Antibody repertoires of 269 recovered COVID-19 patients showed distinct changes compared to 260 unexposed pre-pandemic controls, not limited to binding of SARS-CoV-2 antigens but including binding to antigens from hCoVs and aCoVs with shared motifs to SARS-CoV-2. We isolated broadly reactive monoclonal antibodies from recovered COVID-19 patients that bind a shared motif of SARS-CoV-2, hCoV-OC43, hCoV-HKU1, and several aCoVs, demonstrating that interspecies cross-reactivity can be mediated by a single immunoglobulin. Employing antibody binding data against the entire CoV antigen library allowed accurate discrimination of recovered COVID-19 patients from unexposed individuals by machine learning. Leaving out SARS-CoV-2 antigens and relying solely on antibody binding to other hCoVs and aCoVs achieved equally accurate detection of SARS-CoV-2 infection. The ability to detect SARS-CoV-2 infection without knowledge of its unique antigens solely from cross-reactive antibody responses against other hCoVs and aCoVs suggests a potential diagnostic strategy for the early stage of future pandemics. Creating regularly updated antigen libraries representing the animal coronavirome can provide the basis for a serological assay already poised to identify infected individuals following a future zoonotic transmission event.


Subject(s)
Antibodies, Viral/immunology , Antigens, Viral/immunology , Coronavirus Infections/immunology , Coronavirus/immunology , Peptide Library , Adolescent , Adult , Aged , Animals , Coronavirus Infections/diagnosis , Cross Reactions , Female , Humans , Male , Middle Aged , Young Adult , Zoonoses
12.
Viral Immunol ; 34(9): 597-606, 2021 11.
Article in English | MEDLINE | ID: covidwho-1322606

ABSTRACT

Coronaviruses (CoVs) contribute significantly to the burden of respiratory diseases, frequently as upper respiratory tract infections. Recent emergence of novel coronaviruses in the last few decades has highlighted the potential transmission, disease, and mortality related to these viruses. In this literature review, we shall explore the disease-causing mechanism of the virus through human monocytes and macrophages. Common strains will be discussed; however, this review will center around coronaviruses responsible for epidemics, namely severe acute respiratory syndrome coronavirus (SARS-CoV)-1 and -2 and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Macrophages are key players in the immune system and have been found to play a role in the pathogenesis of lethal coronaviruses. In physiology, they are white blood cells that engulf and digest cellular debris, foreign substances, and microbes. They play a critical role in innate immunity and help initiate adaptive immunity. Human coronaviruses utilize various mechanisms to undermine the innate immune response through its interaction with macrophages and monocytes. It is capable of entering immune cells through DPP4 (dipeptidyl-peptidase 4) receptors and antibody-dependent enhancement, delaying initial interferon response which supports robust viral replication. Pathogenesis includes triggering the production of overwhelming pro-inflammatory cytokines that attract other immune cells to the site of infection, which propagate prolonged pro-inflammatory response. The virus has also been found to suppress the release of anti-inflammatory mediators such as IL-10, leading to an aberrant inflammatory response. Elevated serum cytokines are also believed to contribute to pathological features seen in severe disease such as coagulopathy, acute lung injury, and multiorgan failure.


Subject(s)
Coronavirus Infections/immunology , Coronavirus/immunology , Coronavirus/pathogenicity , Immunity, Innate , Macrophages/virology , Monocytes/virology , Animals , Coronavirus/classification , Coronavirus Infections/pathology , Coronavirus Infections/virology , Cytokines/blood , Cytokines/immunology , Humans , Inflammation/immunology , Inflammation/virology , Lung/pathology , Macrophages/immunology , Monocytes/immunology , Virus Replication
13.
J Infect Dis ; 224(1): 49-59, 2021 07 02.
Article in English | MEDLINE | ID: covidwho-1294731

ABSTRACT

BACKGROUND: We investigated frequency of reinfection with seasonal human coronaviruses (HCoVs) and serum antibody response following infection over 8 years in the Household Influenza Vaccine Evaluation (HIVE) cohort. METHODS: Households were followed annually for identification of acute respiratory illness with reverse-transcription polymerase chain reaction-confirmed HCoV infection. Serum collected before and at 2 time points postinfection were tested using a multiplex binding assay to quantify antibody to seasonal, severe acute respiratory syndrome coronavirus (SARS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike proteins and SARS-CoV-2 spike subdomains and N protein. RESULTS: Of 3418 participants, 40% were followed for ≥3 years. A total of 1004 HCoV infections were documented; 303 (30%) were reinfections of any HCoV type. The number of HCoV infections ranged from 1 to 13 per individual. The mean time to reinfection with the same type was estimated at 983 days for 229E, 578 days for HKU1, 615 days for OC43, and 711 days for NL63. Binding antibody levels to seasonal HCoVs were high, with little increase postinfection, and were maintained over time. Homologous, preinfection antibody levels did not significantly correlate with odds of infection, and there was little cross-response to SARS-CoV-2 proteins. CONCLUSIONS: Reinfection with seasonal HCoVs is frequent. Binding anti-spike protein antibodies do not correlate with protection from seasonal HCoV infection.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus , Family Characteristics , Influenza Vaccines/immunology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Severe Acute Respiratory Syndrome/epidemiology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/virology , Coinfection/epidemiology , Coronavirus/classification , Coronavirus/genetics , Coronavirus/immunology , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cross Reactions/immunology , Humans , Influenza Vaccines/administration & dosage , Influenza, Human/virology , Kaplan-Meier Estimate , Michigan/epidemiology , Proportional Hazards Models , Public Health Surveillance , Reinfection/epidemiology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Seasons , Seroepidemiologic Studies , Severe Acute Respiratory Syndrome/diagnosis , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Viral Load
14.
PLoS Biol ; 19(6): e3001265, 2021 06.
Article in English | MEDLINE | ID: covidwho-1278162

ABSTRACT

The search for potential antibody-based diagnostics, vaccines, and therapeutics for pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has focused almost exclusively on the spike (S) and nucleocapsid (N) proteins. Coronavirus membrane (M), ORF3a, and ORF8 proteins are humoral immunogens in other coronaviruses (CoVs) but remain largely uninvestigated for SARS-CoV-2. Here, we use ultradense peptide microarray mapping to show that SARS-CoV-2 infection induces robust antibody responses to epitopes throughout the SARS-CoV-2 proteome, particularly in M, in which 1 epitope achieved excellent diagnostic accuracy. We map 79 B cell epitopes throughout the SARS-CoV-2 proteome and demonstrate that antibodies that develop in response to SARS-CoV-2 infection bind homologous peptide sequences in the 6 other known human CoVs. We also confirm reactivity against 4 of our top-ranking epitopes by enzyme-linked immunosorbent assay (ELISA). Illness severity correlated with increased reactivity to 9 SARS-CoV-2 epitopes in S, M, N, and ORF3a in our population. Our results demonstrate previously unknown, highly reactive B cell epitopes throughout the full proteome of SARS-CoV-2 and other CoV proteins.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Viral Proteins/immunology , Antibodies, Viral/blood , COVID-19/pathology , Coronavirus/immunology , Cross Reactions , Epitopes, B-Lymphocyte , Humans , Immunodominant Epitopes , Immunoglobulin G/blood , Immunoglobulin G/immunology , Proteome/immunology , Severity of Illness Index
15.
Curr Top Med Chem ; 21(14): 1235-1250, 2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1274595

ABSTRACT

BACKGROUND: Virus-like Particles (VLPs) are non-genetic multimeric nanoparticles synthesized through in vitro or in vivo self-assembly of one or more viral structural proteins. Immunogenicity and safety of VLPs make them ideal candidates for vaccine development and efficient nanocarriers for foreign antigens or adjuvants to activate the immune system. AIMS: The present study aimed to design and synthesize a chimeric VLP vaccine of the phage Qbeta (Qß) coat protein presenting the universal epitope of the coronavirus. METHODS: The RNA phage Qß coat protein was designed and synthesized, denoted as Qbeta. The CoV epitope, a universal epitope of coronavirus, was inserted into the C-terminal of Qbeta using genetic recombination, designated as Qbeta-CoV. The N-terminal of Qbeta-CoV was successively inserted into the TEV restriction site using mCherry red fluorescent label and modified affinity purified histidine label 6xHE, which was denoted as HE-Qbeta-CoV. Isopropyl ß-D-1-thiogalactopyranoside (IPTG) assessment revealed the expression of Qbeta, Qbeta-CoV, and HE-Qbeta-CoV in the BL21 (DE3) cells. The fusion protein was purified by salting out using ammonium sulfate and affinity chromatography. The morphology of particles was observed using electron microscopy. The female BALB/C mice were immunized intraperitoneally with the Qbeta-CoV and HE-Qbeta-- CoV chimeric VLPs vaccines and their sera were collected for the detection of antibody level and antibody titer using ELISA. The serum is used for the neutralization test of the three viruses of MHV, PEDV, and PDCoV. RESULTS: The results revealed that the fusion proteins Qbeta, Qbeta-CoV, and HE-Qbeta-CoV could all obtain successful expression. Particles with high purity were obtained after purification; the chimeric particles of Qbeta-CoV and HE-Qbeta-CoV were found to be similar to Qbeta particles in morphology and formed chimeric VLPs. In addition, two chimeric VLP vaccines induced specific antibody responses in mice and the antibodies showed certain neutralizing activity. CONCLUSION: The successful construction of the chimeric VLPs of the phage Qß coat protein presenting the universal epitope of coronavirus provides a vaccine form with potential clinical applications for the treatment of coronavirus disease.


Subject(s)
Antibodies, Neutralizing/immunology , Capsid Proteins/immunology , Coronavirus/immunology , Vaccines, Virus-Like Particle/immunology , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Enzyme-Linked Immunosorbent Assay , Female , Mice, Inbred BALB C , Microscopy, Electron, Scanning , Phylogeny , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Vaccines, Virus-Like Particle/genetics , Viral Proteins/genetics
16.
Microbiol Immunol ; 64(1): 33-51, 2020 Jan.
Article in English | MEDLINE | ID: covidwho-1262996

ABSTRACT

The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking coronavirus infection. However, some animal studies have suggested that inadequate immunization against severe acute respiratory syndrome coronavirus (SARS-CoV) induces a lung eosinophilic immunopathology upon infection. The present study evaluated two kinds of vaccine adjuvants for use with recombinant S protein: gold nanoparticles (AuNPs), which are expected to function as both an antigen carrier and an adjuvant in immunization; and Toll-like receptor (TLR) agonists, which have previously been shown to be an effective adjuvant in an ultraviolet-inactivated SARS-CoV vaccine. All the mice immunized with more than 0.5 µg S protein without adjuvant escaped from SARS after infection with mouse-adapted SARS-CoV; however, eosinophilic infiltrations were observed in the lungs of almost all the immunized mice. The AuNP-adjuvanted protein induced a strong IgG response but failed to improve vaccine efficacy or to reduce eosinophilic infiltration because of highly allergic inflammatory responses. Whereas similar virus titers were observed in the control animals and the animals immunized with S protein with or without AuNPs, Type 1 interferon and pro-inflammatory responses were moderate in the mice treated with S protein with and without AuNPs. On the other hand, the TLR agonist-adjuvanted vaccine induced highly protective antibodies without eosinophilic infiltrations, as well as Th1/17 cytokine responses. The findings of this study will support the development of vaccines against severe pneumonia-associated coronaviruses.


Subject(s)
Adjuvants, Immunologic/pharmacology , Coronavirus Infections/prevention & control , Gold/chemistry , Immunoglobulin G/immunology , Lung/immunology , Metal Nanoparticles/chemistry , Severe Acute Respiratory Syndrome/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Analysis of Variance , Animals , Antibodies, Viral/immunology , Chlorocebus aethiops , Coronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/metabolism , Disease Models, Animal , Female , Immunization , Lung/pathology , Mice , Mice, Inbred BALB C , Recombinant Proteins/immunology , SARS Virus/immunology , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/genetics , Toll-Like Receptors , Vaccination , Vaccines, Synthetic , Vero Cells , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Vaccines/immunology , Viral Vaccines/pharmacology , Viral Vaccines/therapeutic use
17.
BMC Infect Dis ; 21(1): 544, 2021 Jun 09.
Article in English | MEDLINE | ID: covidwho-1262498

ABSTRACT

BACKGROUND: SARS-CoV-2 is a recently emerged pandemic coronavirus (CoV) capable of causing severe respiratory illness. However, a significant number of infected people present as asymptomatic or pauci-symptomatic. In this prospective assessment of at-risk healthcare workers (HCWs) we seek to determine whether pre-existing antibody or T cell responses to previous seasonal human coronavirus (HCoV) infections affect immunological or clinical responses to SARS-CoV-2 infection or vaccination. METHODS: A cohort of 300 healthcare workers, confirmed negative for SARS-CoV-2 exposure upon study entry, will be followed for up to 1 year with monthly serology analysis of IgM and IgG antibodies against the spike proteins of SARS-CoV-2 and the four major seasonal human coronavirus - HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63. Participants will complete monthly questionnaires that ask about Coronavirus Disease 2019 (COVID-19) exposure risks, and a standardized, validated symptom questionnaire (scoring viral respiratory disease symptoms, intensity and severity) at least twice monthly and any day when any symptoms manifest. SARS-CoV-2 PCR testing will be performed any time participants develop symptoms consistent with COVID-19. For those individuals that seroconvert and/or test positive by SARS-CoV-2 PCR, or receive the SARS-CoV-2 vaccine, additional studies of T cell activation and cytokine production in response to SARS-CoV-2 peptide pools and analysis of Natural Killer cell numbers and function will be conducted on that participant's cryopreserved baseline peripheral blood mononuclear cells (PBMCs). Following the first year of this study we will further analyze those participants having tested positive for COVID-19, and/or having received an authorized/licensed SARS-CoV-2 vaccine, quarterly (year 2) and semi-annually (years 3 and 4) to investigate immune response longevity. DISCUSSION: This study will determine the frequency of asymptomatic and pauci-symptomatic SARS-CoV-2 infection in a cohort of at-risk healthcare workers. Baseline and longitudinal assays will determine the frequency and magnitude of anti-spike glycoprotein antibodies to the seasonal HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63, and may inform whether pre-existing antibodies to these human coronaviruses are associated with altered COVID-19 disease course. Finally, this study will evaluate whether pre-existing immune responses to seasonal HCoVs affect the magnitude and duration of antibody and T cell responses to SARS-CoV-2 vaccination, adjusting for demographic covariates.


Subject(s)
COVID-19/immunology , Health Personnel/statistics & numerical data , SARS-CoV-2/immunology , Seroconversion , Vaccination/statistics & numerical data , Antibodies, Viral/blood , Antibodies, Viral/immunology , Asymptomatic Infections , COVID-19 Vaccines/immunology , Coronavirus/immunology , Cross Reactions , Humans , Prospective Studies , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
18.
Science ; 372(6548): 1336-1341, 2021 06 18.
Article in English | MEDLINE | ID: covidwho-1234278

ABSTRACT

The identification of CD4+ T cell epitopes is instrumental for the design of subunit vaccines for broad protection against coronaviruses. Here, we demonstrate in COVID-19-recovered individuals a robust CD4+ T cell response to naturally processed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein and nucleoprotein (N), including effector, helper, and memory T cells. By characterizing 2943 S-reactive T cell clones from 34 individuals, we found that the receptor-binding domain (RBD) is highly immunogenic and that 33% of RBD-reactive clones and 94% of individuals recognized a conserved immunodominant S346-S365 region comprising nested human leukocyte antigen DR (HLA-DR)- and HLA-DP-restricted epitopes. Using pre- and post-COVID-19 samples and S proteins from endemic coronaviruses, we identified cross-reactive T cells targeting multiple S protein sites. The immunodominant and cross-reactive epitopes identified can inform vaccination strategies to counteract emerging SARS-CoV-2 variants.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , Immunodominant Epitopes , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Coronavirus/immunology , Cross Reactions , Epitopes, T-Lymphocyte/immunology , Genes, T-Cell Receptor beta , HLA-DP Antigens/immunology , HLA-DR Antigens/immunology , Humans , Immunologic Memory , Nucleocapsid Proteins/immunology , Protein Domains , Receptors, Antigen, T-Cell, alpha-beta/immunology , Spike Glycoprotein, Coronavirus/chemistry , T Follicular Helper Cells/immunology , T-Lymphocyte Subsets/immunology
19.
Cell Rep ; 35(8): 109164, 2021 05 25.
Article in English | MEDLINE | ID: covidwho-1227990

ABSTRACT

A major goal of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine efforts is to elicit antibody responses that confer protection. Mapping the epitope targets of the SARS-CoV-2 antibody response is critical for vaccine design, diagnostics, and development of therapeutics. Here, we develop a pan-coronavirus phage display library to map antibody binding sites at high resolution within the complete viral proteomes of all known human-infecting coronaviruses in patients with mild or moderate/severe coronavirus disease 2019 (COVID-19). We find that the majority of immune responses to SARS-CoV-2 are targeted to the spike protein, nucleocapsid, and ORF1ab and include sites of mutation in current variants of concern. Some epitopes are identified in the majority of samples, while others are rare, and we find variation in the number of epitopes targeted between individuals. We find low levels of SARS-CoV-2 cross-reactivity in individuals with no exposure to the virus and significant cross-reactivity with endemic human coronaviruses (CoVs) in convalescent sera from patients with COVID-19.


Subject(s)
COVID-19/immunology , Epitopes/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Viral Proteins/immunology , Adult , Aged , Antibodies, Viral/immunology , Binding Sites, Antibody , COVID-19/virology , Cell Surface Display Techniques , Coronavirus/immunology , Cross Reactions , Female , HEK293 Cells , Humans , Immunity , Male , Middle Aged , Nucleocapsid Proteins/immunology , Polyproteins/immunology , Serology , Young Adult
20.
Int Arch Allergy Immunol ; 182(9): 863-876, 2021.
Article in English | MEDLINE | ID: covidwho-1216841

ABSTRACT

Coronaviruses (CoVs) were first discovered in the 1960s. Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) has been identified as the cause of COVID-19, which spread throughout China and subsequently, across the world. As COVID-19 causes serious public health concerns across the world, investigating the characteristics of SARS-CoV-2 and its interaction with the host immune responses may provide a clearer picture of how the pathogen causes disease in some individuals. Interestingly, SARS-CoV-2 has 80% sequence homology with SARS-CoV-1 and 96-98% homology with CoVs isolated from bats. Therefore, the experience acquired in SARS and Middle East Respiratory Syndrome (MERS) epidemics may improve our understanding of the immune response and immunopathological changes in COVID-19 patients. In the present paper, we have reviewed the immune responses (including the innate and adaptive immunities) to SARS-CoV, MERS-CoV, and SARS-CoV-2, so as to improve our understanding of the concept of the COVID-19 disease, which will be helpful in developing vaccines and medications for treating the COVID-19 patients.


Subject(s)
Coronavirus Infections/immunology , Coronavirus/immunology , Host-Pathogen Interactions/immunology , Immunity , Adaptive Immunity , Angiotensin-Converting Enzyme 2/metabolism , Animals , Biomarkers , COVID-19/complications , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Coronavirus/physiology , Coronavirus Infections/complications , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cytokines/metabolism , Humans , Immunity, Innate , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...