Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Molecules ; 27(4)2022 Feb 13.
Article in English | MEDLINE | ID: covidwho-1686904


(1) Background: Acne is a widespread skin disease, especially among adolescents. Following the COVID-19 pandemic and the use of masks, the problem has been affecting a greater number of people, and the attention of the skin care beauty routine cosmetics has been focused on the "Maskne", caused by the sebum excretion rate (SER) that stimulates microbial proliferation. (2) Methods: the present study was focused on the rheological characterization and quality assurance of the preservative system of an anti-acne serum. The biological effectiveness (cytotoxicity-skin and eye irritation-antimicrobial, biofilm eradication and anti-inflammatory activity) was evaluated in a monolayer cell line of keratinocytes (HaCaT) and on 3D models (reconstructed human epidermis, RHE and human reconstructed corneal epithelium, HCE). The Cutibacterium acnes, as the most relevant acne-inducing bacterium, is chosen as a pro-inflammatory stimulus and to evaluate the antimicrobial activity of the serum. (3) Results and Conclusions: Rheology allows to simulate serum behavior at rest, extrusion and application, so the serum could be defined as having a solid-like behavior and being pseudoplastic. The preservative system is in compliance with the criteria of the reference standard. Biological effectiveness evaluation shows non-cytotoxic and irritant behavior with a good antimicrobial and anti-inflammatory activity of the formulation, supporting the effectiveness of the serum for acne-prone skin treatment.

Acne Vulgaris/drug therapy , Anti-Bacterial Agents , Biofilms/drug effects , COVID-19 , Cosmeceuticals , Pandemics , Propionibacteriaceae/physiology , SARS-CoV-2 , Acne Vulgaris/microbiology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Line, Transformed , Cosmeceuticals/chemistry , Cosmeceuticals/pharmacology , Humans
Molecules ; 26(2)2021 Jan 15.
Article in English | MEDLINE | ID: covidwho-1389464


Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.

Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , Peptides/chemistry , Peptides/pharmacology , Peptides/therapeutic use , Amino Acids/chemistry , Anti-Infective Agents/chemistry , Antiviral Agents/chemistry , COVID-19/drug therapy , Computer Simulation , Cosmeceuticals/chemistry , Cosmeceuticals/therapeutic use , Dietary Supplements , Gene Transfer Techniques , Humans , Lactoferrin/chemistry , Lipid Bilayers , Nanostructures/administration & dosage , Nanostructures/chemistry , Peptides/administration & dosage , Stem Cells , Vaccines, Subunit/chemistry , Vaccines, Subunit/pharmacology
Molecules ; 26(9)2021 May 03.
Article in English | MEDLINE | ID: covidwho-1238921


Chitosan has many useful intrinsic properties (e.g., non-toxicity, antibacterial properties, and biodegradability) and can be processed into high-surface-area nanofiber constructs for a broad range of sustainable research and commercial applications. These nanofibers can be further functionalized with bioactive agents. In the food industry, for example, edible films can be formed from chitosan-based composite fibers filled with nanoparticles, exhibiting excellent antioxidant and antimicrobial properties for a variety of products. Processing 'pure' chitosan into nanofibers can be challenging due to its cationic nature and high crystallinity; therefore, chitosan is often modified or blended with other materials to improve its processability and tailor its performance to specific needs. Chitosan can be blended with a variety of natural and synthetic polymers and processed into fibers while maintaining many of its intrinsic properties that are important for textile, cosmeceutical, and biomedical applications. The abundance of amine groups in the chemical structure of chitosan allows for facile modification (e.g., into soluble derivatives) and the binding of negatively charged domains. In particular, high-surface-area chitosan nanofibers are effective in binding negatively charged biomolecules. Recent developments of chitosan-based nanofibers with biological activities for various applications in biomedical, food packaging, and textiles are discussed herein.

Chitosan/chemistry , Cosmeceuticals/chemistry , Food Packaging , Textiles , Amines/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Antioxidants/chemistry , Crystallization , Edible Films , Humans , Nanofibers/chemistry , Nanoparticles/chemistry , Polymers , Regeneration , Skin/pathology , Skin, Artificial , Solubility , Tissue Engineering , Wound Healing