Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Food Biochem ; 46(10): e14363, 2022 10.
Article in English | MEDLINE | ID: covidwho-1978488

ABSTRACT

Since the outbreak of novel Coronavirus Pneumonia 2019 (COVID-19), the role of Almonds (Xingren) in the protection and treatment of COVID-19 is not clear. Network pharmacology and molecular docking were used to explore the potential mechanism and potential key targets of Xingren on COVID-19. A total of nine common targets between them were obtained, and these targets were involved in multiple related processes of GO and KEGG pathway enrichment analysis. Molecular docking showed that licochalcone B has the best binding energy (-9.33 kJ·mol-1 ) to PTGS2. They are maybe the important ingredient and key potential target. Its possible mechanism is to intervene anxiety disorder in the process of disease development, such as regulation of blood pressure, reactive oxygen species metabolic process, leishmaniasis peroxisome, and IL-17 signaling pathway. PRACTICAL APPLICATIONS: Xingren is a traditional Chinese medicine that has been used and developed in China for many years. It contains a variety of active ingredients and also has the functions of relieving cough, relieving asthma, enhancing human immunity, delaying aging, regulating blood lipids, nourishing brain, and improving intelligence. In this article, the possible mechanisms of action and important targets of Xingren in the prevention and treatment of COVID-19 were discussed through network pharmacology and molecular docking. We also found that active ingredient licochalcone B and the potential target PTGS2 are worthy of further research and analysis. At the same time, the study also provides a theoretical basis and reference for the prevention and treatment of COVID-19 and the development of new drugs.


Subject(s)
COVID-19 Drug Treatment , Chalcones , Cyclooxygenase 2/genetics , Drugs, Chinese Herbal , Humans , Interleukin-17 , Molecular Docking Simulation , Network Pharmacology , Reactive Oxygen Species
2.
Med Sci Monit ; 28: e934102, 2022 Jan 25.
Article in English | MEDLINE | ID: covidwho-1651076

ABSTRACT

BACKGROUND Heat-clearing and detoxifying herbs (HDHs) play an important role in the prevention and treatment of coronavirus infection. However, their mechanism of action needs further study. This study aimed to explore the anti-coronavirus basis and mechanism of HDHs. MATERIAL AND METHODS Database mining was performed on 7 HDHs. Core ingredients and targets were screened according to ADME rules combined with Neighborhood, Co-occurrence, Co-expression, and other algorithms. GO enrichment and KEGG pathway analyses were performed using the R language. Finally, high-throughput molecular docking was used for verification. RESULTS HDHs mainly acts on NOS3, EGFR, IL-6, MAPK8, PTGS2, MAPK14, NFKB1, and CASP3 through quercetin, luteolin, wogonin, indirubin alkaloids, ß-sitosterol, and isolariciresinol. These targets are mainly involved in the regulation of biological processes such as inflammation, activation of MAPK activity, and positive regulation of NF-kappaB transcription factor activity. Pathway analysis further revealed that the pathways regulated by these targets mainly include: signaling pathways related to viral and bacterial infections such as tuberculosis, influenza A, Ras signaling pathways; inflammation-related pathways such as the TLR, TNF, MAPK, and HIF-1 signaling pathways; and immune-related pathways such as NOD receptor signaling pathways. These pathways play a synergistic role in inhibiting lung inflammation and regulating immunity and antiviral activity. CONCLUSIONS HDHs play a role in the treatment of coronavirus infection by regulating the body's immunity, fighting inflammation, and antiviral activities, suggesting a molecular basis and new strategies for the treatment of COVID-19 and a foundation for the screening of new antiviral drugs.


Subject(s)
COVID-19 Drug Treatment , Coronavirus/drug effects , Drugs, Chinese Herbal/pharmacology , SARS-CoV-2/drug effects , Alkaloids/chemistry , Alkaloids/pharmacology , Caspase 3/drug effects , Caspase 3/genetics , Coronavirus/metabolism , Coronavirus Infections/drug therapy , Cyclooxygenase 2/drug effects , Cyclooxygenase 2/genetics , Databases, Pharmaceutical , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/therapeutic use , Flavanones/chemistry , Flavanones/pharmacology , Humans , Indoles/chemistry , Indoles/pharmacology , Interleukin-6/genetics , Lignin/chemistry , Lignin/pharmacology , Luteolin/chemistry , Luteolin/pharmacology , Mitogen-Activated Protein Kinase 14/drug effects , Mitogen-Activated Protein Kinase 14/genetics , Mitogen-Activated Protein Kinase 8/drug effects , Mitogen-Activated Protein Kinase 8/genetics , Molecular Docking Simulation , NF-kappa B p50 Subunit/drug effects , NF-kappa B p50 Subunit/genetics , Naphthols/chemistry , Naphthols/pharmacology , Nitric Oxide Synthase Type III/drug effects , Nitric Oxide Synthase Type III/genetics , Protein Interaction Maps , Quercetin/chemistry , Quercetin/pharmacology , SARS-CoV-2/metabolism , Signal Transduction , Sitosterols/chemistry , Sitosterols/pharmacology , Transcriptome/drug effects , Transcriptome/genetics
3.
Sci Rep ; 11(1): 19752, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1454813

ABSTRACT

Although metabolic syndrome (MetS) is linked to an elevated risk of cardiovascular disease (CVD), the cardiac-specific risk mechanism is unknown. Obesity, hypertension, and diabetes (all MetS components) are the most common form of CVD and represent risk factors for worse COVID-19 outcomes compared to their non MetS peers. Here, we use obese Yorkshire pigs as a highly relevant animal model of human MetS, where pigs develop the hallmarks of human MetS and reproducibly mimics the myocardial pathophysiology in patients. Myocardium-specific mass spectroscopy-derived metabolomics, proteomics, and transcriptomics enabled the identity and quality of proteins and metabolites to be investigated in the myocardium to greater depth. Myocardium-specific deregulation of pro-inflammatory markers, propensity for arterial thrombosis, and platelet aggregation was revealed by computational analysis of differentially enriched pathways between MetS and control animals. While key components of the complement pathway and the immune response to viruses are under expressed, key N6-methyladenosin RNA methylation enzymes are largely overexpressed in MetS. Blood tests do not capture the entirety of metabolic changes that the myocardium undergoes, making this analysis of greater value than blood component analysis alone. Our findings create data associations to further characterize the MetS myocardium and disease vulnerability, emphasize the need for a multimodal therapeutic approach, and suggests a mechanism for observed worse outcomes in MetS patients with COVID-19 comorbidity.


Subject(s)
COVID-19/pathology , Disease Susceptibility , Metabolic Syndrome/pathology , Animals , Blood Coagulation Factors/genetics , Blood Coagulation Factors/metabolism , COVID-19/complications , COVID-19/virology , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Diet, High-Fat/veterinary , Disease Models, Animal , Humans , Immunity, Innate/genetics , Metabolic Syndrome/complications , Metabolic Syndrome/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Myocardium/metabolism , Oxidative Stress/genetics , Platelet Aggregation , Receptors, Purinergic P2Y1/genetics , Receptors, Purinergic P2Y1/metabolism , Renin-Angiotensin System , Risk Factors , SARS-CoV-2/isolation & purification , Swine , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism
4.
Curr Med Sci ; 41(2): 297-305, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1193158

ABSTRACT

Since the outbreak of the novel corona virus disease 2019 (COVID-19) at the end of 2019, specific antiviral drugs have been lacking. A Chinese patent medicine Toujiequwen granules has been promoted in the treatment of COVID-19. The present study was designed to reveal the molecular mechanism of Toujiequwen granules against COVID-19. A network pharmacological method was applied to screen the main active ingredients of Toujiequwen granules. Network analysis of 149 active ingredients and 330 drug targets showed the most active ingredient interacting with many drug targets is quercetin. Drug targets most affected by the active ingredients were PTGS2, PTGS1, and DPP4. Drug target disease enrichment analysis showed drug targets were significantly enriched in cardiovascular diseases and digestive tract diseases. An "active ingredient-target-disease" network showed that 57 active ingredients from Toujiequwen granules interacted with 15 key targets of COVID-19. There were 53 ingredients that could act on DPP4, suggesting that DPP4 may become a potential new key target for the treatment of COVID-19. GO analysis results showed that key targets were mainly enriched in the cellular response to lipopolysaccharide, cytokine activity and other functions. KEGG analysis showed they were mainly concentrated in viral protein interaction with cytokine and cytokine receptors and endocrine resistance pathway. The evidence suggests that Toujiequwen granules might play an effective role by improving the symptoms of underlying diseases in patients with COVID-19 and multi-target interventions against multiple signaling pathways related to the pathogenesis of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional , SARS-CoV-2/genetics , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/genetics , COVID-19/virology , Cyclooxygenase 1/genetics , Cyclooxygenase 2/genetics , Dipeptidyl Peptidase 4/genetics , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/classification , Gene Expression Regulation, Viral/drug effects , Humans , Quercetin/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Signal Transduction/drug effects
5.
Neuromolecular Med ; 23(1): 184-198, 2021 03.
Article in English | MEDLINE | ID: covidwho-871558

ABSTRACT

Ergothioneine (ET) is a naturally occurring antioxidant that is synthesized by non-yeast fungi and certain bacteria. ET is not synthesized by animals, including humans, but is avidly taken up from the diet, especially from mushrooms. In the current study, we elucidated the effect of ET on the hCMEC/D3 human brain endothelial cell line. Endothelial cells are exposed to high levels of the cholesterol oxidation product, 7-ketocholesterol (7KC), in patients with cardiovascular disease and diabetes, and this process is thought to mediate pathological inflammation. 7KC induces a dose-dependent loss of cell viability and an increase in apoptosis and necrosis in the endothelial cells. A relocalization of the tight junction proteins, zonula occludens-1 (ZO-1) and claudin-5, towards the nucleus of the cells was also observed. These effects were significantly attenuated by ET. In addition, 7KC induces marked increases in the mRNA expression of pro-inflammatory cytokines, IL-1ß IL-6, IL-8, TNF-α and cyclooxygenase-2 (COX2), as well as COX2 enzymatic activity, and these were significantly reduced by ET. Moreover, the cytoprotective and anti-inflammatory effects of ET were significantly reduced by co-incubation with an inhibitor of the ET transporter, OCTN1 (VHCL). This shows that ET needs to enter the endothelial cells to have a protective effect and is unlikely to act via extracellular neutralizing of 7KC. The protective effect on inflammation in brain endothelial cells suggests that ET might be useful as a nutraceutical for the prevention or management of neurovascular diseases, such as stroke and vascular dementia. Moreover, the ability of ET to cross the blood-brain barrier could point to its usefulness in combatting 7KC that is produced in the CNS during neuroinflammation, e.g. after excitotoxicity, in chronic neurodegenerative diseases, and possibly COVID-19-related neurologic complications.


Subject(s)
Antioxidants/pharmacology , COVID-19/complications , Endothelial Cells/drug effects , Ergothioneine/pharmacology , Ketocholesterols/toxicity , Nervous System Diseases/prevention & control , Neuroprotective Agents/pharmacology , Antioxidants/pharmacokinetics , Apoptosis/drug effects , Biological Transport , Blood-Brain Barrier , Brain/blood supply , Brain/cytology , Cell Line , Cholesterol/metabolism , Claudin-5 , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/genetics , Cytokines/biosynthesis , Cytokines/genetics , Drug Evaluation, Preclinical , Ergothioneine/pharmacokinetics , Humans , Microvessels/cytology , Nervous System Diseases/etiology , Neuroprotective Agents/pharmacokinetics , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Organic Cation Transport Proteins , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Symporters , Zonula Occludens-1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL