Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 251
Filter
Add filters

Document Type
Year range
1.
Small Methods ; 5(5): e2001108, 2021 05.
Article in English | MEDLINE | ID: covidwho-1599126

ABSTRACT

During the global outbreak of COVID-19 pandemic, "cytokine storm" conditions are regarded as the fatal step resulting in most mortality. Hemoperfusion is widely used to remove cytokines from the blood of severely ill patients to prevent uncontrolled inflammation induced by a cytokine storm. This article discoveres, for the first time, that 2D Ti3 C2 Tx MXene sheet demonstrates an ultrahigh removal capability for typical cytokine interleukin-6. In particular, MXene shows a 13.4 times higher removal efficiency over traditional activated carbon absorbents. Molecular-level investigations reveal that MXene exhibits a strong chemisorption mechanism for immobilizing cytokine interleukin-6 molecules, which is different from activated carbon absorbents. MXene sheet also demonstrates excellent blood compatibility without any deleterious side influence on the composition of human blood. This work can open a new avenue to use MXene sheets as an ultraefficient hemoperfusion absorbent to eliminate the cytokine storm syndrome in treatment of severe COVID-19 patients.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/drug therapy , Hemoperfusion/methods , Nanostructures/administration & dosage , SARS-CoV-2/immunology , Titanium/administration & dosage , Adsorption , COVID-19/transmission , COVID-19/virology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/virology , Humans , Interleukin-6/immunology , Nanostructures/chemistry , SARS-CoV-2/isolation & purification , Titanium/chemistry
2.
Rev Med Virol ; 31(6): e2221, 2021 11.
Article in English | MEDLINE | ID: covidwho-1575100

ABSTRACT

The current pandemic caused by SARS-CoV-2 virus infection is known as Covid-19 (coronavirus disease 2019). This disease can be asymptomatic or can affect multiple organ systems. Damage induced by the virus is related to dysfunctional activity of the immune system, but the activity of molecules such as C-reactive protein (CRP) as a factor capable of inducing an inflammatory status that may be involved in the severe evolution of the disease, has not been extensively evaluated. A systematic review was performed using the NCBI-PubMed database to find articles related to Covid-19 immunity, inflammatory response, and CRP published from December 2019 to December 2020. High levels of CRP were found in patients with severe evolution of Covid-19 in which several organ systems were affected and in patients who died. CRP activates complement, induces the production of pro-inflammatory cytokines and induces apoptosis which, together with the inflammatory status during the disease, can lead to a severe outcome. Several drugs can decrease the level or block the effect of CRP and might be useful in the treatment of Covid-19. From this review it is reasonable to conclude that CRP is a factor that can contribute to severe evolution of Covid-19 and that the use of drugs able to lower CRP levels or block its activity should be evaluated in randomized controlled clinical trials.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , C-Reactive Protein/antagonists & inhibitors , COVID-19/drug therapy , Complement System Proteins/immunology , Cytokine Release Syndrome/drug therapy , SARS-CoV-2/pathogenicity , ADAM17 Protein/antagonists & inhibitors , ADAM17 Protein/genetics , ADAM17 Protein/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Biomarkers/blood , C-Reactive Protein/genetics , C-Reactive Protein/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Celecoxib/therapeutic use , Complement System Proteins/genetics , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Cytokines/antagonists & inhibitors , Cytokines/genetics , Cytokines/immunology , Disease Progression , Doxycycline/therapeutic use , Gene Expression Regulation , Humans , Randomized Controlled Trials as Topic , Severity of Illness Index , Survival Analysis
3.
Rev Med Virol ; 31(6): e2234, 2021 11.
Article in English | MEDLINE | ID: covidwho-1574124

ABSTRACT

The coronavirus disease (Covid-19) pandemic is the most serious event of the year 2020, causing considerable global morbidity and mortality. The goal of this review is to provide a comprehensive summary of reported associations between inter-individual immunogenic variants and disease susceptibility or symptoms caused by the coronavirus strains severe acute respiratory syndrome-associated coronavirus, severe acute respiratory syndrome-associated coronavirus-2, and two of the main respiratory viruses, respiratory syncytial virus and influenza virus. The results suggest that the genetic background of the host could affect the levels of proinflammatory and anti-inflammatory cytokines and might modulate the progression of Covid-19 in affected patients. Notably, genetic variations in innate immune components such as toll-like receptors and mannose-binding lectin 2 play critical roles in the ability of the immune system to recognize coronavirus and initiate an early immune response to clear the virus and prevent the development of severe symptoms. This review provides promising clues related to the potential benefits of using immunotherapy and immune modulation for respiratory infectious disease treatment in a personalized manner.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , Genetic Predisposition to Disease , Influenza, Human/immunology , Respiratory Syncytial Virus Infections/immunology , Severe Acute Respiratory Syndrome/immunology , Antiviral Agents/therapeutic use , Biological Variation, Individual , COVID-19/drug therapy , COVID-19/genetics , COVID-19/virology , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/virology , Gene Expression , Humans , Immunity, Innate , Immunologic Factors/therapeutic use , Influenza, Human/drug therapy , Influenza, Human/genetics , Influenza, Human/virology , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Orthomyxoviridae/drug effects , Orthomyxoviridae/immunology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/drug effects , Respiratory Syncytial Viruses/immunology , SARS Virus/drug effects , SARS Virus/immunology , SARS-CoV-2/classification , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/virology , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology
4.
Clin Transl Sci ; 14(6): 2146-2151, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526353

ABSTRACT

Tocilizumab is an IL-6 receptor antagonist with the ability to suppress the cytokine storm in critically ill patients infected with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). We evaluated patients treated with tocilizumab for a SARS-CoV-2 infection who were admitted between March 13, 2020, and April 16, 2020. This was a multicenter study with data collected by chart review both retrospectively and concurrently. Parameters evaluated included age, sex, race, use of mechanical ventilation (MV), usage of steroids and vasopressors, inflammatory markers, and comorbidities. Early dosing was defined as a tocilizumab dose administered prior to or within 1 day of intubation. Late dosing was defined as a dose administered > 1 day after intubation. In the absence of MV, the timing of the dose was related to the patient's date of admission only. We evaluated 145 patients. The average age was 58.1 years, 64% were men, 68.3% had comorbidities, and 60% received steroid therapy. Disposition of patients was 48.3% discharged and 29.3% died, of which 43.9% were African American. MV was required in 55.9%, of which 34.5% died. Avoidance of MV (P = 0.002) and increased survival (P < 0.001) was statistically associated with early dosing. Tocilizumab therapy was effective at decreasing mortality and should be instituted early in the management of critically ill patients with coronavirus disease 2019) COVID-19).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/drug therapy , COVID-19/therapy , Cytokine Release Syndrome/therapy , Respiration, Artificial/statistics & numerical data , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Critical Illness/mortality , Critical Illness/therapy , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Female , Hospital Mortality , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , Severity of Illness Index , Time Factors , Time-to-Treatment , Treatment Outcome
5.
BMC Pulm Med ; 21(1): 338, 2021 Oct 29.
Article in English | MEDLINE | ID: covidwho-1486570

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) accompanies hypercytokinemia, similar to secondary hemophagocytic lymphohistiocytosis (sHLH). We aimed to find if HScore could predict disease severity in COVID-19. HScore was calculated in hospitalized children and adult patients with a proven diagnosis of COVID-19. The need for intensive care unit (ICU), hospital length of stay (LOS), and in-hospital mortality were recorded. The median HScore was 43.0 (IQR 0.0-63.0), which was higher in those who needed ICU care (59.7, 95% CI 46.4-72.7) compared to those admitted to non-ICU medical wards (38.8, 95% CI 32.2-45.4; P = 0.003). It was also significantly higher in patients who died of COVID-19 (105.1, 95% CI 53.7-156.5) than individuals who survived (41.5, 95% CI 35.8-47.1; P = 0.005). Multivariable logistic regression analysis revealed that higher HScore was associated with a higher risk of ICU admission (adjusted OR = 4.93, 95% CI 1.5-16.17, P = 0.008). The risk of death increased by 20% for every ten units increase in HScore (adjusted OR 1.02, 95% CI 1.00-1.04, P = 0.009). Time to discharge was statistically longer in high HScore levels than low levels (HR = 0.41, 95% CI 0.24-0.69). HScore is much lower in patients with severe COVID-19 than sHLH. Higher HScore is associated with more ICU admission, more extended hospitalization, and a higher mortality rate. A modified HScore with a new cut-off seems more practical in predicting disease severity in patients with severe COVID-19.


Subject(s)
COVID-19/diagnosis , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/mortality , COVID-19/pathology , COVID-19/therapy , COVID-19 Testing , Child , Child, Preschool , Critical Care/statistics & numerical data , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/virology , Female , Hospital Mortality , Hospitalization , Humans , Infant , Iran/epidemiology , Length of Stay/statistics & numerical data , Logistic Models , Male , Middle Aged , Predictive Value of Tests , Prognosis , Prospective Studies , Survival Analysis , Young Adult
6.
Immunopharmacol Immunotoxicol ; 43(6): 633-643, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1467231

ABSTRACT

The coronavirus disease-19 (COVID-19), at first, was reported in Wuhan, China, and then rapidly became pandemic throughout the world. Cytokine storm syndrome (CSS) in COVID-19 patients is associated with high levels of cytokines and chemokines that cause multiple organ failure, systemic inflammation, and hemodynamic instabilities. Acute respiratory distress syndrome (ARDS), a common complication of COVID-19, is a consequence of cytokine storm. In this regard, several drugs have been being investigated to suppress this inflammatory condition. Purinergic signaling receptors comprising of P1 adenosine and P2 purinoceptors play a critical role in inflammation. Therefore, activation or inhibition of some subtypes of these kinds of receptors is most likely to be beneficial to attenuate cytokine storm. This article summarizes suggested therapeutic drugs with potential anti-inflammatory effects through purinergic receptors.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/drug therapy , Cytokine Release Syndrome/prevention & control , Cytokines/blood , Purinergic Antagonists/therapeutic use , Receptors, Purinergic/drug effects , SARS-CoV-2/drug effects , Animals , Anti-Inflammatory Agents/adverse effects , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Host-Pathogen Interactions , Humans , Ligands , Molecular Targeted Therapy , Multiple Organ Failure/immunology , Multiple Organ Failure/prevention & control , Multiple Organ Failure/virology , Purinergic Antagonists/adverse effects , Receptors, Purinergic/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Signal Transduction
7.
J Steroid Biochem Mol Biol ; 213: 105964, 2021 10.
Article in English | MEDLINE | ID: covidwho-1433601

ABSTRACT

OBJECTIVE: We aimed to evaluate the vitamin D status of pregnant women with COVID-19, and the association between vitamin D level and severity of COVID-19. METHODS: In this case control study, 159 women with a single pregnancy and tested positive for SARS-CoV-2, and randomly selected 332 healthy pregnant women with similar gestational ages were included. COVID-19 patients were classified as mild, moderate, and severe. Vitamin D deficiency was defined as 25-hydroxycholecalciferol <20 ng/mL (50 nmol/L), and 25-OH D vitamin <10 ng/mL was defined as severe vitamin D deficiency, also 25-OH D vitamin level between 20-29 ng/mL (525-725 nmol/L) was defined as vitamin D insufficiency. RESULTS: Vitamin D levels of the pregnant women in the COVID-19 group (12.46) were lower than the control group (18.76). 25-OH D vitamin levels of those in the mild COVID-19 category (13.69) were significantly higher than those in the moderate/severe category (9.06). In terms of taking vitamin D supplementation, there was no statistically significant difference between the groups. However, it was observed that all of those who had severe COVID-19 were the patients who did not take vitamin D supplementation. CONCLUSION: The vitamin D levels are low in pregnant women with COVID-19. Also, there is a significant difference regarding to vitamin D level and COVID-19 severity in pregnant women. Maintenance of adequate vitamin D level can be useful as an approach for the prevention of an aggressive course of the inflammation induced by this novel coronavirus in pregnant women.


Subject(s)
COVID-19/diet therapy , Cytokine Release Syndrome/diet therapy , Dietary Supplements , Pregnancy Complications, Infectious/diet therapy , Vitamin D Deficiency/diet therapy , Vitamin D/administration & dosage , Adult , COVID-19/blood , COVID-19/pathology , COVID-19/virology , Calcifediol/blood , Case-Control Studies , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Female , Gestational Age , Humans , Pregnancy , Pregnancy Complications, Infectious/blood , Pregnancy Complications, Infectious/pathology , Pregnancy Complications, Infectious/virology , SARS-CoV-2/pathogenicity , Severity of Illness Index , Treatment Outcome , Vitamin D/analogs & derivatives , Vitamin D/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/pathology , Vitamin D Deficiency/virology
8.
Int J Mol Sci ; 22(18)2021 Sep 13.
Article in English | MEDLINE | ID: covidwho-1409702

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic with high infectivity and mortality has caused severe social and economic impacts worldwide. Growing reports of COVID-19 patients with multi-organ damage indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) may also disturb the cardiovascular system. Herein, we used human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) as the in vitro platform to examine the consequence of SARS-CoV2 infection on iCMs. Differentiated iCMs expressed the primary SARS-CoV2 receptor angiotensin-converting enzyme-II (ACE2) and the transmembrane protease serine type 2 (TMPRSS2) receptor suggesting the susceptibility of iCMs to SARS-CoV2. Following the infection of iCMs with SARS-CoV2, the viral nucleocapsid (N) protein was detected in the host cells, demonstrating the successful infection. Bioinformatics analysis revealed that the SARS-CoV2 infection upregulates several inflammation-related genes, including the proinflammatory cytokine tumor necrosis factor-α (TNF-α). The pretreatment of iCMs with TNF-α for 24 h, significantly increased the expression of ACE2 and TMPRSS2, SASR-CoV2 entry receptors. The TNF-α pretreatment enhanced the entry of GFP-expressing SARS-CoV2 pseudovirus into iCMs, and the neutralization of TNF-α ameliorated the TNF-α-enhanced viral entry. Collectively, SARS-CoV2 elevated TNF-α expression, which in turn enhanced the SARS-CoV2 viral entry. Our findings suggest that, TNF-α may participate in the cytokine storm and aggravate the myocardial damage in COVID-19 patients.


Subject(s)
COVID-19/complications , Cardiovascular Diseases/immunology , Cytokine Release Syndrome/immunology , SARS-CoV-2/immunology , Tumor Necrosis Factor-alpha/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cardiovascular Diseases/virology , Cell Differentiation , Cell Line , Computational Biology , Coronavirus Nucleocapsid Proteins/metabolism , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Humans , Induced Pluripotent Stem Cells , Myocardium/cytology , Myocardium/immunology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/virology , Phosphoproteins/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Up-Regulation/immunology , Virus Internalization/drug effects
10.
Front Immunol ; 12: 659419, 2021.
Article in English | MEDLINE | ID: covidwho-1389180

ABSTRACT

Highly pathogenic virus infections usually trigger cytokine storms, which may have adverse effects on vital organs and result in high mortalities. The two cytokines interleukin (IL)-4 and interferon (IFN)-γ play key roles in the generation and regulation of cytokine storms. However, it is still unclear whether the cytokine with the largest induction amplitude is the same under different virus infections. It is unknown which is the most critical and whether there are any mathematical formulas that can fit the changing rules of cytokines. Three coronaviruses (SARS-CoV, MERS-CoV, and SARS-CoV-2), three influenza viruses (2009H1N1, H5N1 and H7N9), Ebola virus, human immunodeficiency virus, dengue virus, Zika virus, West Nile virus, hepatitis B virus, hepatitis C virus, and enterovirus 71 were included in this analysis. We retrieved the cytokine fold change (FC), viral load, and clearance rate data from these highly pathogenic virus infections in humans and analyzed the correlations among them. Our analysis showed that interferon-inducible protein (IP)-10, IL-6, IL-8 and IL-17 are the most common cytokines with the largest induction amplitudes. Equations were obtained: the maximum induced cytokine (max) FC = IFN-γ FC × (IFN-γ FC/IL-4 FC) (if IFN-γ FC/IL-4 FC > 1); max FC = IL-4 FC (if IFN-γ FC/IL-4 FC < 1). For IFN-γ-inducible infections, 1.30 × log2 (IFN-γ FC) = log10 (viral load) - 2.48 - 2.83 × (clearance rate). The clinical relevance of cytokines and their antagonists is also discussed.


Subject(s)
Cytokine Release Syndrome/immunology , Cytokines/blood , Models, Immunological , Virus Diseases/complications , Biomarkers/blood , Biomarkers/metabolism , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/virology , Cytokines/immunology , Cytokines/metabolism , Humans , Viral Load/immunology , Virus Diseases/blood , Virus Diseases/immunology , Virus Diseases/virology
11.
J Med Virol ; 93(9): 5350-5357, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1384240

ABSTRACT

PARP14 and PARP9 play a key role in macrophage immune regulation. SARS-CoV-2 is an emerging viral disease that triggers hyper-inflammation known as a cytokine storm. In this study, using in silico tools, we hypothesize about the immunological phenomena of molecular mimicry between SARS-CoV-2 Nsp3 and the human PARP14 and PARP9. The results showed an epitope of SARS-CoV-2 Nsp3 protein that contains consensus sequences for both human PARP14 and PARP9 that are antigens for MHC Classes 1 and 2, which can potentially induce an immune response against human PARP14 and PARP9; while its depletion causes a hyper-inflammatory state in SARS-CoV-2 patients.


Subject(s)
COVID-19/immunology , Coronavirus Papain-Like Proteases/chemistry , Cytokine Release Syndrome/immunology , Neoplasm Proteins/chemistry , Poly(ADP-ribose) Polymerases/chemistry , SARS-CoV-2/immunology , Amino Acid Sequence , Binding Sites , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Computer Simulation , Consensus Sequence , Coronavirus Papain-Like Proteases/genetics , Coronavirus Papain-Like Proteases/immunology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Gene Expression , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Macrophages/immunology , Macrophages/virology , Molecular Docking Simulation , Molecular Mimicry , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/immunology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Sequence Alignment , Sequence Homology, Amino Acid , Thermodynamics
13.
Signal Transduct Target Ther ; 6(1): 255, 2021 07 07.
Article in English | MEDLINE | ID: covidwho-1377909

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) pandemic has become a global crisis and is more devastating than any other previous infectious disease. It has affected a significant proportion of the global population both physically and mentally, and destroyed businesses and societies. Current evidence suggested that immunopathology may be responsible for COVID-19 pathogenesis, including lymphopenia, neutrophilia, dysregulation of monocytes and macrophages, reduced or delayed type I interferon (IFN-I) response, antibody-dependent enhancement, and especially, cytokine storm (CS). The CS is characterized by hyperproduction of an array of pro-inflammatory cytokines and is closely associated with poor prognosis. These excessively secreted pro-inflammatory cytokines initiate different inflammatory signaling pathways via their receptors on immune and tissue cells, resulting in complicated medical symptoms including fever, capillary leak syndrome, disseminated intravascular coagulation, acute respiratory distress syndrome, and multiorgan failure, ultimately leading to death in the most severe cases. Therefore, it is clinically important to understand the initiation and signaling pathways of CS to develop more effective treatment strategies for COVID-19. Herein, we discuss the latest developments in the immunopathological characteristics of COVID-19 and focus on CS including the current research status of the different cytokines involved. We also discuss the induction, function, downstream signaling, and existing and potential interventions for targeting these cytokines or related signal pathways. We believe that a comprehensive understanding of CS in COVID-19 will help to develop better strategies to effectively control immunopathology in this disease and other infectious and inflammatory diseases.


Subject(s)
COVID-19/therapy , Cytokine Release Syndrome/therapy , Signal Transduction , Cytokine Release Syndrome/virology , Cytokines , Humans , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology
14.
Int J Mol Sci ; 22(16)2021 Aug 17.
Article in English | MEDLINE | ID: covidwho-1360774

ABSTRACT

Neutrophil extracellular traps (NETs), built from mitochondrial or nuclear DNA, proteinases, and histones, entrap and eliminate pathogens in the course of bacterial or viral infections. Neutrophils' activation and the formation of NETs have been described as major risk factors for acute lung injury, multi-organ damage, and mortality in COVID-19 disease. NETs-related lung injury involves both epithelial and endothelial cells, as well as the alveolar-capillary barrier. The markers for NETs formation, such as circulating DNA, neutrophil elastase (NE) activity, or myeloperoxidase-DNA complexes, were found in lung specimens of COVID-19 victims, as well as in sera and tracheal aspirates obtained from COVID-19 patients. DNA threads form large conglomerates causing local obstruction of the small bronchi and together with NE are responsible for overproduction of mucin by epithelial cells. Various components of NETs are involved in the pathogenesis of cytokine storm in SARS-CoV-2 pulmonary disease. NETs are responsible for the interplay between inflammation and thrombosis in the affected lungs. The immunothrombosis, stimulated by NETs, has a poor prognostic significance. Better understanding of the role of NETs in the course of COVID-19 can help to develop novel approaches to the therapeutic interventions in this condition.


Subject(s)
COVID-19/immunology , Extracellular Traps/virology , Lung/immunology , Neutrophils/immunology , SARS-CoV-2/immunology , COVID-19/pathology , COVID-19/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Endothelial Cells/pathology , Epithelial Cells/pathology , Extracellular Traps/immunology , Histones/immunology , Humans , Leukocyte Elastase/deficiency , Leukocyte Elastase/immunology , Lung/pathology , Lung/virology , Neutrophil Activation , Neutrophils/virology , Peroxidase/immunology
15.
Int J Mol Sci ; 22(16)2021 Aug 12.
Article in English | MEDLINE | ID: covidwho-1354987

ABSTRACT

Recently, we have experienced a serious pandemic. Despite significant technological advances in molecular technologies, it is very challenging to slow down the infection spread. It appeared that due to globalization, SARS-CoV-2 spread easily and adapted to new environments or geographical or weather zones. Additionally, new variants are emerging that show different infection potential and clinical outcomes. On the other hand, we have some experience with other pandemics and some solutions in virus elimination that could be adapted. This is of high importance since, as the latest reports demonstrate, vaccine technology might not follow the new, mutated virus outbreaks. Thus, identification of novel strategies and markers or diagnostic methods is highly necessary. For this reason, we present some of the latest views on SARS-CoV-2/COVID-19 therapeutic strategies and raise a solution based on miRNA. We believe that in the face of the rapidly increasing global situation and based on analogical studies of other viruses, the possibility of using the biological potential of miRNA technology is very promising. It could be used as a promising diagnostic and prognostic factor, as well as a therapeutic target and tool.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/drug therapy , COVID-19/therapy , MicroRNAs/genetics , Angiotensin-Converting Enzyme 2/immunology , Antimalarials/pharmacology , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/virology , Humans , Immunization, Passive , MicroRNAs/analysis , Pandemics , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vitamins/pharmacology
16.
BMC Infect Dis ; 21(1): 398, 2021 Apr 29.
Article in English | MEDLINE | ID: covidwho-1327867

ABSTRACT

BACKGROUND: Secondary hemophagocytic lymphohistiocytosis (sHLH) is a life-threatening hyperinflammatory event and a fatal complication of viral infections. Whether sHLH may also be observed in patients with a cytokine storm induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is still uncertain. We aimed to determine the incidence of sHLH in severe COVID-19 patients and evaluate the underlying risk factors. METHOD: Four hundred fifteen severe COVID-19 adult patients were retrospectively assessed for hemophagocytosis score (HScore). A subset of 7 patients were unable to be conclusively scored due to insufficient patient data. RESULTS: In 408 patients, 41 (10.04%) had an HScore ≥169 and were characterized as "suspected sHLH positive". Compared with patients below a HScore threshold of 98, the suspected sHLH positive group had higher D-dimer, total bilirubin, alanine aminotransferase, aspartate aminotransferase, blood urea nitrogen, serum creatinine, triglycerides, ferritin, interleukin-6, C-reactive protein, procalcitonin, lactate dehydrogenase, creatine kinase isoenzyme, troponin, Sequential Organ Failure Assessment (SOFA) score, while leukocyte, hemoglobin, platelets, lymphocyte, fibrinogen, pre-albumin, albumin levels were significantly lower (all P < 0.05). Multivariable logistic regression revealed that high ferritin (>1922.58 ng/mL), low platelets (<101 × 109/L) and high triglycerides (>2.28 mmol/L) were independent risk factors for suspected sHLH in COVID-19 patients. Importantly, COVID-19 patients that were suspected sHLH positive had significantly more multi-organ failure. Additionally, a high HScore (>98) was an independent predictor for mortality in COVID-19. CONCLUSIONS: HScore should be measured as a prognostic biomarker in COVID-19 patients. In particular, it is important that HScore is assessed in patients with high ferritin, triglycerides and low platelets to improve the detection of suspected sHLH.


Subject(s)
COVID-19/complications , Lymphohistiocytosis, Hemophagocytic/etiology , Adult , Aged , Aspartate Aminotransferases/blood , COVID-19/epidemiology , COVID-19/therapy , China/epidemiology , Comorbidity , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/virology , Female , Ferritins/blood , Humans , Incidence , Lymphocyte Count , Lymphohistiocytosis, Hemophagocytic/epidemiology , Lymphohistiocytosis, Hemophagocytic/mortality , Male , Middle Aged , Mortality , Retrospective Studies , Risk Factors
17.
Islets ; 13(3-4): 66-79, 2021 07 04.
Article in English | MEDLINE | ID: covidwho-1310869

ABSTRACT

The link between COVID-19 infection and diabetes has been explored in several studies since the start of the pandemic, with associations between comorbid diabetes and poorer prognosis in patients infected with the virus and reports of diabetic ketoacidosis occurring with COVID-19 infection. As such, significant interest has been generated surrounding mechanisms by which the virus may exert effects on the pancreatic ß cells. In this review, we consider possible routes by which SARS-CoV-2 may impact ß cells. Specifically, we outline data that either support or argue against the idea of direct infection and injury of ß cells by SARS-CoV-2. We also discuss ß cell damage due to a "bystander" effect in which infection with the virus leads to damage to surrounding tissues that are essential for ß cell survival and function, such as the pancreatic microvasculature and exocrine tissue. Studies elucidating the provocation of a cytokine storm following COVID-19 infection and potential impacts of systemic inflammation and increases in insulin resistance on ß cells are also reviewed. Finally, we summarize the existing clinical data surrounding diabetes incidence since the start of the COVID-19 pandemic.


Subject(s)
Insulin-Secreting Cells/physiology , SARS-CoV-2/physiology , Bystander Effect/physiology , COVID-19/complications , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/physiopathology , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/virology , Diabetes Mellitus/immunology , Diabetes Mellitus/metabolism , Diabetes Mellitus/virology , Humans , Inflammation/complications , Inflammation/metabolism , Inflammation/virology , Insulin Resistance/physiology , Insulin-Secreting Cells/virology , Pandemics , SARS-CoV-2/pathogenicity
18.
Molecules ; 25(19)2020 Sep 24.
Article in English | MEDLINE | ID: covidwho-1302391

ABSTRACT

There is a vast practice of using antimalarial drugs, RAS inhibitors, serine protease inhibitors, inhibitors of the RNA-dependent RNA polymerase of the virus and immunosuppressants for the treatment of the severe form of COVID-19, which often occurs in patients with chronic diseases and older persons. Currently, the clinical efficacy of these drugs for COVID-19 has not been proven yet. Side effects of antimalarial drugs can worsen the condition of patients and increase the likelihood of death. Peptides, given their physiological mechanism of action, have virtually no side effects. Many of them are geroprotectors and can be used in patients with chronic diseases. Peptides may be able to prevent the development of the pathological process during COVID-19 by inhibiting SARS-CoV-2 virus proteins, thereby having immuno- and bronchoprotective effects on lung cells, and normalizing the state of the hemostasis system. Immunomodulators (RKDVY, EW, KE, AEDG), possessing a physiological mechanism of action at low concentrations, appear to be the most promising group among the peptides. They normalize the cytokines' synthesis and have an anti-inflammatory effect, thereby preventing the development of disseminated intravascular coagulation, acute respiratory distress syndrome and multiple organ failure.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Immunologic Factors/therapeutic use , Peptides/therapeutic use , Pneumonia, Viral/drug therapy , Respiratory System Agents/therapeutic use , Acute Disease , Anti-Inflammatory Agents/chemical synthesis , Antiviral Agents/chemical synthesis , Betacoronavirus/drug effects , Betacoronavirus/growth & development , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/diagnosis , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/virology , Disseminated Intravascular Coagulation/complications , Disseminated Intravascular Coagulation/diagnosis , Disseminated Intravascular Coagulation/drug therapy , Disseminated Intravascular Coagulation/virology , Host-Pathogen Interactions/drug effects , Humans , Immunologic Factors/chemical synthesis , Lung/blood supply , Lung/drug effects , Lung/pathology , Lung/virology , Pandemics , Peptides/chemical synthesis , Pneumonia, Viral/complications , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , Respiratory Insufficiency/complications , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/prevention & control , Respiratory Insufficiency/virology , Respiratory System Agents/chemical synthesis , SARS-CoV-2 , Structure-Activity Relationship
19.
Nat Commun ; 12(1): 4117, 2021 07 05.
Article in English | MEDLINE | ID: covidwho-1297301

ABSTRACT

Epidemiological and clinical reports indicate that SARS-CoV-2 virulence hinges upon the triggering of an aberrant host immune response, more so than on direct virus-induced cellular damage. To elucidate the immunopathology underlying COVID-19 severity, we perform cytokine and multiplex immune profiling in COVID-19 patients. We show that hypercytokinemia in COVID-19 differs from the interferon-gamma-driven cytokine storm in macrophage activation syndrome, and is more pronounced in critical versus mild-moderate COVID-19. Systems modelling of cytokine levels paired with deep-immune profiling shows that classical monocytes drive this hyper-inflammatory phenotype and that a reduction in T-lymphocytes correlates with disease severity, with CD8+ cells being disproportionately affected. Antigen presenting machinery expression is also reduced in critical disease. Furthermore, we report that neutrophils contribute to disease severity and local tissue damage by amplification of hypercytokinemia and the formation of neutrophil extracellular traps. Together our findings suggest a myeloid-driven immunopathology, in which hyperactivated neutrophils and an ineffective adaptive immune system act as mediators of COVID-19 disease severity.


Subject(s)
COVID-19/complications , COVID-19/immunology , Cytokine Release Syndrome/complications , Monocytes/pathology , Neutrophil Activation , Aged , Antigen-Presenting Cells/immunology , COVID-19/blood , COVID-19/virology , Case-Control Studies , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Cytokines/blood , Extracellular Traps/metabolism , Female , Histocompatibility Antigens Class II/metabolism , Humans , Immunophenotyping , Male , Middle Aged , SARS-CoV-2/physiology , Severity of Illness Index
20.
Nat Rev Gastroenterol Hepatol ; 18(10): 705-715, 2021 10.
Article in English | MEDLINE | ID: covidwho-1287810

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic is an ongoing global health crisis causing major challenges for clinical care in patients with gastrointestinal diseases. Although triggering of anti-viral immune responses is essential for clearance of infection, some patients have severe lung inflammation and multiorgan failure due to marked immune cell dysregulation and cytokine storm syndrome. Importantly, the activation of cytotoxic follicular helper T cells and a reduction of regulatory T cells have a crucial, negative prognostic role. These findings lead to the question of whether immunosuppressive and biologic therapies for gastrointestinal diseases affect the incidence or prognosis of COVID-19 and, thus, whether they should be adjusted to prevent or affect the course of the disease. In this Review, data on the use of such therapies are discussed with a primary focus on inflammatory bowel disease, autoimmune hepatitis and liver transplantation. In particular, the roles of corticosteroids, classic immunosuppressive agents (such as thiopurines and mycophenolate mofetil), small molecules (such as Janus kinase (JAK) inhibitors), and biologic agents (such as tumour necrosis factor (TNF) blockers, vedolizumab and ustekinumab) are reviewed. Finally, the use of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines for the prevention of infection in patients with gastrointestinal diseases and concomitant immunosuppressive or biologic therapy will be discussed.


Subject(s)
Biological Factors/adverse effects , COVID-19/immunology , Cytokine Release Syndrome/immunology , Gastrointestinal Diseases/drug therapy , Immunocompromised Host , Immunosuppressive Agents/adverse effects , Biological Factors/therapeutic use , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cytokine Release Syndrome/prevention & control , Cytokine Release Syndrome/virology , Gastrointestinal Diseases/complications , Gastrointestinal Diseases/immunology , Global Health , Humans , Immunosuppressive Agents/therapeutic use , Incidence , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...