Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 282
Filter
Add filters

Document Type
Year range
2.
Medicine (Baltimore) ; 100(29): e26705, 2021 Jul 23.
Article in English | MEDLINE | ID: covidwho-1475905

ABSTRACT

ABSTRACT: Cytokine release syndrome (CRS) or cytokine storm is thought to be the cause of inflammatory lung damage, worsening pneumonia and death in patients with COVID-19. Steroids (Methylprednislone or Dexamethasone) and Tocilizumab (TCZ), an interleukin-6 receptor antagonist, are approved for treatment of CRS in India. The aim of this study was to evaluate the efficacy and safety of combination therapy of TCZ and steroid in COVID-19 associated CRS.This retrospective cohort study was conducted at Noble hospital and Research Centre (NHRC), Pune, India between April 2 and November 2, 2020. All patients administered TCZ and steroids during this period were included. The primary endpoint was incidence of all cause mortality. Secondary outcomes studied were need for mechanical ventilation and incidence of systemic and infectious complications. Baseline and time dependent risk factors significantly associated with death were identified by Relative risk estimation.Out of 2831 admitted patients, 515 (24.3% females) were administered TCZ and steroids. There were 135 deaths (26.2%), while 380 patients (73.8%) had clinical improvement. Mechanical ventilation was required in 242 (47%) patients. Of these, 44.2% (107/242) recovered and were weaned off the ventilator. Thirty seven percent patients were managed in wards and did not need intensive care unit (ICU) admission. Infectious complications like hospital acquired pneumonia, blood stream bacterial and fungal infections were observed in 2.13%, 2.13% and 0.06% patients respectively. Age ≥ 60 years (P = .014), presence of co-morbidities like hypertension (P = .011), IL-6 ≥ 100 pg/ml (P = .002), D-dimer ≥ 1000 ng/ml (P < .0001), CT severity index ≥ 18 (P < .0001) and systemic complications like lung fibrosis (P = .019), cardiac arrhythmia (P < .0001), hypotension (P < .0001) and encephalopathy (P < .0001) were associated with increased risk of death.Combination therapy of TCZ and steroids is likely to be safe and effective in management of COVID-19 associated cytokine release syndrome. Efficacy of this anti-inflammatory combination therapy needs to be validated in randomized controlled trials.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , Cytokine Release Syndrome/drug therapy , Dexamethasone/therapeutic use , Methylprednisolone/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , COVID-19/complications , COVID-19/mortality , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/mortality , Dexamethasone/administration & dosage , Drug Therapy, Combination , Female , Humans , India , Intensive Care Units/statistics & numerical data , Length of Stay/statistics & numerical data , Male , Methylprednisolone/administration & dosage , Middle Aged , Retrospective Studies , Treatment Outcome
3.
Medicine (Baltimore) ; 100(19): e25923, 2021 May 14.
Article in English | MEDLINE | ID: covidwho-1455404

ABSTRACT

ABSTRACT: Blocking IL-6 pathways with sarilumab, a fully human anti-IL-6R antagonist may potentially curb the inflammatory storm of SARS-CoV2. In the present emergency scenario, we used "off-label" sarilumab in 5 elderly patients in life-threatening condition not candidates to further active measures. We suggest that sarilumab can modulate severe COVID-19-associated Cytokine Release Syndrome.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , Cytokine Release Syndrome/drug therapy , Interleukin-6/antagonists & inhibitors , Aged , Anti-Infective Agents/therapeutic use , Azithromycin/therapeutic use , COVID-19/physiopathology , Comorbidity , Critical Illness , Cytokine Release Syndrome/physiopathology , Humans , Hydroxychloroquine/therapeutic use , Male , Middle Aged , RNA, Viral , Respiration, Artificial/statistics & numerical data , Retrospective Studies , SARS-CoV-2
4.
Anaesthesist ; 70(2): 121-126, 2021 Feb.
Article in German | MEDLINE | ID: covidwho-1453674

ABSTRACT

A 59-year-old male patient was admitted to hospital diagnosed with moderate pneumonia associated with COVID-19. Upfront treatment with hydroxychloroquine and azithromycin was started. Due to a clinical deterioration (ARDS, circulatory shock) and greatly increased inflammation markers 6 days after admission, a cytokine storm was suspected and off-label treatment with the IL­6 receptor antagonist tocilizumab was initiated. Subsequently there was a dramatic rise of D­dimers indicating pulmonary intravascular coagulopathy and respiratory insufficiency worsened. After a second dose of tocilizumab was administered severe perimyocarditis with cardiac arrhythmia, hemodynamic instability and ST elevation occurred. Shortly afterwards the patient died due to multiorgan failure. From our experience, exacerbation of COVID-19 following treatment with tocilizumab cannot be ruled out. Randomized controlled studies are necessary to further investigate the efficacy, safety and patient selection criteria for tocilizumab treatment in COVID-19.


Subject(s)
Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , Blood Coagulation Disorders/etiology , COVID-19/drug therapy , Cytokine Release Syndrome/drug therapy , Myocarditis/etiology , Receptors, Interleukin-6/antagonists & inhibitors , Fatal Outcome , Humans , Male , Middle Aged , Multiple Organ Failure/etiology , Off-Label Use , Respiratory Distress Syndrome/etiology , Respiratory Insufficiency , Treatment Outcome
5.
Front Immunol ; 12: 714177, 2021.
Article in English | MEDLINE | ID: covidwho-1444042

ABSTRACT

Sepsis continues to be a major cause of morbidity, mortality, and post-recovery disability in patients with a wide range of non-infectious and infectious inflammatory disorders, including COVID-19. The clinical onset of sepsis is often marked by the explosive release into the extracellular fluids of a multiplicity of host-derived cytokines and other pro-inflammatory hormone-like messengers from endogenous sources ("cytokine storm"). In patients with sepsis, therapies to counter the pro-inflammatory torrent, even when administered early, typically fall short. The major focus of our proposed essay is to promote pre-clinical studies with hCG (human chorionic gonadotropin) as a potential anti-inflammatory therapy for sepsis.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Chorionic Gonadotropin/therapeutic use , Peptides/therapeutic use , Sepsis/drug therapy , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/metabolism , Bacteria/metabolism , Chorionic Gonadotropin/chemistry , Chorionic Gonadotropin/metabolism , Cytokine Release Syndrome/drug therapy , Glycoproteins/chemistry , Glycoproteins/metabolism , Humans , Inflammation , Peptides/chemistry , Peptides/metabolism
6.
Signal Transduct Target Ther ; 6(1): 347, 2021 09 25.
Article in English | MEDLINE | ID: covidwho-1437669

ABSTRACT

SARS-CoV-2 mutations contribute to increased viral transmissibility and immune escape, compromising the effectiveness of existing vaccines and neutralizing antibodies. An in-depth investigation on COVID-19 pathogenesis is urgently needed to develop a strategy against SARS-CoV-2 variants. Here, we identified CD147 as a universal receptor for SARS-CoV-2 and its variants. Meanwhile, Meplazeumab, a humanized anti-CD147 antibody, could block cellular entry of SARS-CoV-2 and its variants-alpha, beta, gamma, and delta, with inhibition rates of 68.7, 75.7, 52.1, 52.1, and 62.3% at 60 µg/ml, respectively. Furthermore, humanized CD147 transgenic mice were susceptible to SARS-CoV-2 and its two variants, alpha and beta. When infected, these mice developed exudative alveolar pneumonia, featured by immune responses involving alveoli-infiltrated macrophages, neutrophils, and lymphocytes and activation of IL-17 signaling pathway. Mechanistically, we proposed that severe COVID-19-related cytokine storm is induced by a "spike protein-CD147-CyPA signaling axis": Infection of SARS-CoV-2 through CD147 initiated the JAK-STAT pathway, which further induced expression of cyclophilin A (CyPA); CyPA reciprocally bound to CD147 and triggered MAPK pathway. Consequently, the MAPK pathway regulated the expression of cytokines and chemokines, which promoted the development of cytokine storm. Importantly, Meplazumab could effectively inhibit viral entry and inflammation caused by SARS-CoV-2 and its variants. Therefore, our findings provided a new perspective for severe COVID-19-related pathogenesis. Furthermore, the validated universal receptor for SARS-CoV-2 and its variants can be targeted for COVID-19 treatment.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal, Humanized/pharmacology , Basigin/antagonists & inhibitors , Basigin/metabolism , COVID-19/drug therapy , COVID-19/metabolism , Cytokine Release Syndrome/drug therapy , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Basigin/genetics , COVID-19/genetics , Chlorocebus aethiops , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/metabolism , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Mice , Mice, Transgenic , SARS-CoV-2/genetics , Vero Cells
7.
J Mater Chem B ; 9(39): 8185-8201, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1414146

ABSTRACT

During the global outbreak of coronavirus disease 2019 (COVID-19), a hyperinflammatory state called the cytokine storm was recognized as a major contributor to multiple organ failure and mortality. However, to date, the diagnosis and treatment of the cytokine storm remain major challenges for the clinical prognosis of COVID-19. In this review, we outline various nanomaterial-based strategies for preventing the COVID-19 cytokine storm. We highlight the contribution of nanomaterials to directly inhibit cytokine release. We then discuss how nanomaterials can be used to deliver anti-inflammatory drugs to calm the cytokine storm. Nanomaterials also play crucial roles in diagnostics. Nanomaterial-based biosensors with improved sensitivity and specificity can be used to detect cytokines. In summary, emerging nanomaterials offer platforms and tools for the detection and treatment of the COVID-19 cytokine storm and future pandemic.


Subject(s)
COVID-19/complications , COVID-19/drug therapy , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Nanostructures/chemistry , Nanostructures/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacology , Humans
8.
Int Immunopharmacol ; 100: 108150, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1401545

ABSTRACT

The etiological agent of coronavirus disease (COVID-19) is the new member of the Coronaviridae family, a severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2), responsible for the pandemic that is plaguing the world. The single-stranded RNA virus is capable of infecting the respiratory tract, by binding the spike (S) protein on its viral surface to receptors for the angiotensin II-converting enzyme (ACE2), highly expressed in the pulmonary tissue, enabling the interaction of the virus with alveolar epithelial cells promoting endocytosis and replication of viral material. The infection triggers the activation of the immune system, increased purinergic signaling, and the release of cytokines as a defense mechanism, but the response can become exaggerated and prompt the so-called "cytokine storm", developing cases such as severe acute respiratory syndrome (SARS). This is characterized by fever, cough, and difficulty breathing, which can progress to pneumonia, failure of different organs and death. Thus, the present review aims to compile and correlate the mechanisms involved between the immune and purinergic systems with COVID-19, since the modulation of purinergic receptors, such as A2A, A2B, and P2X7 expressed by immune cells, seems to be effective as a promising therapy, to reduce the severity of the disease, as well as aid in the treatment of acute lung diseases and other cases of generalized inflammation.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/drug therapy , Receptors, Purinergic/drug effects , SARS-CoV-2 , Adenosine Triphosphate/physiology , Humans , Inflammation/etiology , Receptors, Purinergic/physiology , Severity of Illness Index , Signal Transduction/physiology
9.
Front Endocrinol (Lausanne) ; 11: 569241, 2020.
Article in English | MEDLINE | ID: covidwho-1389156

ABSTRACT

The clinical hallmarks of infections caused by critical respiratory viruses consist of pneumonia, which can progress to acute lung injury (ALI), and systemic manifestations including hypercoagulopathy, vascular dysfunction, and endotheliitis. The disease outcome largely depends on the immune response produced by the host. The bio-molecular mechanisms underlying certain dire consequences of the infection partly arise from an aberrant production of inflammatory molecules, an event denoted as "cytokine storm". Therefore, in addition to antiviral therapies, molecules able to prevent the injury caused by cytokine excess are under investigation. In this perspective, taking advantage of melanocortin peptides and their receptors, components of an endogenous modulatory system that exerts marked anti-inflammatory and immunomodulatory influences, could be an effective therapeutic strategy to control disease evolution. Exploiting the melanocortin system using natural or synthetic ligands can form a realistic basis to counteract certain deleterious effects of respiratory virus infections. The central and peripheral protective actions exerted following melanocortin receptor activation could allow dampening the harmful events that trigger the cytokine storm and endothelial dysfunction while sustaining the beneficial signals required to elicit repair mechanisms. The long standing evidence for melanocortin safety encourages this approach.


Subject(s)
COVID-19/drug therapy , Receptors, Melanocortin/agonists , Respiratory Tract Infections/drug therapy , Acute Lung Injury/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Cytokines/metabolism , Humans , Melanocyte-Stimulating Hormones/metabolism , Respiratory Tract Infections/etiology , Respiratory Tract Infections/metabolism
11.
Comput Biol Med ; 137: 104780, 2021 10.
Article in English | MEDLINE | ID: covidwho-1363941

ABSTRACT

BACKGROUND: Proinflammatory cytokines are correlated with the severity of disease in patients with COVID-19. IL6-mediated activation of STAT3 proliferates proinflammatory responses that lead to cytokine storm promotion. Thus, STAT3 inhibitors may play a crucial role in managing the COVID-19 pathogenesis. The present study discusses a method for predicting inhibitors against the STAT3 signaling pathway. METHOD: The main dataset comprises 1565 STAT3 inhibitors and 1671 non-inhibitors used for training, testing, and evaluation of models. A number of machine learning classifiers have been implemented to develop the models. RESULTS: The outcomes of the data analysis show that rings and aromatic groups are significantly abundant in STAT3 inhibitors compared to non-inhibitors. First, we developed models using 2-D and 3-D chemical descriptors and achieved a maximum AUC of 0.84 and 0.73, respectively. Second, fingerprints are used to build predictive models and achieved 0.86 AUC with an accuracy of 78.70% on the validation dataset. Finally, models were developed using hybrid descriptors, which achieved a maximum of 0.87 AUC with 78.55% accuracy on the validation dataset. CONCLUSION: We used the best model to identify STAT3 inhibitors in FDA-approved drugs and found few drugs (e.g., Tamoxifen and Perindopril) to manage the cytokine storm in COVID-19 patients. A webserver "STAT3In" (https://webs.iiitd.edu.in/raghava/stat3in/) has been developed to predict and design STAT3 inhibitors.


Subject(s)
COVID-19 , Cytokine Release Syndrome/drug therapy , Drug Design , STAT3 Transcription Factor/antagonists & inhibitors , COVID-19/drug therapy , Humans
12.
Am J Chin Med ; 48(6): 1263-1277, 2020.
Article in English | MEDLINE | ID: covidwho-1365228

ABSTRACT

In December 2019, a novel coronavirus SARS-CoV-2, causing the disease COVID-19, spread from Wuhan throughout China and has infected people over 200 countries. Thus far, more than 3,400,000 cases and 240,000 deaths have occurred worldwide, and the coronavirus pandemic continues to grip the globe. While numbers of cases in China have been steadying, the number of infections outside China is increasing at a worrying pace. We face an urgent need to control the spread of the COVID-19 epidemic, which is currently expanding to a global pandemic. Efforts have focused on testing antiviral drugs and vaccines, but there is currently no treatment specifically approved. Traditional Chinese medicine (TCM) is grounded in empirical observations and the Chinese people use TCM to overcome these sorts of plagues many times in thousands of years of history. Currently, the Chinese National Health Commission recommended a TCM prescription of Qing-Fei-Pai-Du-Tang (QFPDT) in the latest version of the "Diagnosis and Treatment guidelines of COVID-19" which has been reported to provide reliable effects for COVID-19. While doubts about TCM still exist today, this review paper will describe the rationalities that QFPDT is likely to bring a safe and effective treatment of COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Drugs, Chinese Herbal/therapeutic use , Pneumonia, Viral/drug therapy , Adrenal Cortex Hormones/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus , COVID-19 , Chloroquine/therapeutic use , Coronavirus Infections/immunology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/immunology , Drug Combinations , Humans , Indoles/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Lopinavir/therapeutic use , Medicine, Chinese Traditional , Pandemics , Pneumonia, Viral/immunology , Ritonavir/therapeutic use , SARS-CoV-2
13.
Phytother Res ; 35(8): 4258-4283, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1355894

ABSTRACT

Emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, COVID-19, has become the global panic since December 2019, which urges the global healthcare professionals to identify novel therapeutics to counteract this pandemic. So far, there is no approved treatment available to control this public health issue; however, a few antiviral agents and repurposed drugs support the patients under medical supervision by compromising their adverse effects, especially in emergency conditions. Only a few vaccines have been approved to date. In this context, several plant natural products-based research studies are evidenced to play a crucial role in immunomodulation that can prevent the chances of infection as well as combat the cytokine release storm (CRS) generated during COVID-19 infection. In this present review, we have focused on flavonoids, especially epicatechin, epigallocatechin gallate, hesperidin, naringenin, quercetin, rutin, luteolin, baicalin, diosmin, ge nistein, biochanin A, and silymarin, which can counteract the virus-mediated elevated levels of inflammatory cytokines leading to multiple organ failure. In addition, a comprehensive discussion on available in silico, in vitro, and in vivo findings with critical analysis has also been evaluated, which might pave the way for further development of phytotherapeutics to identify the potential lead candidatetoward effective and safe management of the SARS-CoV-2 disease.


Subject(s)
COVID-19 , Cytokine Release Syndrome , Flavonoids/therapeutic use , COVID-19/drug therapy , Cytokine Release Syndrome/drug therapy , Cytokines , Humans , Pandemics
14.
Molecules ; 26(15)2021 Jul 29.
Article in English | MEDLINE | ID: covidwho-1346516

ABSTRACT

We recently developed a molecule (GT-73) that blocked leukocyte transendothelial migration from blood to the peripheral tissues, supposedly by affecting the platelet endothelial cell adhesion molecule (PECAM-1) function. GT-73 was tested in an LPS-induced acute respiratory distress syndrome (ARDS) mouse model. The rationale for this is based on the finding that the mortality of COVID-19 patients is partly caused by ARDS induced by a massive migration of leukocytes to the lungs. In addition, the role of tert-butyl and methyl ester moieties in the biological effect of GT-73 was investigated. A human leukocyte, transendothelial migration assay was applied to validate the blocking effect of GT-73 derivatives. Finally, a mouse model of LPS-induced ARDS was used to evaluate the histological and biochemical effects of GT-73. The obtained results showed that GT-73 has a unique structure that is responsible for its biological activity; two of its chemical moieties (tert-butyl and a methyl ester) are critical for this effect. GT-73 is a prodrug, and its lipophilic tail covalently binds to PECAM-1 via Lys536. GT-73 significantly decreased the number of infiltrating leukocytes in the lungs and reduced the inflammation level. Finally, GT-73 reduced the levels of IL-1ß, IL-6, and MCP-1 in bronchoalveolar lavage fluid (BALF). In summary, we concluded that GT-73, a blocker of white blood cell transendothelial migration, has a favorable profile as a drug candidate for the treatment of ARDS in COVID-19 patients.


Subject(s)
COVID-19/drug therapy , Leukocytes/drug effects , Platelet Endothelial Cell Adhesion Molecule-1/antagonists & inhibitors , Pyrimidines/pharmacology , Respiratory Distress Syndrome/drug therapy , Transendothelial and Transepithelial Migration/drug effects , Animals , COVID-19/pathology , Cell Adhesion/drug effects , Cell Adhesion/immunology , Cell Movement/drug effects , Cytokine Release Syndrome/drug therapy , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Leukocytes/immunology , Lipopolysaccharides/adverse effects , Mice , Mice, Inbred BALB C , Platelet Endothelial Cell Adhesion Molecule-1/immunology , Pyrimidines/chemistry , Respiratory Distress Syndrome/chemically induced , SARS-CoV-2
15.
Int Immunopharmacol ; 99: 108036, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1336563

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been declared by the World Health Organization (WHO) as a pandemic since March 2020. This disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The only available tools to avoid contamination and transmission of this virus are physical distancing, the use of N95 and surgical masks, and hand hygiene. Vaccines are another essential tool to reduce the impact of the pandemic, though these present challenges in terms of production and logistics, particularly in underdeveloped and developing countries. One of the critical early research findings is the interaction of the spike virus protein with the angiotensin-converting enzyme 2 (ACE2) human receptor. Developing strategies to block this interaction has therefore been identified as a way to treat this infection. Neutralizing antibodies (nAbs) have emerged as a therapeutic approach since the pandemic started. Infected patients may be asymptomatic or present with mild symptoms, and others may evolve to moderate or severe disease, leading to death. An immunological phenomenon known as cytokine storm has been observed in patients with severe disease characterized by a proinflammatory cytokine cascade response that leads to lung injury. Thus, some treatment strategies focus on anti-cytokine storm nAbs. This review summarizes the latest advances in research and clinical trials, challenges, and perspectives on antibody-based treatments (ABT) as therapies against COVID-19.


Subject(s)
Antibodies, Neutralizing/therapeutic use , COVID-19/drug therapy , Cytokine Release Syndrome/drug therapy , Angiotensin-Converting Enzyme 2 , Cytokines/immunology , Humans , Pandemics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/metabolism
16.
Front Immunol ; 12: 677957, 2021.
Article in English | MEDLINE | ID: covidwho-1337637

ABSTRACT

Patients with inflammatory bowel disease, psoriasis or other rheumatic diseases treated with corticosteroids, immunomodulators and biologics might face additional risk during COVID-19 epidemic due to their immunocompromised status. However, there was still no unanimous opinion on the use of these therapy during COVID-19 epidemic. Current studies suggested that systemic corticosteroids might increase the risk of hospitalization, as well as risks of ventilation, ICU, and death among patients with immune-mediated inflammatory diseases. Anti-TNF agent was associated with lower rate of hospitalization, as well as lower risks of ventilation, ICU, and death. No significant changes in rates of hospitalization, ventilation, ICU and mortality were observed in patients treated with immunomodulators or biologics apart from anti-TNF agents. The underlying mechanism of these results might be related to pathway of antiviral immune response and cytokine storm induced by SARS-COV-2 infection. Decision on the use of corticosteroids, immunomodulators and biologics should be made after weighing the benefits and potential risks based on individual patients.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Biological Products/therapeutic use , COVID-19/drug therapy , Cytokine Release Syndrome/drug therapy , Immunosuppressive Agents/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Psoriasis/drug therapy , Rheumatic Diseases/drug therapy , SARS-CoV-2/physiology , Tumor Necrosis Factor Inhibitors/therapeutic use , COVID-19/mortality , Cytokine Release Syndrome/mortality , Hospitalization , Humans , Immunity , Inflammatory Bowel Diseases/mortality , Psoriasis/mortality , Rheumatic Diseases/mortality , Risk , Survival Analysis
17.
Int J Mol Sci ; 22(15)2021 Jul 24.
Article in English | MEDLINE | ID: covidwho-1325681

ABSTRACT

The outbreak of the coronavirus disease 2019 (COVID-19) began at the end of 2019. COVID-19 is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and patients with COVID-19 may exhibit poor clinical outcomes. Some patients with severe COVID-19 experience cytokine release syndrome (CRS) or a cytokine storm-elevated levels of hyperactivated immune cells-and circulating pro-inflammatory cytokines, including interleukin (IL)-1ß and IL-18. This severe inflammatory response can lead to organ damage/failure and even death. The inflammasome is an intracellular immune complex that is responsible for the secretion of IL-1ß and IL-18 in various human diseases. Recently, there has been a growing number of studies revealing a link between the inflammasome and COVID-19. Therefore, this article summarizes the current literature regarding the inflammasome complex and COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/virology , Inflammasomes/immunology , Inflammasomes/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Adaptive Immunity/immunology , Animals , COVID-19/complications , COVID-19/drug therapy , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Humans , Multiple Organ Failure/drug therapy , Multiple Organ Failure/etiology , Multiple Organ Failure/immunology
18.
Rev Esp Quimioter ; 34(4): 337-341, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1317435

ABSTRACT

OBJECTIVE: The study aims to describe characteristics and clinical outcome of patients with SARS-CoV-2 infection that received siltuximab according to a protocol that aimed to early block the activity of IL-6 to avoid the progression of the inflammatory flare. METHODS: Retrospective review of the first 31 patients with SARS-CoV-2 treated with siltuximab, in Hospital Clinic of Barcelona or Hospital Universitario Salamanca, from March to April 2020 with positive polymerase-chain reaction (PCR) from a nasopharyngeal swab. RESULTS: The cohort included 31 cases that received siltuximab with a median (IQR) age of 62 (56-71) and 71% were males. The most frequent comorbidity was hypertension (48%). The median dose of siltuximab was 800 mg ranging between 785 and 900 mg. 7 patients received siltuximab as a salvage therapy after one dose of tocilizumab. At the end of the study, a total of 26 (83.9) patients had been discharged alive and the mortality rate was 16.1% but only 1 out of 24 that received siltuximab as a first line option (4%). CONCLUSIONS: Siltuximab is a well-tolerated alternative to tocilizumab when administered as a first line option in patients with COVID-19 pneumonia within the first 10 days from symptoms onset and high C-reactive protein.


Subject(s)
Antibodies, Monoclonal/therapeutic use , COVID-19/drug therapy , Aged , Antibodies, Monoclonal, Humanized/therapeutic use , C-Reactive Protein/analysis , COVID-19/mortality , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/etiology , Disease Progression , Female , Humans , Hypertension/complications , Interleukin-6/antagonists & inhibitors , Interleukin-6/blood , Male , Middle Aged , Retrospective Studies , Salvage Therapy , Treatment Outcome
19.
Adv Biol Regul ; 81: 100818, 2021 08.
Article in English | MEDLINE | ID: covidwho-1313202

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by a wide spectrum of symptom severity, which is manifested at different phases of infection and demands different levels of care. Viral load, host innate-immune response to SARS-CoV-2, and comorbidities have a direct impact on the clinical outcomes of COVID-19 patients and determine the diverse disease trajectories. The initial SARS-CoV-2 penetrance and replication in the host causes death of infected cells, determining the viral response. SARS-CoV-2 replication in the host triggers the activation of host antiviral immune mechanisms, determining the inflammatory response. While a healthy immune response is essential to eliminate infected cells and prevent spread of the virus, a dysfunctional immune response can result in a cytokine storm and hyperinflammation, contributing to disease progression. Current therapies for COVID-19 target the virus and/or the host immune system and may be complicated in their efficacy by comorbidities. Here we review the evidence for use of two classes of anti-inflammatory drugs, glucocorticoids and nonsteroidal anti-inflammatory drugs (NSAIDs) for the treatment of COVID-19. We consider the clinical evidence regarding the timing and efficacy of their use, their potential limitations, current recommendations and the prospect of future studies by these and related therapies.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , COVID-19/drug therapy , Glucocorticoids/therapeutic use , SARS-CoV-2/physiology , Virus Replication/drug effects , COVID-19/epidemiology , COVID-19/immunology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/epidemiology , Cytokine Release Syndrome/immunology , Humans , Viral Load/drug effects , Viral Load/immunology , Virus Replication/immunology
20.
J Neuroimmunol ; 358: 577661, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1307055

ABSTRACT

We describe the first case of hyperacute reversible encephalopathy following COVID-19 vaccination. A patient presented with acute onset encephalopathy, mainly characterized by agitation and confusion, rapidly responsive to high dosage steroid therapy and complete remission within 3 days from onset. The clinical manifestation was related with systemic and CSF cytokine hyperproduction, responsive to steroid therapy. Although the occurrence of encephalopathy after vaccination may be just a casual temporal association, we speculate that the cytokine-storm could be the result of an excessive innate immune response against the vaccine, in a predisposed patient susceptible to autoimmunity.


Subject(s)
Brain Diseases/chemically induced , Brain Diseases/diagnostic imaging , COVID-19 Vaccines/adverse effects , Cytokine Release Syndrome/chemically induced , Cytokine Release Syndrome/diagnostic imaging , Acute Disease , Aged , Brain Diseases/drug therapy , COVID-19 Vaccines/administration & dosage , Cytokine Release Syndrome/drug therapy , Humans , Male , Prednisone/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...