Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
APMIS ; 130(6): 330-337, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1784596

ABSTRACT

Acinetobacter baumannii is known to be an opportunistic pathogen frequently responsible for outbreaks in health-care facilities, particularly in Intensive Care Units (ICU). It can easily survive in the hospital setting for long periods and can be transmitted throughout the hospital in a variety of ways, explored in this review. It can also easily acquire antibiotic resistance determinants rendering several antibiotic drugs useless. In 2019, the US Centre for Disease Control (CDC) considered the organism as an urgent threat. The aim of this review was to raise the awareness of the medical community about the relevance of this pathogen and discuss how it may impact seriously the healthcare institutions particularly in the aftermath of the recent COVID-19 pandemic. PubMed was searched, and articles that met inclusion criteria were reviewed. We conclude by the need to raise awareness to this pathogen's relevance and to encourage the implementation of preventive measures in order to mitigate its consequences namely the triage of specific high-risk patients.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , COVID-19 , Cross Infection , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , Acinetobacter Infections/prevention & control , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , Cross Infection/drug therapy , Cross Infection/epidemiology , Cross Infection/prevention & control , Disease Outbreaks/prevention & control , Drug Resistance, Multiple, Bacterial , Humans , Intensive Care Units , Pandemics/prevention & control
2.
J Infect Chemother ; 28(7): 902-906, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1747792

ABSTRACT

INTRODUCTION: The objective of this study was to clarify the clinical differences between nursing and healthcare-associated pneumonia (NHCAP) and community-acquired pneumonia (CAP) due to COVID-19. We also investigated the clinical characteristics to determine whether there is a difference between the variant and non-variant strain in patients with NHCAP due to COVID-19. In addition, we analyzed the clinical outcomes in NHCAP patients with mental disorders who were hospitalized in a medical institution for treatment of mental illness. METHODS: This study was conducted at five institutions and assessed a total of 836 patients with COVID-19 pneumonia (154 cases were classified as NHCAP and 335 had lineage B.1.1.7.). RESULTS: No differences in patient background, clinical findings, disease severity, or outcomes were observed in patients with NHCAP between the non-B.1.1.7 group and B.1.1.7 group. The median age, frequency of comorbid illness, rates of intensive care unit stay, and mortality rate were significantly higher in patients with NHCAP than in those with CAP. Among the patients with NHCAP, the mortality rate was highest at 37.5% in patients with recent cancer treatment, followed by elderly or disabled patients receiving nursing care (24.3%), residents of care facilities (23.0%), patients receiving dialysis (13.6%), and patients in mental hospitals (9.4%). CONCLUSIONS: Our results demonstrated that there were many differences in the clinical characteristics between NHCAP patients and CAP patients due to COVID-19. It is necessary to consider the prevention and treatment content depending on the presence or absence of applicable criteria for NHCAP.


Subject(s)
COVID-19 , Community-Acquired Infections , Cross Infection , Healthcare-Associated Pneumonia , Pneumonia , Aged , Community-Acquired Infections/drug therapy , Cross Infection/drug therapy , Humans , SARS-CoV-2
3.
Euro Surveill ; 26(27)2021 07.
Article in English | MEDLINE | ID: covidwho-1577032

ABSTRACT

BackgroundInfluenza virus presents a considerable challenge to public health by causing seasonal epidemics and occasional pandemics. Nanopore metagenomic sequencing has the potential to be deployed for near-patient testing, providing rapid infection diagnosis, rationalising antimicrobial therapy, and supporting infection-control interventions.AimTo evaluate the applicability of this sequencing approach as a routine laboratory test for influenza in clinical settings.MethodsWe conducted Oxford Nanopore Technologies (Oxford, United Kingdom (UK)) metagenomic sequencing for 180 respiratory samples from a UK hospital during the 2018/19 influenza season, and compared results to routine molecular diagnostic standards (Xpert Xpress Flu/RSV assay; BioFire FilmArray Respiratory Panel 2 assay). We investigated drug resistance, genetic diversity, and nosocomial transmission using influenza sequence data.ResultsCompared to standard testing, Nanopore metagenomic sequencing was 83% (75/90) sensitive and 93% (84/90) specific for detecting influenza A viruses. Of 59 samples with haemagglutinin subtype determined, 40 were H1 and 19 H3. We identified an influenza A(H3N2) genome encoding the oseltamivir resistance S331R mutation in neuraminidase, potentially associated with an emerging distinct intra-subtype reassortant. Whole genome phylogeny refuted suspicions of a transmission cluster in a ward, but identified two other clusters that likely reflected nosocomial transmission, associated with a predominant community-circulating strain. We also detected other potentially pathogenic viruses and bacteria from the metagenome.ConclusionNanopore metagenomic sequencing can detect the emergence of novel variants and drug resistance, providing timely insights into antimicrobial stewardship and vaccine design. Full genome generation can help investigate and manage nosocomial outbreaks.


Subject(s)
Cross Infection , Influenza, Human , Nanopores , Antiviral Agents/therapeutic use , Cross Infection/diagnosis , Cross Infection/drug therapy , Drug Resistance , Drug Resistance, Viral/genetics , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Metagenome , Neuraminidase/genetics , Seasons , United Kingdom
4.
Int J Infect Dis ; 114: 90-96, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1474624

ABSTRACT

OBJECTIVES: This study measured the impact of the first wave of COVID-19 pandemic (COVID-19) (March-April 2020) on the incidence of bloodstream infections (BSIs) at Assistance Publique - Hôpitaux de Paris (APHP), the largest multisite public healthcare institution in France. METHODS: The number of patient admission blood cultures (BCs) collected, number of positive BCs, and antibiotic resistance and consumption were analysed retrospectively for the first quarter of 2020, and also for the first quarter of 2019 for comparison, in 25 APHP hospitals (ca. 14 000 beds). RESULTS: Up to a fourth of patients admitted in March-April 2020 in these hospitals had COVID-19. The BSI rate per 100 admissions increased overall by 24% in March 2020 and 115% in April 2020, and separately for the major pathogens (Escherichia coli, Klebsiella pneumoniae, enterococci, Staphylococcus aureus, Pseudomonas aeruginosa, yeasts). A sharp increase in the rate of BSIs caused by microorganisms resistant to third-generation cephalosporins (3GC) was also observed in March-April 2020, particularly in K. pneumoniae, enterobacterial species naturally producing inducible AmpC (Enterobacter cloacae...), and P. aeruginosa. A concomitant increase in 3GC consumption occurred. CONCLUSIONS: The COVID-19 pandemic had a strong impact on hospital management and also unfavourable effects on severe infections, antimicrobial resistance, and laboratory work diagnostics.


Subject(s)
Bacteremia , COVID-19 , Cross Infection , Sepsis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Bacteremia/epidemiology , Cross Infection/drug therapy , Cross Infection/epidemiology , Drug Resistance, Bacterial , Humans , Pandemics , Retrospective Studies , SARS-CoV-2 , Sepsis/drug therapy
5.
Int J Antimicrob Agents ; 58(6): 106453, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1466380

ABSTRACT

OBJECTIVES: This retrospective cohort study examined the impact of the pandemic on antimicrobial use (AU) in South Carolina hospitals. METHODS: Antimicrobial use in days of therapy (DOT) per 1000 days-present was evaluated in 17 hospitals in South Carolina. Matched-pairs mean difference was used to compare AU during the pandemic (March-June 2020) with that during the same months in 2019 in hospitals that did and did not admit patients with COVID-19. RESULTS: There was a 6.6% increase in overall AU in the seven hospitals that admitted patients with COVID-19 (from 530.9 to 565.8; mean difference (MD) 34.9 DOT/1000 days-present; 95% CI 4.3, 65.6; P = 0.03). There was no significant change in overall AU in the remaining 10 hospitals that did not admit patients with COVID-19 (MD 6.0 DOT/1000 days-present; 95% CI -55.5, 67.6; P = 0.83). Most of the increase in AU in the seven hospitals that admitted patients with COVID-19 was observed in broad-spectrum antimicrobial agents. A 16.4% increase was observed in agents predominantly used for hospital-onset infections (from 122.3 to 142.5; MD 20.1 DOT/1000 days-present; 95% CI 11.1, 29.1; P = 0.002). There was also a 9.9% increase in the use of anti-methicillin-resistant Staphylococcus aureus (MRSA) agents (from 66.7 to 73.3; MD 6.6 DOT/1000 days-present; 95% CI 2.3, 10.8; P = 0.01). CONCLUSION: The COVID-19 pandemic appears to drive overall and broad-spectrum antimicrobial use in South Carolina hospitals admitting patients with COVID-19. Additional antimicrobial stewardship resources are needed to curtail excessive antimicrobial use in hospitals to prevent subsequent increases in antimicrobial resistance and Clostridioides difficile infection rates, given the continuing nature of the pandemic.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Cross Infection/drug therapy , Drug Utilization Review/statistics & numerical data , Pandemics , Antimicrobial Stewardship , COVID-19 , Clostridium Infections/drug therapy , Hospitals , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Retrospective Studies , SARS-CoV-2 , South Carolina
6.
Ann Clin Microbiol Antimicrob ; 20(1): 69, 2021 Sep 25.
Article in English | MEDLINE | ID: covidwho-1438275

ABSTRACT

BACKGROUND: Coronavirus SARS-CoV-2 causes COVID-19 illness which can progress to severe pneumonia. Empiric antibacterials are often employed though frequency of bacterial coinfection superinfection is debated and concerns raised about selection of bacterial antimicrobial resistance. We evaluated sputum bacterial and fungal growth from 165 intubated COVID-19 pneumonia patients. Objectives were to determine frequency of culture positivity, risk factors for and outcomes of positive cultures, and timing of antimicrobial resistance development. METHODS: Retrospective reviews were conducted of COVID-19 pneumonia patients requiring intubation admitted to a 1058-bed four community hospital system on the east coast United States, March 1 to May 1, 2020. Length of stay (LOS) was expressed as mean (standard deviation); 95% confidence interval (95% CI) was computed for overall mortality rate using the exact binomial method, and overall mortality was compared across each level of a potential risk factor using a Chi-Square Test of Independence. All tests were two-sided, and significance level was set to 0.05. RESULTS: Average patient age was 68.7 years and LOS 19.9 days. Eighty-three patients (50.3% of total) originated from home, 10 from group homes (6.1% of total), and 72 from nursing facilities (43.6% of total). Mortality was 62.4%, highest for nursing home residents (80.6%). Findings from 253 sputum cultures overall did not suggest acute bacterial or fungal infection in 73 (45%) of 165 individuals sampled within 24 h of intubation. Cultures ≥ 1 week following intubation did grow potential pathogens in 72 (64.9%) of 111 cases with 70.8% consistent with late pneumonia and 29.2% suggesting colonization. Twelve (10.8% of total) of these late post-intubation cultures revealed worsened antimicrobial resistance predominantly in Pseudomonas, Enterobacter, or Staphylococcus aureus. CONCLUSIONS: In severe COVID-19 pneumonia, a radiographic ground glass interstitial pattern and lack of purulent sputum prior to/around the time of intubation correlated with no culture growth or recovery of normal oral flora ± yeast. Discontinuation of empiric antibacterials should be considered in these patients aided by other clinical findings, history of prior antimicrobials, laboratory testing, and overall clinical course. Continuing longterm hospitalisation and antibiotics are associated with sputum cultures reflective of hospital-acquired microbes and increasing antimicrobial resistance. TRIAL REGISTRATION: Not applicable as this was a retrospective chart review study without interventional arm.


Subject(s)
Bacteria/drug effects , Bacterial Infections/complications , COVID-19/therapy , Cross Infection/complications , Fungi/drug effects , Mycoses/complications , Pneumonia/therapy , Sputum/microbiology , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents , Anti-Infective Agents/pharmacology , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , COVID-19/complications , COVID-19/mortality , COVID-19/virology , Cross Infection/drug therapy , Cross Infection/microbiology , Drug Resistance, Bacterial , Drug Resistance, Multiple, Fungal , Female , Fungi/genetics , Fungi/isolation & purification , Hospitalization , Humans , Intubation , Length of Stay , Male , Middle Aged , Mycoses/microbiology , Pneumonia/complications , Pneumonia/mortality , Pneumonia/virology , Retrospective Studies , SARS-CoV-2/physiology
7.
Am J Infect Control ; 50(1): 32-38, 2022 01.
Article in English | MEDLINE | ID: covidwho-1432734

ABSTRACT

BACKGROUND: The impact of COVID-19 on healthcare- associated infections (HCAI) caused by multidrug-resistant (MDR) bacteria that contribute to higher mortality is a growing area of study METHODS: This retrospective observational study compares the incidence density (ID) of HCAI caused by MDR bacteria (CRE, CRAB, CRP, MRSA and VRE) pre-COVID (2017-2019) and during the COVID-19 pandemic (2020) in overall hospitalized patients and in intensive care (ICU) units. RESULTS: We identified 8,869 HCAI, of which 2,641 (29.7%) were caused by bacterial MDR, and 1,257 (14.1%) were from ICUs. The overall ID of MDR infections increased 23% (P < .005) during COVID-19. The overall per-pathogen analysis shows significant increases in infections by CRAB and MRSA (+108.1%, p<0.005; +94.7%, p<0.005, respectively), but not in CRE, CRP, or VRE. In the ICU, the overall ID of MDR infections decreased during COVID, but that decline was not significant (-6.5%, P = .26). The ICU per-pathogen analysis of ID of infection showed significant increases in CRAB and MRSA (+42.0%, P = .001; +46.2%, P = .04), significant decreases in CRE and CRP (-26.4%, P = .002; -44.2%, P = 0.003, respectively) and no change in VRE. CONCLUSIONS: The COVID-19 pandemic correlates to an increase in ID of CRAB and MRSA both in ICU and non-ICU setting, and a decrease in ID of CRE and CRP in the ICU setting. Infection control teams should be aware of possible outbreaks of CRAB and MRSA and promote rigorous adherence to infection control measures as practices change to accommodate changes in healthcare needs during and after the pandemic.


Subject(s)
Bacterial Infections , COVID-19 , Cross Infection , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/epidemiology , Brazil/epidemiology , Cross Infection/drug therapy , Cross Infection/epidemiology , Drug Resistance, Multiple, Bacterial , Hospitals , Humans , Incidence , Intensive Care Units , Pandemics , SARS-CoV-2 , Staphylococcal Infections/epidemiology
8.
J Hosp Infect ; 116: 78-86, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1404776

ABSTRACT

AIM: To describe the nosocomial transmission of Air, multidrug-resistant, Acinetobacter baumannii, nosocomial, COVID-19 Acinetobacter baumannii (MRAB) in an open-cubicle neurology ward with low ceiling height, where MRAB isolates collected from air, commonly shared items, non-reachable high-level surfaces and patients were analysed epidemiologically and genetically by whole-genome sequencing. This is the first study to understand the genetic relatedness of air, environmental and clinical isolates of MRAB in the outbreak setting. FINDINGS: Of 11 highly care-dependent patients with 363 MRAB colonization days during COVID-19 pandemic, 10 (90.9%) and nine (81.8%) had cutaneous and gastrointestinal colonization, respectively. Of 160 environmental and air samples, 31 (19.4%) were MRAB-positive. The proportion of MRAB-contaminated commonly shared items was significantly lower in cohort than in non-cohort patient care (0/10, 0% vs 12/18, 66.7%; P<0.001). Air dispersal of MRAB was consistently detected during but not before diaper change in the cohort cubicle by 25-min air sampling (4/4,100% vs 0/4, 0%; P=0.029). The settle plate method revealed MRAB in two samples during diaper change. The proportion of MRAB-contaminated exhaust air grills was significantly higher when the cohort cubicle was occupied by six MRAB patients than when fewer than six patients were cared for in the cubicle (5/9, 55.6% vs 0/18, 0%; P=0.002). The proportion of MRAB-contaminated non-reachable high-level surfaces was also significantly higher when there were three or more MRAB patients in the cohort cubicle (8/31, 25.8% vs 0/24, 0%; P=0.016). Whole-genome sequencing revealed clonality of air, environment, and patients' isolates, suggestive of air dispersal of MRAB. CONCLUSIONS: Our findings support the view that patient cohorting in enclosed cubicles with partitions and a closed door is preferred if single rooms are not available.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , COVID-19 , Cross Infection , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cross Infection/drug therapy , Cross Infection/epidemiology , Drug Resistance, Multiple, Bacterial , Humans , Microbial Sensitivity Tests , Pandemics , SARS-CoV-2
9.
Medicina (Kaunas) ; 57(5)2021 Apr 28.
Article in English | MEDLINE | ID: covidwho-1389438

ABSTRACT

Carbapenem-resistant Enterobacteriaceae (CRE) are a serious public health threat. Infections due to these organisms are associated with significant morbidity and mortality. Among them, metallo-ß-lactamases (MBLs)-producing Klebsiella pneumoniae are of global concern today. The ceftazidime/avibactam combination and the ceftazidime/avibactam + aztreonam combination currently represent the most promising antibiotic strategies to stave off these kinds of infections. We describe the case of a patient affected by thrombotic thrombocytopenic purpura (TTP) admitted in our ICU after developing a hospital-acquired SarsCoV2 interstitial pneumonia during his stay in the hematology department. His medical conditions during his ICU stay were further complicated by a K. Pneumoniae NDM sepsis. To our knowledge, the patient had no risk factors for multidrug-resistant bacteria exposure or contamination during his stay in the hematology department. During his stay in the ICU, we treated the sepsis with a combination therapy of ceftazidime/avibactam + aztreonam. The therapy solved his septic state, allowing for a progressive improvement in his general condition. Moreover, we noticed that the negativization of the hemocultures was also associated to a decontamination of his known rectal colonization. The ceftazidime/avibactam + aztreonam treatment could not only be a valid therapeutic option for these kinds of infections, but it could also be considered as a useful tool in selected patients' intestinal decolonizations.


Subject(s)
COVID-19 , Cross Infection , Purpura, Thrombotic Thrombocytopenic , Sepsis , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/therapeutic use , Aztreonam/therapeutic use , Ceftazidime/therapeutic use , Cross Infection/drug therapy , Drug Combinations , Humans , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Purpura, Thrombotic Thrombocytopenic/drug therapy , RNA, Viral , SARS-CoV-2 , Sepsis/drug therapy , beta-Lactamases
10.
Ann Palliat Med ; 10(8): 8557-8570, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1353025

ABSTRACT

BACKGROUND: Since 2020 COVID-19 pandemic became an emergent public sanitary incident. The epidemiology data and the impact on prognosis of secondary infection in severe and critical COVID-19 patients in China remained largely unclear. METHODS: We retrospectively reviewed medical records of all adult patients with laboratory-confirmed COVID-19 who were admitted to ICUs from January 18th 2020 to April 26th 2020 at two hospitals in Wuhan, China and one hospital in Guangzhou, China. We measured the frequency of bacteria and fungi cultured from respiratory tract, blood and other body fluid specimens. The risk factors for and impact of secondary infection on clinical outcomes were also assessed. RESULTS: Secondary infections were very common (86.6%) when patients were admitted to ICU for >72 hours. The majority of infections were respiratory, with the most common organisms being Klebsiella pneumoniae (24.5%), Acinetobacter baumannii (21.8%), Stenotrophomonas maltophilia (9.9%), Candida albicans (6.8%), and Pseudomonas spp. (4.8%). Furthermore, the proportions of multidrug resistant (MDR) bacteria and carbapenem resistant Enterobacteriaceae (CRE) were high. We also found that age ≥60 years and mechanical ventilation ≥13 days independently increased the likelihood of secondary infection. Finally, patients with positive cultures had reduced ventilator free days in 28 days and patients with CRE and/or MDR bacteria positivity showed lower 28-day survival rate. CONCLUSIONS: In a retrospective cohort of severe and critical COVID-19 patients admitted to ICUs in China, the prevalence of secondary infection was high, especially with CRE and MDR bacteria, resulting in poor clinical outcomes.


Subject(s)
COVID-19 , Coinfection , Cross Infection , Adult , Anti-Bacterial Agents/therapeutic use , Coinfection/drug therapy , Cross Infection/drug therapy , Cross Infection/epidemiology , Humans , Middle Aged , Pandemics , Retrospective Studies , SARS-CoV-2
11.
Clin Microbiol Infect ; 27(11): 1685-1692, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1345291

ABSTRACT

OBJECTIVES: The effect of the use of immunomodulatory drugs on the risk of developing hospital-acquired bloodstream infection (BSI) in patients with COVID-19 has not been specifically assessed. We aim to identify risk factors for, and outcomes of, BSI among hospitalized patients with severe COVID-19 pneumonia. METHODS: We performed a severity matched case-control study (1:1 ratio) nested in a large multicentre prospective cohort of hospitalized adults with COVID-19. Cases with BSI were identified from the cohort database. Controls were matched for age, sex and acute respiratory distress syndrome. A Cox proportional hazard ratio model was performed. RESULTS: Of 2005 patients, 100 (4.98%) presented 142 episodes of BSI, mainly caused by coagulase-negative staphylococci, Enterococcus faecalis and Pseudomonas aeruginosa. Polymicrobial infection accounted for 23 episodes. The median time from admission to the first episode of BSI was 15 days (IQR 9-20), and the most frequent source was catheter-related infection. The characteristics of patients with and without BSI were similar, including the use of tocilizumab, corticosteroids, and combinations. In the multivariate analysis, the use of these immunomodulatory drugs was not associated with an increased risk of BSI. A Cox proportional hazard ratio (HR) model showed that after adjusting for the time factor, BSI was associated with a higher in-hospital mortality risk (HR 2.59; 1.65-4.07; p < 0.001). DISCUSSION: Hospital-acquired BSI in patients with severe COVID-19 pneumonia was uncommon and the use of immunomodulatory drugs was not associated with its development. When adjusting for the time factor, BSI was associated with a higher mortality risk.


Subject(s)
Bacteremia , COVID-19 , Cross Infection , Immunomodulation , Adult , Bacteremia/drug therapy , Bacteremia/epidemiology , COVID-19/drug therapy , COVID-19/epidemiology , Case-Control Studies , Cross Infection/drug therapy , Cross Infection/epidemiology , Hospitals , Humans , Prospective Studies , Risk Factors , Spain/epidemiology
12.
Curr Opin Infect Dis ; 34(4): 365-371, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1341151

ABSTRACT

PURPOSE OF REVIEW: The coronavirus disease (COVID-19) pandemic has resulted in necessary modifications of infection control policies and practices in acute healthcare facilities globally. This is often accompanied by infrastructure modifications, ward redesignations, as well as healthcare staff redeployments and changes to infection prevention and control (IPC) practices. We review the potential for both negative and positive impacts these major changes can have on nosocomial transmission of multidrug-resistant organisms (MDROs). RECENT FINDINGS: Healthcare facilities around the world have reported outbreaks of MDROs during the COVID-19 pandemic. In contrast some centres have reported a decrease in baseline rates due to a number of possible factors. SUMMARY: While implementing crucial preventive measures for COVID-19, is it important to consider any collateral effects of changes in IPC and antimicrobial stewardship program (ASP) practices. The disruption caused to IPC and ASP practices during the pandemic are likely to see a counter intuitive increase in transmission of MDROs.


Subject(s)
COVID-19/epidemiology , Cross Infection/epidemiology , Cross Infection/etiology , Cross Infection/transmission , Drug Resistance, Microbial , Drug Resistance, Multiple , SARS-CoV-2 , Acute Disease , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Cross Infection/drug therapy , Disease Outbreaks , Hospitals , Humans , Infection Control/methods , Pandemics , Public Health Surveillance
13.
Int J Clin Pract ; 75(8): e14324, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1338805

ABSTRACT

AIM: To analyze developing infections after living donor hepatectomy (LDH) in living liver donors (LLDs). METHODS: Demographic and clinical characteristics of 1106 LLDs were retrospectively analyzed in terms of whether postoperative infection development. Therefore, LLDs were divided into two groups: with (n = 190) and without (n = 916) antimicrobial agent use. RESULTS: The median age was 29.5 (min-max: 18-55). A total of 257 (23.2%) infection attacks (min-max: 1-8) was developed in 190 (17.2%) LLDs. The patients with the infection that were longer intensive care unit (ICU) and hospital stays, higher hospital admissions, emergency transplantation, invasive procedures for ERCP, PTC biloma, and abscess drainage, and the presence of relaparatomies and transcystic catheters. Infection attacks are derived from a 58.3% hepatobiliary system, 13.2% urinary system, 6.6% surgical site, and 5.8% respiratory system. The most common onset symptoms were fever, abdominal pain, nausea, and vomiting. A total of 125 positive results was detected from 77 patients with culture positivity. The most detected microorganisms from the cultures taken are Extended-Spectrum ß-lactamases (ESBL) producing Klebsiella pneumonia (16.8%) and Escherichia coli (16%), Methicillin-Resistant Staphylococcus aureus [(MRSA) (9.6%)], Methicillin-susceptible S aureus [(MSSA) (9.6%)], and Pseudomonas aeruginosa (8.8%), respectively. The average number of ICU hospitalization days was 3 ± 2 (min 1-max 30, IQR:1) and hospitalization days was 14 ± 12 (min 3-max 138, IQR: 8). All infection attacks were successfully treated. No patients died because of infection or another surgical complication. CONCLUSION: Infections commonly observed infected biloma, cholangitis, and abscess arising from the biliary system and other nosocomial infections are the feared complications in LLDs. These infections should be managed multidisciplinary without delay and carefully.


Subject(s)
Cross Infection , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Adult , Anti-Bacterial Agents/therapeutic use , Cross Infection/drug therapy , Humans , Liver , Living Donors , Retrospective Studies , Staphylococcal Infections/drug therapy
14.
Int J Antimicrob Agents ; 58(4): 106409, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1330851

ABSTRACT

Since the start of the COVID-19 pandemic, there has been concern about the concomitant rise of antimicrobial resistance. While bacterial co-infections seem rare in COVID-19 patients admitted to hospital wards and intensive care units (ICUs), an increase in empirical antibiotic use has been described. In the ICU setting, where antibiotics are already abundantly-and often inappropriately-prescribed, the need for an ICU-specific antimicrobial stewardship programme is widely advocated. Apart from essentially warning against the use of antibacterial drugs for the treatment of a viral infection, other aspects of ICU antimicrobial stewardship need to be considered in view of the clinical course and characteristics of COVID-19. First, the distinction between infectious and non-infectious (inflammatory) causes of respiratory deterioration during an ICU stay is difficult, and the much-debated relevance of fungal and viral co-infections adds to the complexity of empirical antimicrobial prescribing. Biomarkers such as procalcitonin for the decision to start antibacterial therapy for ICU nosocomial infections seem to be more promising in COVID-19 than non-COVID-19 patients. In COVID-19 patients, cytomegalovirus reactivation is an important factor to consider when assessing patients infected with SARS-CoV-2 as it may have a role in modulating the patient immune response. The diagnosis of COVID-19-associated invasive aspergillosis is challenging because of the lack of sensitivity and specificity of the available tests. Furthermore, altered pharmacokinetic/pharmacodynamic properties need to be taken into account when prescribing antimicrobial therapy. Future research should now further explore the 'known unknowns', ideally with robust prospective study designs.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antimicrobial Stewardship/methods , COVID-19 , Cross Infection/diagnosis , Anti-Bacterial Agents/pharmacokinetics , Antimicrobial Stewardship/organization & administration , Biomarkers/analysis , COVID-19/drug therapy , Coinfection/drug therapy , Coinfection/microbiology , Cross Infection/drug therapy , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Virus Activation/drug effects
15.
Infection ; 49(6): 1313-1318, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1303394

ABSTRACT

Additional treatment options for coronavirus disease (COVID-19) are urgently needed, particularly for populations at high risk of severe disease. This cross-sectional, retrospective study characterized the outcomes of 43 patients with nosocomial severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection with and without treatment using monoclonal SARS-CoV-2 spike antibodies (bamlanivimab or casirivimab/imdevimab). Our results indicate that treatment with monoclonal antibodies results in a significant decrease in disease progression and mortality when used for asymptomatic patients with early SARS-CoV-2 infection.


Subject(s)
COVID-19 , Cross Infection , Antibodies, Monoclonal/therapeutic use , Cross Infection/drug therapy , Cross-Sectional Studies , Germany , Humans , Retrospective Studies , SARS-CoV-2 , Tertiary Care Centers
16.
Diagn Microbiol Infect Dis ; 101(3): 115477, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1293714

ABSTRACT

The aim of this study is to review bacterial isolates from respiratory samples of patients with severe COVID-19 disease during the first 2 months of the first wave in our hospital. A single-center retrospective observational study in critically ill adult patients was performed. A total of 1251 respiratory samples from 1195 patients were processed. Samples from 66 patients (5.52%) were determined to be microbiologically significant by a semi-quantitative culture. All patients received broad spectrum antibiotherapy as an empirical treatment. The isolated bacteria were mainly Enterobacterales followed by Staphylococcus aureus and Pseudomonas aeruginosa. Bacterial co-infections in ICU stay could seem not dependent on the virus that has produced the viral pneumonia similarly as with other respiratory viruses such as Influenza virus.


Subject(s)
COVID-19/complications , Coinfection/diagnosis , Pneumonia, Bacterial/complications , Tertiary Care Centers , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Cross Infection/drug therapy , Cross Infection/microbiology , Female , Humans , Intensive Care Units , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2
17.
Infection ; 50(1): 83-92, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1281346

ABSTRACT

OBJECTIVES: Superinfections in patients hospitalized in intensive care unit (ICU) are an important and challenging complication, also in COVID-19. However, no definitive data are available about the role of multidrug-resistant Acinetobacter baumannii (MDR-AB) in COVID-19. METHODS: This was a single-center, cross-sectional study including patients with MDR-AB infections admitted to ICU with or without COVID-19, between January 2019 and January 2021. The primary objective of the study was to evaluate risk factor for MDR-AB infections in ICU patients hospitalized for COVID-19 or other etiology. The secondary endpoints were 30-days mortality in all study population and risk factors associated with development of bloodstream infection (BSI). RESULTS: During the study period 32 adults with COVID-19 were enrolled and compared with 115 patients admitted in the same ICU for other reasons. We observed a total of 114 deaths, with a survival rate of 29.3%: 18.8% in COVID-19 and 32.2% in control group. Relative risk for MDR-AB infection in COVID-19 showed that serum lactate levels mmol/l > 2, Acinetobacter baumannii colonization, BSI and steroid therapy were observed more frequently in COVID-19 patients. Cox regression analysis showed that serum lactate levels > 2 mmol/l, Acinetobacter baumannii colonization, BSI, and steroid therapy were associated with 30-days mortality. Finally, patients with COVID-19, white blood cells count > 11,000 mm3, serum lactate levels > 2 mmol/l, infections at time of ICU admission, Acinetobacter baumannii colonization, and steroid therapy were independently associated with development of BSI. CONCLUSIONS: Our data highlight the impact of BSI on outcome, the role of Acinetobacter baumannii colonization and the use of steroids on the risk to develop MDR-AB infections also during COVID-19.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , COVID-19 , Cross Infection , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cross Infection/drug therapy , Cross Infection/epidemiology , Cross-Sectional Studies , Drug Resistance, Multiple, Bacterial , Humans , Intensive Care Units , Risk Factors , SARS-CoV-2
18.
Am J Infect Control ; 49(6): 792-799, 2021 06.
Article in English | MEDLINE | ID: covidwho-1269213

ABSTRACT

BACKGROUND: Antibiotic-resistant Acinetobacter species are a growing public health threat, yet are not nationally notifiable, and most states do not mandate reporting. Additionally, there are no standardized methods to detect Acinetobacter species colonization. METHODS: An outbreak of carbapenem-resistant Acinetobacter baumannii (CRAB) was identified at a Utah ventilator unit in a skilled nursing facility. An investigation was conducted to identify transmission modes in order to control spread of CRAB. Culture-based methods were used to identify patient colonization and environmental contamination in the facility. RESULTS: Of the 47 patients screened, OXA-23-producing CRAB were detected in 10 patients (21%), with 7 patients (15%) having been transferred from out-of-state facilities. Of patients who screened positive, 60% did not exhibit any signs or symptoms of active infection by chart review. A total of 38 environmental samples were collected and CRAB was recovered from 37% of those samples. Whole genome sequencing analyses of patient and environmental isolates suggested repeated CRAB introduction into the facility and highlighted the role of shared equipment in transmission. CONCLUSIONS: The investigation demonstrated this ventilated skilled nursing facility was an important reservoir for CRAB in the community and highlights the need for improved surveillance, strengthened infection control and inter-facility communication within and across states.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Cross Infection , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , Acinetobacter Infections/prevention & control , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins , Carbapenems/pharmacology , Cross Infection/drug therapy , Cross Infection/epidemiology , Cross Infection/prevention & control , Disease Outbreaks , Humans , Infection Control , Microbial Sensitivity Tests , Skilled Nursing Facilities , Utah/epidemiology , beta-Lactamases/genetics
19.
Clin Microbiol Infect ; 27(12): 1772-1776, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1260699

ABSTRACT

BACKGROUND: A wide range of bacterial infections occur in coronavirus disease 2019 (COVID-19) patients, particularly in those with severe coronaviral disease. Some of these are community-acquired co-infections. OBJECTIVE: To review recent data that indicate the occurrence of hospital-onset bacterial infections, including with antibiotic-resistant isolates, in COVID-19 patients. SOURCES: Using PubMed, the literature was searched using terms including: 'COVID-19'; 'SARS-CoV-2'; 'bacterial infection'; 'healthcare-associated infection'; 'antibiotic resistance'; 'antimicrobial resistance'; 'multi-drug resistance'; 'Streptococcus'; 'Staphylococcus'; 'Pseudomonas'; 'Escherichia'; 'Klebsiella'; 'Enterococcus'; 'Acinetobacter'; 'Haemophilus'; 'MRSA'; 'VRE'; 'ESBL'; 'NDM-CRE'; 'CR-Ab'; 'VRSA'; 'MDR'. CONTENT: There is a growing number of reports of bacterial infections acquired by patients with severe COVID-19 after hospital admission. Antibiotic-resistant pathogens found to cause healthcare-associated infections (HAIs) in COVID-19 patients include methicillin-resistant Staphylococcus aureus, New Delhi metallo-ß-lactamase-producing carbapenem-resistant Enterobacterales, carbapenem-resistant Acinetobacter baumannii, extended-spectrum ß-lactamase Klebsiella pneumoniae and vancomycin-resistant enterococci. COVID-19 has impacted bacterial HAIs in a number of ways with an increase in the incidence of New Delhi metallo-ß-lactamase-producing carbapenem-resistant Enterobacterales and carbapenem-resistant A. baumannii reported at some hospital sites compared with before the pandemic. Recommended guidelines for antimicrobial stewardship in COVID-19 patient treatment are discussed regarding minimization of empiric broad-spectrum antibiotic use. Other studies have reported a decrease in methicillin-resistant S. aureus and vancomycin-resistant enterococci cases, which has been attributed to enhanced infection prevention and control practices introduced to minimize intra-hospital spread of COVID-19. IMPLICATIONS: Poorer outcomes have been observed in hospitalized COVID-19 patients with an antibiotic-resistant infection. Although heightened IPC measures have been accompanied by a reduction in some HAIs at specific sites, in other situations, COVID-19 has been associated with an increase in bacterial HAI incidence. Further research is needed to define the cost-benefit relationship of maintaining COVID-19-related infection prevention and control protocols beyond the pandemic to reduce the burden of HAIs. In addition, the longer-term impact of high usage of certain broad-spectrum antibiotics during the COVID-19 pandemic requires evaluation.


Subject(s)
Bacterial Infections , COVID-19 , Community-Acquired Infections , Cross Infection , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/drug effects , Bacterial Infections/drug therapy , Bacterial Infections/epidemiology , COVID-19/epidemiology , Carbapenems , Community-Acquired Infections/drug therapy , Community-Acquired Infections/epidemiology , Cross Infection/drug therapy , Cross Infection/epidemiology , Delivery of Health Care , Drug Resistance, Bacterial , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Pandemics
20.
Rom J Intern Med ; 59(4): 409-415, 2021 Dec 01.
Article in English | MEDLINE | ID: covidwho-1247777

ABSTRACT

Introduction. Information on healthcare-associated C.difficile infection (HA-CDI) in COVID-19 patients is limited. We aimed to assess the characteristics of HA-CDI acquired during and before the COVID-19 pandemic. Methods. We conducted a retrospective study in a tertiary care hospital, in which since March 2020 exclusively COVID-19 patients are hospitalized. We compared HA-CDI adult patients hospitalized in March 2020-February 2021 with those hospitalized during the same period in 2017-2018. Results. We found 51 cases during 2020-2021 (COVID-19 group), incidence 5.6/1000 adult discharge and 99 cases during 2017-2018 (pre-COVID-19 group), incidence 6.1/1000 adult discharge (p=0.6). The patients in COVID-19 group compared to pre-COVID-19 group were older (median age 66 vs 62 years), with similar rate of comorbidities, but with higher rate of cardiovascular diseases (62.7% vs 42.4%) and less immunosuppression (21.6% vs 55.6%), they had a higher proton pump inhibitors use (94.1% vs 32.3%), and a longer hospitalization (median 19 vs 14 days). Eighty-five (85.9%) patients in pre-COVID-19 group versus 44 (86.3%) patients in COVID-19 group received antimicrobial treatment - mainly cephalosporins (34,1%), quinolones (22,3%) and glycopeptides (21,1%) in pre-COVID-19 group and mainly cephalosporins and macrolides (63,6% each) in COVID-19 group. We found four HA-CDI-related deaths in pre-COVID-19 group and none in the COVID-19 group. Conclusions. The HA-CDI incidence in COVID-19 group did not change versus the same period of time during 2017-2018. The antibiotic use was the most important factor associated with HA-CDI. We identified a high use of broad-spectrum antibiotics despite the lack of empirical antimicrobial recommendations in COVID-19.


Subject(s)
COVID-19 , Clostridioides difficile/isolation & purification , Clostridium Infections/epidemiology , Cross Infection/epidemiology , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Cephalosporins/therapeutic use , Clostridium Infections/drug therapy , Cross Infection/drug therapy , Delivery of Health Care , Humans , Pandemics , Retrospective Studies , Risk Factors , Romania/epidemiology , SARS-CoV-2 , Tertiary Care Centers
SELECTION OF CITATIONS
SEARCH DETAIL