Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31.017
Filter
1.
Viruses ; 15(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36680090

ABSTRACT

Since 2018, the outbreak and prevalence of the African swine fever virus (ASFV) in China have caused huge economic losses. Less virulent ASFVs emerged in 2020, which led to difficulties and challenges for early diagnosis and control of African swine fever (ASF) in China. An effective method of monitoring ASFV antibodies and specific antibodies against ASFV to promote the development of prevention techniques are urgently needed. In the present study, ASFV p17 was successfully expressed in CHO cells using a suspension culture system. An indirect enzyme-linked immunosorbent assay (ELISA) based on purified p17 was established and optimized. The monoclonal antibody (mAb) against p17 recognized a conservative linear epitope (3TETSPLLSH11) and exhibited specific reactivity, which was conducive to the identification of recombinant porcine reproductive and respiratory syndrome virus (PRRSV) expressing p17. The ELISA method efficiently detected clinical ASFV infection and effectively monitored the antibody levels in vivo after recombinant PRRSV live vector virus expressing p17 vaccination. Overall, the determination of the conserved linear epitope of p17 would contribute to the in-depth exploration of the biological function of the ASFV antigen protein. The indirect ELISA method and mAb against ASFV p17 revealed efficient detection and promising application prospects, making them ideal for epidemiological surveillance and vaccine research on ASF.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine , Animals , Cricetinae , African Swine Fever/diagnosis , African Swine Fever/prevention & control , African Swine Fever/epidemiology , Viral Proteins , Antibodies, Monoclonal , Cricetulus , Vaccines, Synthetic , Enzyme-Linked Immunosorbent Assay , Antibodies, Viral
2.
Sci Rep ; 13(1): 1200, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36681715

ABSTRACT

Chinese hamster ovary (CHO) cell lines are widely used to manufacture biopharmaceuticals. However, CHO cells are not an optimal expression host due to the intrinsic plasticity of the CHO genome. Genome plasticity can lead to chromosomal rearrangements, transgene exclusion, and phenotypic drift. A poorly understood genomic element of CHO cell line instability is extrachromosomal circular DNA (eccDNA) in gene expression and regulation. EccDNA can facilitate ultra-high gene expression and are found within many eukaryotes including humans, yeast, and plants. EccDNA confers genetic heterogeneity, providing selective advantages to individual cells in response to dynamic environments. In CHO cell cultures, maintaining genetic homogeneity is critical to ensuring consistent productivity and product quality. Understanding eccDNA structure, function, and microevolutionary dynamics under various culture conditions could reveal potential engineering targets for cell line optimization. In this study, eccDNA sequences were investigated at the beginning and end of two-week fed-batch cultures in an ambr®250 bioreactor under control and lactate-stressed conditions. This work characterized structure and function of eccDNA in a CHO-K1 clone. Gene annotation identified 1551 unique eccDNA genes including cancer driver genes and genes involved in protein production. Furthermore, RNA-seq data is integrated to identify transcriptionally active eccDNA genes.


Subject(s)
Batch Cell Culture Techniques , Lactic Acid , Cricetinae , Animals , Humans , Cricetulus , CHO Cells , Genome , DNA
3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36674424

ABSTRACT

The regulation and metabolism of the endocannabinoid system has received extensive attention for their potential neuroprotective effect in neurodegenerative diseases such as Alzheimer's disease (AD), which is characterized by amyloid ß (Aß) -induced cell toxicity, inflammation, and oxidative stress. Using in vitro techniques and two cell lines, the mouse hippocampus-derived HT22 cells and Chinese hamster ovary (CHO) cells expressing human cannabinoid receptor type 1 (CB1), we investigated the ability of endocannabinoids to inhibit Aß aggregation and protect cells against Aß toxicity. The present study provides evidence that endocannabinoids N-arachidonoyl ethanol amide (AEA), noladin and O-arachidonoyl ethanolamine (OAE) inhibit Aß42 aggregation. They were able to provide protection against Aß42 induced cytotoxicity via receptor-mediated and non-receptor-mediated mechanisms in CB1-CHO and HT22 cells, respectively. The aggregation kinetic experiments demonstrate the anti-Aß aggregation activity of some endocannabinoids (AEA, noladin). These data demonstrate the potential role and application of endocannabinoids in AD pathology and treatment.


Subject(s)
Alzheimer Disease , Endocannabinoids , Mice , Animals , Cricetinae , Humans , Endocannabinoids/pharmacology , Endocannabinoids/metabolism , Amyloid beta-Peptides/toxicity , CHO Cells , Cricetulus , Alzheimer Disease/metabolism
4.
Int J Mol Sci ; 24(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36674948

ABSTRACT

In Alzheimer's disease (AD), the reduction in acetylcholinesterase (AChE) enzymatic activity is not paralleled with changes in its protein levels, suggesting the presence of a considerable enzymatically inactive pool in the brain. In the present study, we validated previous findings, and, since inactive forms could result from post-translational modifications, we analyzed the glycosylation of AChE by lectin binding in brain samples from sporadic and familial AD (sAD and fAD). Most of the enzymatically active AChE was bound to lectins Canavalia ensiformis (Con A) and Lens culinaris agglutinin (LCA) that recognize terminal mannoses, whereas Western blot assays showed a very low percentage of AChE protein being recognized by the lectin. This indicates that active and inactive forms of AChE vary in their glycosylation pattern, particularly in the presence of terminal mannoses in active ones. Moreover, sAD subjects showed reduced binding to terminal mannoses compared to non-demented controls, while, for fAD patients that carry mutations in the PSEN1 gene, the binding was higher. The role of presenilin-1 (PS1) in modulating AChE glycosylation was then studied in a cellular model that overexpresses PS1 (CHO-PS1). In CHO-PS1 cells, binding to LCA indicates that AChE displays more terminal mannoses in oligosaccharides with a fucosylated core. Immunocytochemical assays also demonstrated increased presence of AChE in the trans-Golgi. Moreover, AChE enzymatic activity was higher in plasmatic membrane of CHO-PS1 cells. Thus, our results indicate that PS1 modulates trafficking and maturation of AChE in Golgi regions favoring the presence of active forms in the membrane.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Cricetinae , Animals , Humans , Acetylcholinesterase/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Alzheimer Disease/metabolism , Lectins/metabolism , Brain/metabolism , Cricetulus , Presenilin-2/genetics , Mutation
5.
Viruses ; 15(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36680095

ABSTRACT

More than 100 human adenovirus (Ad) types were identified, of which species D comprises the largest group. Heparan sulfate proteoglycans (HSPGs) were shown to function as cell surface receptors for cell binding and uptake of some Ads, but a systematic analysis of species D Ads is lacking. Previous research focused on Ad5 and blood coagulation factor X (FX) complexes, which revealed that Ad5 can transduce cells with low expression levels of its main coxsackievirus-adenovirus receptor in the presence of high HSPG expression levels in a FX dependent manner. Based on our reporter gene-tagged Ad-library, we explored for the first time a broad spectrum of species D Ads to study the role of HSPG on their cellular uptake. This study was performed on three Chinese Hamster Ovary (CHO) cell lines with different forms of HSPG (only proteoglycan (745), non-sulfated HSPG (606) or sulfated HSPG (K1)). The effect of Ad:FX complexes on Ad uptake was explored in the presence of physiological levels of FX in blood (6-10 µg/mL). We found that sulfation of HSPG plays an important role in cellular uptake and transduction of FX-bound Ad5 but neither HSPG nor FX influenced uptake of all tested species D Ads. Because FX has no influence on transduction efficiencies of species D Ads and therefore may not bind to them, these Ads may not be protected from attack by neutralizing IgM antibodies or the complement pathway, which may have implications for species D Ads used as vaccine and gene therapy vectors.


Subject(s)
Adenoviruses, Human , Heparan Sulfate Proteoglycans , Animals , Cricetinae , Humans , Adenoviruses, Human/physiology , CHO Cells , Cricetulus , Factor X/metabolism , Heparan Sulfate Proteoglycans/metabolism , Heparitin Sulfate/metabolism
6.
Int J Mol Med ; 51(2)2023 02.
Article in English | MEDLINE | ID: mdl-36660940

ABSTRACT

Epithelial cell adhesion molecule (EpCAM) is a type I transmembrane glycoprotein, which is highly expressed on tumor cells. As EpCAM plays a crucial role in cell adhesion, survival, proliferation, stemness, and tumorigenesis, it has been considered as a promising target for tumor diagnosis and therapy. Anti­EpCAM monoclonal antibodies (mAbs) have been developed and have previously demonstrated promising outcomes in several clinical trials. An anti­EpCAM mAb, EpMab­37 (mouse IgG1, kappa) was previously developed by the authors, using the cell­based immunization and screening method. In the present study, a defucosylated version of anti­EpCAM mAb (EpMab­37­mG2a­f) was generated to evaluate the antitumor activity against EpCAM­positive cells. EpMab­37­mG2a­f recognized EpCAM­overexpressing CHO­K1 (CHO/EpCAM) cells with a moderate binding­affinity [dissociation constant (KD)=2.2x10­8 M] using flow cytometry. EpMab­37­mG2a­f exhibited potent antibody­dependent cellular cytotoxicity (ADCC) and complement­dependent cytotoxicity (CDC) for CHO/EpCAM cells by murine splenocytes and complements, respectively. Furthermore, the administration of EpMab­37­mG2a­f significantly suppressed CHO/EpCAM xenograft tumor development compared with the control mouse IgG. EpMab­37­mG2a­f also exhibited a moderate binding­affinity (KD=1.5x10­8 M) and high ADCC and CDC activities for a colorectal cancer cell line (Caco­2 cells). The administration of EpMab­37­mG2a­f to Caco­2 tumor­bearing mice significantly suppressed tumor development compared with the control. By contrast, EpMab­37­mG2a­f never suppressed the xenograft tumor growth of Caco­2 cells in which EpCAM was knocked out. On the whole, these results indicate that EpMab­37­mG2a­f may exert antitumor activities against EpCAM­positive cancers and may thus be a promising therapeutic regimen for colorectal cancer.


Subject(s)
Antibodies, Monoclonal , Colorectal Neoplasms , Cricetinae , Humans , Animals , Mice , Antibodies, Monoclonal/therapeutic use , Caco-2 Cells , Heterografts , Epithelial Cell Adhesion Molecule , Cricetulus , Colorectal Neoplasms/drug therapy , Immunoglobulin G , Xenograft Model Antitumor Assays , Cell Line, Tumor
7.
Sci Rep ; 13(1): 774, 2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36641503

ABSTRACT

Treatment of COVID-19 with a soluble version of ACE2 that binds to SARS-CoV-2 virions before they enter host cells is a promising approach, however it needs to be optimized and adapted to emerging viral variants. The computational workflow presented here consists of molecular dynamics simulations for spike RBD-hACE2 binding affinity assessments of multiple spike RBD/hACE2 variants and a novel convolutional neural network architecture working on pairs of voxelized force-fields for efficient search-space reduction. We identified hACE2-Fc K31W and multi-mutation variants as high-affinity candidates, which we validated in vitro with virus neutralization assays. We evaluated binding affinities of these ACE2 variants with the RBDs of Omicron BA.3, Omicron BA.4/BA.5, and Omicron BA.2.75 in silico. In addition, candidates produced in Nicotiana benthamiana, an expression organism for potential large-scale production, showed a 4.6-fold reduction in half-maximal inhibitory concentration (IC50) compared with the same variant produced in CHO cells and an almost six-fold IC50 reduction compared with wild-type hACE2-Fc.


Subject(s)
COVID-19 , Deep Learning , Animals , Cricetinae , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Cricetulus , Molecular Dynamics Simulation , Protein Binding
8.
Cells ; 12(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36611866

ABSTRACT

In phagocytes, cytoskeletal and membrane remodeling is finely regulated at the phagocytic cup. Various smaFll G proteins, including those of the Arf family, control these dynamic processes. Human neutrophils express AGAP2, an Arf GTPase activating protein (ArfGAP) that regulates endosomal trafficking and focal adhesion remodeling. We first examined the impact of AGAP2 on phagocytosis in CHO cells stably expressing the FcγRIIA receptor (CHO-IIA). In unstimulated CHO-IIA cells, AGAP2 only partially co-localized with cytoskeletal elements and intracellular compartments. In CHO-IIA cells, AGAP2 transiently accumulated at actin-rich phagocytic cups and increased Fcγ receptor-mediated phagocytosis. Enhanced phagocytosis was not dependent on the N-terminal GTP-binding protein-like (GLD) domain of AGAP2. AGAP2 deleted of its GTPase-activating protein (GAP) domain was not recruited to phagocytic cups and did not enhance the engulfment of IgG-opsonized beads. However, the GAP-deficient [R618K]AGAP2 transiently localized at the phagocytic cups and enhanced phagocytosis. In PLB-985 cells differentiated towards a neutrophil-like phenotype, silencing of AGAP2 reduced phagocytosis of opsonized zymosan. In human neutrophils, opsonized zymosan or monosodium urate crystals induced AGAP2 phosphorylation. The data indicate that particulate agonists induce AGAP2 phosphorylation in neutrophils. This study highlights the role of AGAP2 and its GAP domain but not GAP activity in FcγR-dependent uptake of opsonized particles.


Subject(s)
Phagocytosis , Receptors, IgG , Animals , Cricetinae , Humans , Cricetulus , GTPase-Activating Proteins/metabolism , Phagocytosis/physiology , Receptors, IgG/metabolism , Signal Transduction , Zymosan , GTP-Binding Proteins/metabolism
9.
Int J Mol Sci ; 24(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36614167

ABSTRACT

Lacticaseibacillus paracasei strain PS23 (PS23) exhibits some probiotic properties. In this study, a genomic analysis of PS23 revealed no genes related to virulence or antibiotic resistance. Moreover, ornithine decarboxylase activity was not detected in vitro. In addition, PS23 was sensitive to the tested antibiotics. Genotoxicity tests for PS23 including the Ames test and chromosomal aberrations in vitro using Chinese hamster ovary cells and micronuclei in immature erythrocytes of ICR mice were all negative. Moreover, following a 28-day study involving repeated oral dose toxicity tests (40, 400, and 4000 mg/kg equal 1.28 × 1010, 1.28 × 1011, and 1.28 × 1012 CFU/kg body weight, respectively) using an ICR mouse model, no adverse effects were observed from any doses. In addition, supplementation with live or heat-killed PS23 ameliorates DSS-induced colonic inflammation in mice. Our findings suggest that PS23 is safe and has anti-inflammatory effects and may therefore have therapeutic implications.


Subject(s)
Cricetinae , Mice , Animals , CHO Cells , Cricetulus , Mice, Inbred ICR , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
10.
Molecules ; 28(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36615612

ABSTRACT

Pain is a common clinical symptom among patients. Although various opioid analgesics have been developed, their side effects hinder their application. This study aimed to develop a novel opioid analgesic, HAGD (H-Tyr-D-AIa-GIy-Phe-NH2), with limited side effects. In vivo studies on mouse models as well as in vitro studies on Chinese hamster ovary (CHO) cells expressing human mu, delta, or kappa opioid receptors (CHOhMOP, CHOhDOP, and CHOhKOP, respectively) and human sperm were conducted. Compared with subcutaneous morphine (10 mg/kg), subcutaneous HAGD (10 mg/kg) produced equipotent or even greater antinociception with a prolonged duration by activating mu/delta opioid receptors in preclinical mouse pain models. The analgesic tolerance, rewarding effects (i.e., conditioned place preference and acute hyperlocomotion), and gastrointestinal transit inhibition of HAGD were significantly reduced compared with those of morphine. Both HAGD and morphine exhibited a withdrawal response and had no impacts on motor coordination. In CHOhMOP and CHOhDOP, HAGD showed specific and efficient intracellular Ca2+ stimulation. HAGD had minimal impact on human sperm motility in vitro, whereas 1 × 10-7 and 1 × 10-8 mol/L of morphine significantly declined sperm motility at 3.5 h. Overall, HAGD may serve as a promising antinociceptive compound.


Subject(s)
Analgesics, Opioid , Drug-Related Side Effects and Adverse Reactions , Cricetinae , Humans , Male , Mice , Animals , Analgesics, Opioid/adverse effects , Receptors, Opioid, delta , CHO Cells , Sperm Motility , Cricetulus , Semen , Morphine/adverse effects , Pain/chemically induced , Pain/drug therapy , Receptors, Opioid, mu/agonists
11.
J Immunother Cancer ; 10(12)2022 12.
Article in English | MEDLINE | ID: mdl-36600560

ABSTRACT

PURPOSE: CD103, an integrin specifically expressed on the surface of cancer-reactive T cells, is significantly increased during successful immunotherapy across human malignancies. In this study, we describe the generation and zirconium-89 (89Zr) radiolabeling of monoclonal antibody (mAb) clones that specifically recognize human CD103 for non-invasive immune positron-emission tomography (PET) imaging of T cell infiltration as potential biomarker for effective anticancer immune responses. EXPERIMENTAL DESIGN: First, to determine the feasibility of anti-CD103 immuno-PET to visualize CD103-positive cells at physiologically and clinically relevant target densities, we developed an 89Zr-anti-murine CD103 PET tracer. Healthy, non-tumor bearing C57BL/6 mice underwent serial PET imaging after intravenous injection, followed by ex vivo biodistribution. Tracer specificity and macroscopic tissue distribution were studied using autoradiography combined with CD103 immunohistochemistry. Next, we generated and screened six unique mAbs that specifically target human CD103 positive cells. Optimal candidates were selected for 89Zr-anti-human CD103 PET development. Nude mice (BALB/cOlaHsd-Foxn1nu) with established CD103 expressing Chinese hamster ovary (CHO) or CHO wild-type xenografts were injected with 89Zr-anti-human CD103 mAbs and underwent serial PET imaging, followed by ex vivo biodistribution. RESULTS: 89Zr-anti-murine CD103 PET imaging identified CD103-positive tissues at clinically relevant target densities. For human anti-human CD103 PET development two clones were selected based on strong binding to the CD103+ CD8+ T cell subpopulation in ovarian cancer tumor digests, non-overlapping binding epitopes and differential CD103 blocking properties. In vivo, both 89Zr-anti-human CD103 tracers showed high target-to-background ratios, high target site selectivity and a high sensitivity in human CD103 positive xenografts. CONCLUSION: CD103 immuno-PET tracers visualize CD103 T cells at relevant densities and are suitable for future non-invasive assessment of cancer reactive T cell infiltration.


Subject(s)
Neoplasms , Positron-Emission Tomography , Humans , Mice , Animals , Cricetinae , Tissue Distribution , Mice, Nude , CHO Cells , Mice, Inbred C57BL , Cricetulus , Positron-Emission Tomography/methods , Antibodies, Monoclonal/metabolism
12.
Bioorg Med Chem Lett ; 80: 129120, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36587872

ABSTRACT

GPR88 is an orphan G protein-coupled receptor which has been implicated in a number of striatal-associated disorders. Herein we describe the synthesis and pharmacological characterization of the first GPR88 radioligand, [3H]RTI-33, derived from a synthetic agonist RTI-13951-33. [3H]RTI-33 has a specific activity of 83.4 Ci/mmol and showed one-site, saturable binding (KD of 85 nM) in membranes prepared from stable PPLS-HA-hGPR88-CHO cells. A competition binding assay was developed to determine binding affinities of several known GPR88 agonists. This radioligand represents a powerful tool for future mechanistic and cell-based ligand-receptor interaction studies of GPR88.


Subject(s)
Carrier Proteins , Receptors, G-Protein-Coupled , Cricetinae , Animals , Cricetulus , Receptors, G-Protein-Coupled/agonists , Radioligand Assay
13.
Water Res ; 230: 119512, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36580801

ABSTRACT

Disinfecting reclaimed water for safe reuse can produce toxic disinfection by-products such as adsorbable organic bromine (AOBr). Irradiating stored reclaimed water with sunlight is a "green" and free method for eliminating some toxic disinfection by-products, but the effects of irradiation with sunlight on ozonated reclaimed water containing bromide are not well understood. In this study, AOBr was found at concentrations of 171-180 (µg Br)/L in ozonated reclaimed water containing bromide at a concentration of 2 (mg Br)/L and dissolved organic carbon at a concentration of ∼5 (mg C)/L. Irradiation with sunlight degraded 53-74% of the AOBr in two reclaimed water samples in 8 h, and the pseudo-first-order rate constants (k) were 0.09-0.17 h-1. The concentration of tribromomethane, a typical Br-containing disinfection by-product, was decreased by >96% by irradiation for 8 h (k = 0.42-0.47 h-1). Irradiation with sunlight decreased the toxicity of ozonated reclaimed water to Chinese hamster ovary cells. Irradiation with sunlight decreased the degree of intracellular oxidative stress and oxidative damage caused by ozonated reclaimed water. Irradiation with sunlight for 8 h decreased cytotoxicity of the ozonated reclaimed water samples by 79% and 65%. The change in AOBr concentration correlated with the change in toxicity (R2=0.69, p<0.05). The relationships between sunlight wavelength and decreases in the AOBr concentration and toxicity were assessed, and it was found that UV in sunlight was predominantly responsible for decreasing the AOBr concentration and toxicity by reclaimed water. During irradiation for 8 h, UV was responsible for 65%-66% of the decrease in the AOBr concentration and 65-79% of the decrease in reclaimed water induced cytotoxicity. Irradiation with sunlight is a promising method for degrading AOBr and detoxifying ozonated reclaimed water during storage to allow the water to be reused.


Subject(s)
Water Pollutants, Chemical , Water Purification , Cricetinae , Animals , Bromine , Water , Sunlight , Bromides , CHO Cells , Cricetulus , Water Pollutants, Chemical/analysis , Disinfection , Water Purification/methods
14.
Front Immunol ; 13: 992062, 2022.
Article in English | MEDLINE | ID: mdl-36569949

ABSTRACT

As the global COVID-19 pandemic continues and new SARS-CoV-2 variants of concern emerge, vaccines remain an important tool for preventing the pandemic. The inactivated or subunit vaccines themselves generally exhibit low immunogenicity, which needs adjuvants to improve the immune response. We previously developed a receptor binding domain (RBD)-targeted and self-assembled nanoparticle to elicit a potent immune response in both mice and rhesus macaques. Herein, we further improved the RBD production in the eukaryote system by in situ Crispr/Cas9-engineered CHO cells. By comparing the immune effects of various Toll-like receptor-targeted adjuvants to enhance nanoparticle vaccine immunization, we found that Pam2CSK4, a TLR2/6 agonist, could mostly increase the titers of antigen-specific neutralizing antibodies and durability in humoral immunity. Remarkably, together with Pam2CSK4, the RBD-based nanoparticle vaccine induced a significant Th1-biased immune response and enhanced the differentiation of both memory T cells and follicular helper T cells. We further found that Pam2CSK4 upregulated migration genes and many genes involved in the activation and proliferation of leukocytes. Our data indicate that Pam2CSK4 targeting TLR2, which has been shown to be effective in tuberculosis vaccines, is the optimal adjuvant for the SARS-CoV-2 nanoparticle vaccine, paving the way for an immediate clinical trial.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , Cricetinae , Toll-Like Receptor 2/genetics , Cricetulus , Macaca mulatta , Pandemics , SARS-CoV-2 , COVID-19/prevention & control , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic , Immunity, Cellular
15.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555495

ABSTRACT

Diosgenin is a botanical steroidal saponin with immunomodulatory, anti-inflammatory, anti-oxidative, anti-thrombotic, anti-apoptotic, anti-depressant, and anti-nociceptive effects. However, the effects of diosgenin on anti-nociception are unclear. Transient receptor potential vanilloid 1 (TRPV1) plays an important role in nociception. Therefore, we investigated whether TRPV1 antagonism mediates the anti-nociceptive effects of diosgenin. In vivo mouse experiments were performed to examine nociception-related behavior, while in vitro experiments were performed to examine calcium currents in dorsal root ganglion (DRG) and Chinese hamster ovary (CHO) cells. The duration of capsaicin-induced licking (pain behavior) was significantly reduced following oral and intraplantar administration of diosgenin, approaching levels observed in mice treated with the TRPV1 antagonist N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl) tetrahydropyrazine-1(2H)-carbox-amide. Additionally, oral administration of diosgenin blocked capsaicin-induced thermal hyperalgesia. Further, diosgenin reduced capsaicin-induced Ca2+ currents in a dose-dependent manner in both DRG and CHO cells. Oral administration of diosgenin also improved thermal and mechanical hyperalgesia in the sciatic nerve constriction injury-induced chronic pain model by reducing the expression of TRPV1 and inflammatory cytokines in DRG cells. Collectively, our results suggest that diosgenin exerts analgesic effects via antagonism of TRPV1 and suppression of inflammation in the DRG in a mouse model of neuropathic pain.


Subject(s)
Analgesics , Diosgenin , Neuralgia , TRPV Cation Channels , Animals , Cricetinae , Mice , Analgesics/pharmacology , Capsaicin/pharmacology , CHO Cells , Cricetulus , Diosgenin/pharmacology , Disease Models, Animal , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/metabolism
16.
Int J Mol Sci ; 23(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36555637

ABSTRACT

The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) exerts effective neuroprotective activity through its specific receptor, PAC1-R. We accidentally discovered that as a positive allosteric modulator (PAM) of PAC1-R, the small-molecule PAM (SPAM1) has a hydrazide-like structure, but different binding characteristics, from hydrazide for the N-terminal extracellular domain of PAC1-R (PAC1-R-EC1). SPAM1 had a significant neuroprotective effect against oxidative stress, both in a cell model treated with hydrogen peroxide (H2O2) and an aging mouse model induced by D-galactose (D-gal). SPAM1 was found to block the decrease in PACAP levels in brain tissues induced by D-gal and significantly induced the nuclear translocation of PAC1-R in PAC1R-CHO cells and mouse retinal ganglion cells. Nuclear PAC1-R was subjected to fragmentation and the nuclear 35 kDa, but not the 15 kDa fragments, of PAC1-R interacted with SP1 to upregulate the expression of Huntingtin (Htt), which then exerted a neuroprotective effect by attenuating the binding availability of the neuron-restrictive silencer factor (NRSF) to the neuron-restrictive silencer element (NRSE). This resulted in an upregulation of the expression of NRSF-related neuropeptides, including PACAP, the brain-derived neurotrophic factor (BDNF), tyrosine hydroxylase (TH), and synapsin-1 (SYN1). The novel mechanism reported in this study indicates that SPAM1 has potential use as a drug, as it exerts a neuroprotective effect by regulating NRSF.


Subject(s)
Neuroprotective Agents , Pituitary Adenylate Cyclase-Activating Polypeptide , Cricetinae , Mice , Animals , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Neuroprotective Agents/pharmacology , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Cricetulus , Hydrogen Peroxide
17.
Int J Mol Sci ; 23(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36555130

ABSTRACT

Compared to transcription initiation, much less is known about transcription termination. In particular, large-scale mutagenesis studies have, so far, primarily concentrated on promoter and enhancer, but not terminator sequences. Here, we used a massively parallel reporter assay (MPRA) to systematically analyze the influence of short (8 bp) sequence variants (mutations) located downstream of the polyadenylation signal (PAS) on the steady-state mRNA level of the upstream gene, employing an eGFP reporter and human HEK293T cells as a model system. In total, we evaluated 227,755 mutations located at different overlapping positions within +17..+56 bp downstream of the PAS for their ability to regulate the reporter gene expression. We found that the positions +17..+44 bp downstream of the PAS are more essential for gene upregulation than those located more distal to the PAS, and that the mutation sequences ensuring high levels of eGFP mRNA expression are extremely T-rich. Next, we validated the positive effect of a couple of mutations identified in the MPRA screening on the eGFP and luciferase protein expression. The most promising mutation increased the expression of the reporter proteins 13-fold and sevenfold on average in HEK293T and CHO cells, respectively. Overall, these findings might be useful for further improving the efficiency of production of therapeutic products, e.g., recombinant antibodies.


Subject(s)
Polyadenylation , Transcription, Genetic , Cricetinae , Animals , Humans , Polyadenylation/genetics , HEK293 Cells , Cricetulus , CHO Cells , RNA, Messenger/genetics , Transgenes
18.
Talanta ; 254: 124187, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36549134

ABSTRACT

The biopharmaceutical industry extensively employs Chinese hamster ovary (CHO) cell culture for monoclonal antibody production. Amino acids represent an essential source of nutrients in all CHO cell culture media, and their concentration is known to significantly impact cell viability, titre, and monoclonal antibody critical quality attributes. In this study, a robust Fourier transform near-infrared spectroscopy (FT-NIR) based quantification method has been developed for of all 20 amino acids (0-24 mM), as well as concentrations of glucose (0-6.7 mg mL-1), lactate (0-2.7 mg mL-1), and trastuzumab (0-2.5 mg mL-1) in the CHO cell culture. Near infra-red absorbance spectrum in the range of 4000-11,000 cm-1 were acquired, and spectra pre-processing through smoothening and derivatives were employed to enhance key characteristic signals. High-performance liquid chromatography with pre-column derivatization was used as the orthogonal analytical tool for quantification. Principal component analysis and partial least squares regression were employed for region selection and calibration model development, respectively. The results demonstrate that a good calibration statistic with the acceptable coefficient of determinations for both calibration (Rc2 = 0.94-0.99) and prediction (Rp2 = 0.83-0.98) could be achieved, along with high RPD values (>3) for all components except alanine (2.4). The external validation study also exhibited a satisfactory outcome (REV2 = 0.89-0.99, RMSE = 0.04-1.04), validating the model's ability to predict the concentrations of the respective species. The calibration models were successfully applied for at-line monitoring of two perfusion runs on a 10 L scale. To our knowledge, this is the first application where NIR spectroscopy-based measurement of all 20 amino acids in mammalian cell culture samples has been demonstrated. The proposed tool can play a critical role as biopharma manufacturers implement continuous processing as well as for facilitating process analytical technology-based control of mammalian cell culture processes.


Subject(s)
Amino Acids , Spectroscopy, Near-Infrared , Cricetinae , Animals , CHO Cells , Spectroscopy, Near-Infrared/methods , Cricetulus , Cell Culture Techniques/methods , Least-Squares Analysis , Antibodies, Monoclonal , Calibration
19.
Biotechnol Prog ; 38(6): e3290, 2022 11.
Article in English | MEDLINE | ID: mdl-36537257

ABSTRACT

Antigen binding fragments (Fab) are a promising class of therapeutics as they maintain high potency while having significantly smaller size relative to full-length antibodies. Because Fab molecules are aglycosylated, many expression platforms, including prokaryotic, yeast, and mammalian cells, have been developed for their expression, with Escherichia coli being the most commonly used Fab expression system. In this study, we have examined production of a difficult to express Fab molecule in a targeted integration (TI) Chinese Hamster Ovary (CHO) host. Without a need for extensive host or process optimization, as is usually required for E. coli, by simply using different vector configurations, clones with very high Fab expression titers were obtained. In this case, by increasing heavy chain (HC) gene copy numbers, clones with titers of up to 7.4 g/L in the standard fed-batch production culture were obtained. Our findings suggest that having a predetermined transgene integration site, as well as the option to optimize gene copy number/dosage, makes CHO TI hosts an effective system for expression of Fab molecules, allowing Fab expression using platform process and without significant process development efforts.


Subject(s)
Immunoglobulin Fab Fragments , Recombinant Proteins , Animals , Cricetinae , CHO Cells , Cricetulus , Gene Dosage , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin Fab Fragments/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Transgenes
20.
Appl Microbiol Biotechnol ; 107(2-3): 769-783, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36536089

ABSTRACT

Recombinant Chinese hamster ovary (CHO) cell line development for complex biotherapeutic production is conventionally based on the random integration (RI) approach. Due to the lack of control over the integration site and copy number, RI-generated cell pools are always coupled with rigorous screening to find clones that satisfy requirements for production titers, quality, and stability. Targeted integration into a well-defined genomic site has been suggested as a possible strategy to mitigate the drawbacks associated with RI. In this work, we employed the CRISPR-mediated precise integration into target chromosome (CRIS-PITCh) system in combination with the Bxb1 recombinase-mediated cassette exchange (RMCE) system to generate an isogenic transgene-expressing cell line. We successfully utilized the CRIS-PITCh system to target a 2.6 kb Bxb1 landing pad with homology arms as short as 30 bp into the upstream region of the S100A gene cluster, achieving a targeting efficiency of 10.4%. The platform cell line (PCL) with a single copy of the landing pad was then employed for the Bxb1-mediated landing pad exchange with an EGFP encoding cassette to prove its functionality. Finally, to accomplish the main goal of our cell line development method, the PCL was applied for the expression of a secretory glycoprotein, human recombinant soluble angiotensin-converting enzyme 2 (hrsACE2). Taken together, on-target, single-copy, and stable expression of the transgene over long-term cultivation demonstrated our CRIS-PITCh/RMCE hybrid approach might possibly improve the cell line development process in terms of timeline, specificity, and stability. KEY POINTS: • CRIS-PITCh system is an efficient method for single copy targeted integration of the landing pad and generation of platform cell line • Upstream region of the S100A gene cluster of CHO-K1 is retargetable by recombinase-mediated cassette exchange (RMCE) approach and provides a stable expression of the transgene • CRIS-PITCh/Bxb1 RMCE hybrid system has the potential to overcome some limitations of the random integration approach and accelerate the cell line development timeline.


Subject(s)
Genome , Recombinases , Cricetinae , Animals , Humans , CHO Cells , Cricetulus , Recombinases/genetics , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL