Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 476
Filter
1.
J Leukoc Biol ; 112(1): 201-212, 2022 07.
Article in English | MEDLINE | ID: covidwho-2075041

ABSTRACT

T cells are thought to be an important correlates of protection against SARS-CoV2 infection. However, the composition of T cell subsets in convalescent individuals of SARS-CoV2 infection has not been well studied. The authors determined the lymphocyte absolute counts, the frequency of memory T cell subsets, and the plasma levels of common γ-chain in 7 groups of COVID-19 individuals, based on days since RT-PCR confirmation of SARS-CoV-2 infection. The data show that both absolute counts and frequencies of lymphocytes as well as, the frequencies of CD4+ central and effector memory cells increased, and the frequencies of CD4+ naïve T cells, transitional memory, stem cell memory T cells, and regulatory cells decreased from Days 15-30 to Days 61-90 and plateaued thereafter. In addition, the frequencies of CD8+ central memory, effector, and terminal effector memory T cells increased, and the frequencies of CD8+ naïve cells, transitional memory, and stem cell memory T cells decreased from Days 15-30 to Days 61-90 and plateaued thereafter. The plasma levels of IL-2, IL-7, IL-15, and IL-21-common γc cytokines started decreasing from Days 15-30 till Days 151-180. Severe COVID-19 patients exhibit decreased levels of lymphocyte counts and frequencies, higher frequencies of naïve cells, regulatory T cells, lower frequencies of central memory, effector memory, and stem cell memory, and elevated plasma levels of IL-2, IL-7, IL-15, and IL-21. Finally, there was a significant correlation between memory T cell subsets and common γc cytokines. Thus, the study provides evidence of alterations in lymphocyte counts, memory T cell subset frequencies, and common γ-chain cytokines in convalescent COVID-19 individuals.


Subject(s)
COVID-19 , Cytokines , Memory T Cells , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , COVID-19/blood , COVID-19/immunology , Convalescence , Cytokines/blood , Humans , Immunologic Memory/immunology , Interleukin-15/blood , Interleukin-2/blood , Interleukin-7/blood , Memory T Cells/immunology , RNA, Viral , SARS-CoV-2 , T-Lymphocyte Subsets/immunology
2.
Proc Natl Acad Sci U S A ; 119(30): e2203659119, 2022 07 26.
Article in English | MEDLINE | ID: covidwho-1991766

ABSTRACT

This study analyzed whole blood samples (n = 56) retrieved from 30 patients at 1 to 21 (median 9) mo after verified COVID-19 to determine the polarity and duration of antigen-specific T cell reactivity against severe acute respiratory syndrome coronavirus 2-derived antigens. Multimeric peptides spanning the entire nucleocapsid protein triggered strikingly synchronous formation of interleukin (IL)-4, IL-12, IL-13, and IL-17 ex vivo until ∼70 d after confirmed infection, whereafter this reactivity was no longer inducible. In contrast, levels of nucleocapsid-induced IL-2 and interferon-γ remained stable and highly correlated at 3 to 21 mo after infection. Similar cytokine dynamics were observed in unvaccinated, convalescent patients using whole-blood samples stimulated with peptides spanning the N-terminal portion of the spike 1 protein. These results unravel two phases of T cell reactivity following natural COVID-19: an early, synchronous response indicating transient presence of multipolar, antigen-specific T helper (TH) cells followed by an equally synchronous and durable TH1-like reactivity reflecting long-lasting T cell memory.


Subject(s)
COVID-19 , Cytokines , SARS-CoV-2 , T-Lymphocytes, Helper-Inducer , Antibodies, Viral/blood , Antigens, Viral/immunology , COVID-19/blood , COVID-19/immunology , Convalescence , Cytokines/blood , Humans , Interferon-gamma/blood , Nucleocapsid Proteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes, Helper-Inducer/immunology
3.
Proc Natl Acad Sci U S A ; 119(34): e2117089119, 2022 08 23.
Article in English | MEDLINE | ID: covidwho-1984597

ABSTRACT

The COVID-19 pandemic has incurred tremendous costs worldwide and is still threatening public health in the "new normal." The association between neutralizing antibody levels and metabolic alterations in convalescent patients with COVID-19 is still poorly understood. In the present work, we conducted absolutely quantitative profiling to compare the plasma cytokines and metabolome of ordinary convalescent patients with antibodies (CA), convalescents with rapidly faded antibodies (CO), and healthy subjects. As a result, we identified that cytokines such as M-CSF and IL-12p40 and plasma metabolites such as glycylproline (gly-pro) and long-chain acylcarnitines could be associated with antibody fading in COVID-19 convalescent patients. Following feature selection, we built machine-learning-based classification models using 17 features (six cytokines and 11 metabolites). Overall accuracies of more than 90% were attained in at least six machine-learning models. Of note, the dipeptide gly-pro, a product of enzymatic peptide cleavage catalyzed by dipeptidyl peptidase 4 (DPP4), strongly accumulated in CO individuals compared with the CA group. Furthermore, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination experiments in healthy mice demonstrated that supplementation of gly-pro down-regulates SARS-CoV-2-specific receptor-binding domain antibody levels and suppresses immune responses, whereas the DPP4 inhibitor sitagliptin can counteract the inhibitory effects of gly-pro upon SARS-CoV-2 vaccination. Our findings not only reveal the important role of gly-pro in the immune responses to SARS-CoV-2 infection but also indicate a possible mechanism underlying the beneficial outcomes of treatment with DPP4 inhibitors in convalescent COVID-19 patients, shedding light on therapeutic and vaccination strategies against COVID-19.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Convalescence , Cytokines , Dipeptides , Dipeptidyl-Peptidase IV Inhibitors , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibody Formation , COVID-19/blood , COVID-19/drug therapy , COVID-19/immunology , Cytokines/blood , Dipeptides/blood , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Humans , Machine Learning , Metabolome , Mice , SARS-CoV-2 , Vaccination
4.
J Cell Physiol ; 237(8): 3394-3407, 2022 08.
Article in English | MEDLINE | ID: covidwho-1905874

ABSTRACT

Purinergic signaling modulates immune function and is involved in the immunopathogenesis of several viral infections. This study aimed to investigate alterations in purinergic pathways in coronavirus disease 2019 (COVID-19) patients. Mild and severe COVID-19 patients had lower extracellular adenosine triphosphate and adenosine levels, and higher cytokines than healthy controls. Mild COVID-19 patients presented lower frequencies of CD4+ CD25+ CD39+ (activated/memory regulatory T cell [mTreg]) and increased frequencies of high-differentiated (CD27- CD28- ) CD8+ T cells compared with healthy controls. Severe COVID-19 patients also showed higher frequencies of CD4+ CD39+ , CD4+ CD25- CD39+ (memory T effector cell), and high-differentiated CD8+ T cells (CD27- CD28- ), and diminished frequencies of CD4+ CD73+ , CD4+ CD25+ CD39+ mTreg cell, CD8+ CD73+ , and low-differentiated CD8+ T cells (CD27+ CD28+ ) in the blood in relation to mild COVID-19 patients and controls. Moreover, severe COVID-19 patients presented higher expression of PD-1 on low-differentiated CD8+ T cells. Both severe and mild COVID-19 patients presented higher frequencies of CD4+ Annexin-V+ and CD8+ Annexin-V+ T cells, indicating increased T-cell apoptosis. Plasma samples collected from severe COVID-19 patients were able to decrease the expression of CD73 on CD4+ and CD8+ T cells of a healthy donor. Interestingly, the in vitro incubation of peripheral blood mononuclear cell from severe COVID-19 patients with adenosine reduced the nuclear factor-κB activation in T cells and monocytes. Together, these data add new knowledge to the COVID-19 immunopathology through purinergic regulation.


Subject(s)
5'-Nucleotidase , Apyrase , COVID-19 , T-Lymphocytes , 5'-Nucleotidase/metabolism , Adenosine/blood , Adenosine Triphosphate/blood , Annexins , Apyrase/metabolism , CD28 Antigens/metabolism , COVID-19/immunology , Cytokines/blood , GPI-Linked Proteins/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Receptors, Purinergic , Signal Transduction , T-Lymphocytes/immunology
5.
Front Immunol ; 13: 844304, 2022.
Article in English | MEDLINE | ID: covidwho-1903005

ABSTRACT

Background: The role of type I interferons (IFNs) in the early phase of COVID-19 remains unclear. Objectives: To evaluate the relationship between IFN-I levels in patients with COVID-19 and clinical presentation, SARS-CoV-2 viral load, and other major pro-inflammatory cytokines. Methods: This prospective observational study recruited patients hospitalized with COVID-19. The levels of interferon-alpha (IFN-α), interferon-beta (IFN-ß), interleukin-6 (IL-6), and C-X-C motif chemokine ligand (CXCL10) within 5 days after symptom onset were measured using an ELISA, in serum from blood collected within 5 days after the onset of symptoms. The SARS-CoV-2 viral load was determined via qPCR using nasal-swab specimens and serum. Results: The study enrolled 50 patients with COVID-19. IFN-α levels were significantly higher in patients who presented with pneumonia or developed hypoxemic respiratory failure (p < 0.001). Furthermore, IFN-α levels were associated with viral load in nasal-swab specimens and RNAemia (p < 0.05). In contrast, there was no significant association between IFN-ß levels and the presence of pneumonia or RNAemia, despite showing a stronger association with nasal-swab viral load (p < 0.001). Correlation analysis showed that the serum levels of IFN-α significantly correlated with those of IFN-ß, IL-6, and CXCL10, while the levels of IFN-ß did not correlate with those of IL-6 or CXCL10. Conclusions: Serum IFN-I levels in the early phase of SARS-CoV-2 infection were higher in patients who developed hypoxemic respiratory failure. The association between IFN-α, IL-6, and CXCL10 may reflect the systemic immune response against SARS-CoV-2 invasion into pulmonary circulation, which might be an early predictor of respiratory failure due to COVID-19.


Subject(s)
COVID-19/blood , Interferon Type I/blood , Respiratory Insufficiency/blood , Adult , COVID-19/complications , COVID-19/virology , Cytokines/blood , Female , Hospitalization , Humans , Inflammation , Male , Middle Aged , Prospective Studies , Respiratory Insufficiency/etiology , Respiratory Insufficiency/virology , SARS-CoV-2/pathogenicity , Viral Load
6.
Turk J Med Sci ; 51(SI-1): 3301-3311, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1884486

ABSTRACT

The COVID-19 pandemic has created a major alteration in the medical literature including the sepsis discussion. From the outset of the pandemic, various reports have indicated that although there are some unique features pertinent to COVID-19, many of its acute manifestations are similar to sepsis caused by other pathogens. As a consequence, the old definitions now require consideration of this new etiologic agent, namely SARS-CoV-2. Although the pathogenesis of COVID-19 has not been fully explained, the data obtained so far in hospitalized patients has revealed that serum cytokine and chemokine levels are high in severe COVID-19 patients, similar to those found with sepsis. COVID-19 may involve multiple organ systems. In addition to the lungs, the virus has been isolated from blood, urine, faeces, liver, and gallbladder. Results from autopsy series in COVID-19 patients have demonstrated a wide range of findings, including vascular involvement, congestion, consolidation, and hemorrhage as well as diffuse alveolar damage in lung tissue consistent with acute respiratory distress syndrome (ARDS). The presence of viral cytopathic-like changes, infiltration of inflammatory cells (mononuclear cells and macrophages), and viral particles in histopathological samples are considered a consequence of both direct viral infection and immune hyperactivation. Thromboembolism and hyper-coagulopathy are other components in the pathogenesis of severe COVID-19. Although the pathogenesis of hypercoagulability is not fully understood, it has been pointed out that all three components of Virchow's triad (endothelial injury, stasis, and hypercoagulable state) play a major role in contributing to clot formation in severe COVID-19 infection. In severe COVID-19 cases, laboratory parameters such as hematological findings, coagulation tests, liver function tests, D-dimer, ferritin, and acute phase reactants such as CRP show marked alterations, which are suggestive of a cytokine storm. Another key element of COVID-19 pathogenesis in severe cases is its similarity or association with hemophagocytic lymphohistiocytosis (HLH). SARS-CoV-2 induced cytokine storm has significant clinical and laboratory findings overlapping with HLH. Viral sepsis has some similarities but also some differences when compared to bacterial sepsis. In bacterial sepsis, systemic inflammation affecting multiple organs is more dominant than in COVID-19 sepsis. While bacterial sepsis causes an early and sudden onset clinical deterioration, viral diseases may exhibit a relatively late onset and chronic course. Consideration of severe COVID-19 disease as a sepsis syndrome has relevance and may assist in terms of determining treatments that will modulate the immune response, limit intrinsic damage to tissue and organs, and potentially improve outcome.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome , Inflammation , Lymphohistiocytosis, Hemophagocytic , Sepsis/complications , Chemokines/blood , Cytokines/blood , Humans , Lymphohistiocytosis, Hemophagocytic/immunology , Pandemics , SARS-CoV-2 , Sepsis/blood
7.
Sci Rep ; 12(1): 3954, 2022 03 10.
Article in English | MEDLINE | ID: covidwho-1740473

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in a variety of clinical symptoms ranging from no or mild to severe disease. Currently, there are multiple postulated mechanisms that may push a moderate to severe disease into a critical state. Human serum contains abundant evidence of the immune status following infection. Cytokines, chemokines, and antibodies can be assayed to determine the extent to which a patient responded to a pathogen. We examined serum and plasma from a cohort of patients infected with SARS-CoV-2 early in the pandemic and compared them to negative-control sera. Cytokine and chemokine concentrations varied depending on the severity of infection, and antibody responses were significantly increased in severe cases compared to mild to moderate infections. Neutralization data revealed that patients with high titers against an early 2020 SARS-CoV-2 isolate had detectable but limited neutralizing antibodies against the emerging SARS-CoV-2 Alpha, Beta and Delta variants. This study highlights the potential of re-infection for recovered COVID-19 patients.


Subject(s)
Broadly Neutralizing Antibodies/immunology , COVID-19/virology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/immunology , Chemokines/blood , Cytokines/blood , Female , Humans , Male , Middle Aged , Patient Acuity , Young Adult
8.
Cell Host Microbe ; 27(6): 879-882.e2, 2020 06 10.
Article in English | MEDLINE | ID: covidwho-1719463

ABSTRACT

The inflammatory response to SARS-coronavirus-2 (SARS-CoV-2) infection is thought to underpin COVID-19 pathogenesis. We conducted daily transcriptomic profiling of three COVID-19 cases and found that the early immune response in COVID-19 patients is highly dynamic. Patient throat swabs were tested daily for SARS-CoV-2, with the virus persisting for 3 to 4 weeks in all three patients. Cytokine analyses of whole blood revealed increased cytokine expression in the single most severe case. However, most inflammatory gene expression peaked after respiratory function nadir, except expression in the IL1 pathway. Parallel analyses of CD4 and CD8 expression suggested that the pro-inflammatory response may be intertwined with T cell activation that could exacerbate disease or prolong the infection. Collectively, these findings hint at the possibility that IL1 and related pro-inflammatory pathways may be prognostic and serve as therapeutic targets for COVID-19. This work may also guide future studies to illuminate COVID-19 pathogenesis and develop host-directed therapies.


Subject(s)
Coronavirus Infections/genetics , Coronavirus Infections/immunology , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Adult , Aged , Biological Variation, Individual , COVID-19 , Cluster Analysis , Coronavirus Infections/blood , Coronavirus Infections/pathology , Cytokines/blood , Gene Expression Regulation , Humans , Male , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/pathology , Transcriptome , Up-Regulation
9.
Nat Commun ; 13(1): 946, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1709499

ABSTRACT

COVID-19 complications still present a huge burden on healthcare systems and warrant predictive risk models to triage patients and inform early intervention. Here, we profile 893 plasma proteins from 50 severe and 50 mild-moderate COVID-19 patients, and 50 healthy controls, and show that 375 proteins are differentially expressed in the plasma of severe COVID-19 patients. These differentially expressed plasma proteins are implicated in the pathogenesis of COVID-19 and present targets for candidate drugs to prevent or treat severe complications. Based on the plasma proteomics and clinical lab tests, we also report a 12-plasma protein signature and a model of seven routine clinical tests that validate in an independent cohort as early risk predictors of COVID-19 severity and patient survival. The risk predictors and candidate drugs described in our study can be used and developed for personalized management of SARS-CoV-2 infected patients.


Subject(s)
Blood Proteins/analysis , COVID-19/mortality , COVID-19/pathology , Severity of Illness Index , Adult , COVID-19/drug therapy , Cytokines/blood , Female , Humans , Male , Middle Aged , Prognosis , Proteomics/methods , SARS-CoV-2/drug effects , Young Adult
10.
J Immunol ; 208(2): 321-327, 2022 01 15.
Article in English | MEDLINE | ID: covidwho-1708204

ABSTRACT

Previous studies have demonstrated that 8-hydroxydeoxyguanosine (8-OHdG) exerted key roles in various pulmonary diseases, but the evidence for its role in community-acquired pneumonia (CAP) was lacking. The goal of this research was to evaluate the correlations of serum 8-OHdG with the severity and prognosis among patients with CAP through a prospective cohort study. A total of 239 patients with CAP and 239 healthy participants were enrolled. Fasting blood samples were collected. 8-OHdG and inflammatory cytokines were measured by ELISA. On admission, serum 8-OHdG was significantly increased in patients with CAP compared with control subjects. Besides, serum 8-OHdG was incrementally increased in line with CAP severity scores. Pearson correlative analysis found that serum 8-OHdG was correlated with clinical characteristics and inflammatory cytokines in patients with CAP. Linear and logistic regression analysis showed that serum 8-OHdG was positively associated with CAP severity scores. Furthermore, the prognostic outcomes were tracked. Higher serum 8-OHdG on admission increased the risks for intensive care unit admission, mechanical ventilation, vasoactive agent usage, death, and longer hospital stay among patients with CAP. Serum 8-OHdG combination with confusion, respiratory rate, blood pressure, and age ≥65 y or pneumonia severity index had stronger predictive powers for death than single 8-OHdG, CAP severity scores, or several inflammatory cytokines in patients with CAP. These results indicated that serum 8-OHdG is positively associated with the severity and poor prognosis in patients with CAP, demonstrating that 8-OHdG may be involved in the pathophysiology process of CAP.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine/blood , Community-Acquired Infections/pathology , Pneumonia/blood , Pneumonia/mortality , Severity of Illness Index , Aged , Biomarkers/blood , Community-Acquired Infections/blood , Critical Care/statistics & numerical data , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Female , Humans , Length of Stay/statistics & numerical data , Male , Middle Aged , Oxidative Stress/physiology , Pneumonia/pathology , Prognosis , Prospective Studies , Respiration, Artificial/statistics & numerical data
11.
Nat Commun ; 13(1): 915, 2022 02 17.
Article in English | MEDLINE | ID: covidwho-1703249

ABSTRACT

Quantitative or qualitative differences in immunity may drive clinical severity in COVID-19. Although longitudinal studies to record the course of immunological changes are ample, they do not necessarily predict clinical progression at the time of hospital admission. Here we show, by a machine learning approach using serum pro-inflammatory, anti-inflammatory and anti-viral cytokine and anti-SARS-CoV-2 antibody measurements as input data, that COVID-19 patients cluster into three distinct immune phenotype groups. These immune-types, determined by unsupervised hierarchical clustering that is agnostic to severity, predict clinical course. The identified immune-types do not associate with disease duration at hospital admittance, but rather reflect variations in the nature and kinetics of individual patient's immune response. Thus, our work provides an immune-type based scheme to stratify COVID-19 patients at hospital admittance into high and low risk clinical categories with distinct cytokine and antibody profiles that may guide personalized therapy.


Subject(s)
Antibodies, Viral/blood , COVID-19/pathology , Cytokines/blood , SARS-CoV-2/immunology , Severity of Illness Index , Aged , Coronavirus Nucleocapsid Proteins/immunology , Disease Progression , Female , Hospitalization , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Immunophenotyping/methods , Machine Learning , Male , Middle Aged , Phosphoproteins/immunology
12.
J Trop Pediatr ; 68(2)2022 02 03.
Article in English | MEDLINE | ID: covidwho-1702787

ABSTRACT

Predictors of early diagnosis and severe infection in children with coronavirus disease 2019 (COVID-19), which has killed more than 4 million people worldwide, have not been identified. However, some biomarkers, including cytokines and chemokines, are associated with the diagnosis, pathogenesis and severity of COVID-19 in adults. We examined whether such biomarkers can be used to predict the diagnosis and prognosis of COVID-19 in pediatric patients. Eighty-nine children were included in the study, comprising three patient groups of 69 patients (6 severe, 36 moderate and 27 mild) diagnosed with COVID-19 by real-time polymerase chain reaction observed for 2-216 months and clinical findings and 20 healthy children in the same age group. Hemogram, coagulation, inflammatory parameters and serum levels of 16 cytokines and chemokines were measured in blood samples and were analyzed and compared with clinical data. Interleukin 1-beta (IL-1ß), interleukin-12 (IL-12) and interferon gamma-induced protein 10 (IP-10) levels were significantly higher in the COVID-19 patients (p = 0.035, p = 0.006 and p < 0.001). Additionally, D-dimer and IP-10 levels were higher in the severe group (p = 0.043 for D-dimer, area under the curve = 0.743, p = 0.027 for IP-10). Lymphocytes, C-reactive protein and procalcitonin levels were not diagnostic or prognostic factors in pediatric patients (p = 0.304, p = 0.144 and p = 0.67). Increased IL-1ß, IL-12 and IP-10 levels in children with COVID-19 are indicators for early diagnosis, and D-dimer and IP-10 levels are predictive of disease severity. In children with COVID-19, these biomarkers can provide information on prognosis and enable early treatment.


Subject(s)
Biomarkers , COVID-19 , Cytokines/blood , Biomarkers/blood , COVID-19/diagnosis , Chemokine CXCL10 , Chemokines/blood , Child , Fibrin Fibrinogen Degradation Products , Humans , Interleukin-12 , Interleukin-1beta , Prognosis , SARS-CoV-2 , Severity of Illness Index
13.
Nat Commun ; 13(1): 1018, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1702467

ABSTRACT

The antiviral immune response to SARS-CoV-2 infection can limit viral spread and prevent development of pneumonic COVID-19. However, the protective immunological response associated with successful viral containment in the upper airways remains unclear. Here, we combine a multi-omics approach with longitudinal sampling to reveal temporally resolved protective immune signatures in non-pneumonic and ambulatory SARS-CoV-2 infected patients and associate specific immune trajectories with upper airway viral containment. We see a distinct systemic rather than local immune state associated with viral containment, characterized by interferon stimulated gene (ISG) upregulation across circulating immune cell subsets in non-pneumonic SARS-CoV2 infection. We report reduced cytotoxic potential of Natural Killer (NK) and T cells, and an immune-modulatory monocyte phenotype associated with protective immunity in COVID-19. Together, we show protective immune trajectories in SARS-CoV2 infection, which have important implications for patient prognosis and the development of immunomodulatory therapies.


Subject(s)
COVID-19/immunology , Adult , Aged , Aged, 80 and over , Ambulatory Care , Cytokines/blood , Female , Gene Expression Regulation , Gene Regulatory Networks , Humans , Interferons/immunology , Killer Cells, Natural/immunology , Longitudinal Studies , Male , Middle Aged , Monocytes/immunology , Nasopharynx/immunology , Nasopharynx/virology , SARS-CoV-2/physiology , T-Lymphocytes/immunology
14.
Microbiol Spectr ; 10(1): e0167121, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1691404

ABSTRACT

The vascular endothelial injury occurs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, but the mechanisms are poorly understood. We sought to determine the frequency and type of cytokine elevations and their relationship to endothelial injury induced by plasma from patients with SARS-CoV-2 versus controls. Plasma from eight consecutively enrolled patients hospitalized with acute SARS-CoV-2 infection was compared to controls. Endothelial cell (EC) barrier integrity was evaluated using ECIS (electric cell-substrate impedance sensing) on human lung microvascular EC. Plasma from all SARS-CoV-2 but none from controls decreased transendothelial resistance to a greater degree than that produced by tumor necrosis factor-alpha (TNF-α), the positive control for the assay. Thrombin, angiopoietin 2 (Ang2), and vascular endothelial growth factor (VEGF), complement factor C3a and C5a, and spike protein increased endothelial permeability, but to a lesser extent and a shorter duration when compared to SARS-CoV-2 plasma. Analysis of Ang2, VEGF, and 15 cytokines measured in plasma revealed striking patient-to-patient variability within the SARS-CoV-2 patients. Pretreatment with thrombin inhibitors, single, or combinations of neutralizing antibodies against cytokines, Ca3 and C5a receptor antagonists, or with ACE2 antibody failed to lessen the SARS-CoV-2 plasma-induced EC permeability. The EC barrier destructive effects of plasma from patients with SARS-CoV-2 were susceptible to heat inactivation. Plasma from patients hospitalized with acute SARS-CoV-2 infection uniformly disrupts lung microvascular integrity. No predicted single, or set of, cytokine(s) accounted for the enhanced vascular permeability, although the factor(s) were heat-labile. A still unidentified but potent circulating factor(s) appears to cause the EC disruption in SARS-CoV-2 infected patients. IMPORTANCE Lung vascular endothelial injury in SARS-CoV-2 patients is one of the most important causes of morbidity and mortality and has been linked to more severe complications including acute respiratory distress syndrome (ARDS) and subsequent death due to multiorgan failure. We have demonstrated that in eight consecutive patients with SARS-CoV-2, who were not selected for evidence of endothelial injury, the diluted plasma-induced intense lung microvascular damage, in vitro. Known endothelial barrier-disruptive agents and proposed mediators of increased endothelial permeability in SARS-CoV-2, induced changes in permeability that were smaller in magnitude and shorter in duration than plasma from patients with SARS-CoV-2. The effect on endothelial cell permeability of plasma from patients with SARS-CoV-2 was heat-labile. The main plasma factor that causes the increased endothelial permeability remains to be identified. Our study provides a possible approach for future studies to understand the underlying mechanisms leading to vascular injury in SARS-CoV-2 infections.


Subject(s)
COVID-19/blood , Capillary Permeability , Cytokines/blood , Lung/blood supply , SARS-CoV-2/physiology , Adult , Aged , COVID-19/physiopathology , COVID-19/virology , Endothelial Cells/virology , Female , Humans , Lung/virology , Male , Middle Aged , SARS-CoV-2/genetics , Tumor Necrosis Factor-alpha/blood , Vascular Endothelial Growth Factor A , Young Adult
15.
Front Immunol ; 12: 781100, 2021.
Article in English | MEDLINE | ID: covidwho-1686474

ABSTRACT

Multiple studies have investigated the role of blood circulating proteins in COVID-19 disease using the Olink affinity proteomics platform. However, study inclusion criteria and sample collection conditions varied between studies, leading to sometimes incongruent associations. To identify the most robust protein markers of the disease and the underlying pathways that are relevant under all conditions, it is essential to identify proteins that replicate most widely. Here we combined the Olink proteomics profiles of two newly recruited COVID-19 studies (N=68 and N=98) with those of three previously published COVID-19 studies (N=383, N=83, N=57). For these studies, three Olink panels (Inflammation and Cardiovascular II & III) with 253 unique proteins were compared. Case/control analysis revealed thirteen proteins (CCL16, CCL7, CXCL10, CCL8, LGALS9, CXCL11, IL1RN, CCL2, CD274, IL6, IL18, MERTK, IFNγ, and IL18R1) that were differentially expressed in COVID-19 patients in all five studies. Except CCL16, which was higher in controls, all proteins were overexpressed in COVID-19 patients. Pathway analysis revealed concordant trends across all studies with pathways related to cytokine-cytokine interaction, IL18 signaling, fluid shear stress and rheumatoid arthritis. Our results reaffirm previous findings related to a COVID-19 cytokine storm syndrome. Cross-study robustness of COVID-19 specific protein expression profiles support the utility of affinity proteomics as a tool and for the identification of potential therapeutic targets.


Subject(s)
Blood Proteins/metabolism , COVID-19/blood , Cytokines/blood , Transcriptome/genetics , Aged , Biomarkers/blood , COVID-19/immunology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/pathology , Cytokines/metabolism , Female , Gene Expression Profiling , Humans , Inflammation/blood , Male , Middle Aged , Proteomics , SARS-CoV-2/immunology , Signal Transduction
16.
Front Immunol ; 12: 745713, 2021.
Article in English | MEDLINE | ID: covidwho-1686471

ABSTRACT

Background: Hypovitaminosis D has been suggested to play a possible role in coronavirus disease 2019 (COVID-19) infection. Methods: The aim of this study is to analyze the relationship between vitamin D status and a biochemical panel of inflammatory markers in a cohort of patients with COVID-19. A secondary endpoint was to evaluate the correlation between 25OHD levels and the severity of the disease. Ninety-three consecutive patients with COVID-19-related pneumonia were evaluated from March to May 2020 in two hospital units in Pisa, in whom biochemical inflammatory markers, 25OHD levels, P/F ratio at nadir during hospitalization, and complete clinical data were available. Results: Sixty-five percent of patients presented hypovitaminosis D (25OHD ≤ 20 ng/ml) and showed significantly higher IL-6 [20.8 (10.9-45.6) vs. 12.9 (8.7-21.1) pg/ml, p = 0.02], CRP [10.7 (4.2-19.2) vs. 5.9 (1.6-8.1) mg/dl, p = 0.003], TNF-α [8.9 (6.0-14.8) vs. 4.4 (1.5-10.6) pg/ml, p = 0.01], D-dimer [0.53 (0.25-0.72) vs. 0.22 (0.17-0.35) mg/l, p = 0.002], and IL-10 [3.7 (1.8-6.9) vs. 2.3 (0.5-5.8) pg/ml, p = 0.03]. A significant inverse correlation was found between 25OHD and all these markers, even adjusted for age and sex. Hypovitaminosis D was prevalent in patients with severe ARDS, compared with the other groups (75% vs. 68% vs. 55%, p < 0.001), and 25OHD levels were lower in non-survivor patients. Conclusions: The relationship between 25OHD levels and inflammatory markers suggests that vitamin D status needs to be taken into account in the management of these patients. If vitamin D is a marker of poor prognosis or a possible risk factor with beneficial effects from supplementation, this still needs to be elucidated.


Subject(s)
COVID-19 , SARS-CoV-2/metabolism , Vitamin D Deficiency , Vitamin D/analogs & derivatives , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/mortality , Cytokines/blood , Disease-Free Survival , Female , Humans , Inflammation , Male , Middle Aged , Retrospective Studies , Survival Rate , Vitamin D/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/mortality
17.
Inflamm Res ; 71(3): 331-341, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1680666

ABSTRACT

OBJECTIVE AND DESIGN: Perturbations of peripheral T cell homeostasis and dysregulation of the immune response to SARS-CoV-2, especially in severely ill patients, were observed. The aim of this study was to analyze the cytokine producing ability of peripheral blood cells from severely ill COVID-19 patients upon non-specific in vitro stimulation with phytohemagglutinin (PHA). Possible associations of cytokine levels with patients' age and gender, glucocorticosteroid therapy, as well as the trend of the inflammatory process at the time of sampling (increased or decreased) were also analyzed. SUBJECTS AND METHODS: The study included 23 COVID-19 patients and 17 healthy control subjects. The concentrations of selected Th1/Th2/Th9/Th17/Th22 cytokines were determined using a multi-analyte flow assay kit. RESULTS: Our results showed that peripheral blood cells from severely ill COVID-19 patients had a much reduced ability to produce cytokines in comparison to healthy controls. When inflammation was raised, blood cells produced more IL-6 and IL-17, which led to increases of some Th17/Th1 and Th17/Th2 ratios, skewing towards the Th17 type of response. The methylprednisolone used in the treatment of patients with COVID-19 influences the production of several cytokines in dose dependent manner. CONCLUSION: Our results indicate that the stage of the inflammatory process at the time of sampling and the dose of the applied glucocorticosteroid therapy might influence cytokine producing ability upon non-specific stimulation of T cells in vitro.


Subject(s)
COVID-19/blood , Cytokines/blood , SARS-CoV-2 , Adult , Aged , Anti-Inflammatory Agents/therapeutic use , Blood Cells/drug effects , Blood Cells/metabolism , COVID-19/drug therapy , Cells, Cultured , Female , Glucocorticoids/therapeutic use , Humans , Male , Methylprednisolone/therapeutic use , Middle Aged , Mitogens/pharmacology , Phytohemagglutinins/pharmacology
18.
Cell ; 185(5): 896-915.e19, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1670278

ABSTRACT

The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunity, Mucosal , Administration, Intranasal , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , COVID-19/virology , COVID-19 Vaccines/immunology , Cytokines/blood , Genetic Vectors/genetics , Genetic Vectors/immunology , Genetic Vectors/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutralization Tests , Nucleocapsid/genetics , Nucleocapsid/immunology , Nucleocapsid/metabolism , Pan troglodytes , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
19.
Sci Rep ; 12(1): 1626, 2022 01 31.
Article in English | MEDLINE | ID: covidwho-1661980

ABSTRACT

The ongoing COVID-19 pandemic is one of the biggest health challenges of recent decades. Among the causes of mortality triggered by SARS-CoV-2 infection, the development of an inflammatory "cytokine storm" (CS) plays a determinant role. Here, we used transcriptomic data from the bronchoalveolar lavage fluid (BALF) of COVID-19 patients undergoing a CS to obtain gene-signatures associated to this pathology. Using these signatures, we interrogated the Connectivity Map (CMap) dataset that contains the effects of over 5000 small molecules on the transcriptome of human cell lines, and looked for molecules which effects on transcription mimic or oppose those of the CS. As expected, molecules that potentiate immune responses such as PKC activators are predicted to worsen the CS. In addition, we identified the negative regulation of female hormones among pathways potentially aggravating the CS, which helps to understand the gender-related differences in COVID-19 mortality. Regarding drugs potentially counteracting the CS, we identified glucocorticoids as a top hit, which validates our approach as this is the primary treatment for this pathology. Interestingly, our analysis also reveals a potential effect of MEK inhibitors in reverting the COVID-19 CS, which is supported by in vitro data that confirms the anti-inflammatory properties of these compounds.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , COVID-19/drug therapy , Computer Simulation , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/prevention & control , Glucocorticoids/therapeutic use , Pandemics , Protein Kinase Inhibitors/therapeutic use , SARS-CoV-2 , Anti-Inflammatory Agents/pharmacology , Bronchoalveolar Lavage Fluid/virology , COVID-19/blood , COVID-19/epidemiology , Cytokine Release Syndrome/mortality , Cytokines/blood , Female , Gene Expression Profiling/methods , Glucocorticoids/pharmacology , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , Male , Protein Kinase Inhibitors/pharmacology , Sex Factors , Transcriptome/genetics
20.
Int J Infect Dis ; 112: 227-234, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1654536

ABSTRACT

OBJECTIVES: As coronavirus disease 2019 (COVID-19) rages on worldwide, there is an urgent need to characterize immune correlates of protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and to identify immune determinants of COVID-19 severity. METHODS: This study examined the longitudinal profiles of neutralizing antibody (NAb) titers in hospitalized COVID-19 patients clinically diagnosed with mild symptoms, pneumonia, or severe pneumonia, up to 12 months after illness onset, using live-virus neutralization. Multiplex, correlation, and network analyses were used to characterize serum-derived inflammatory cytokine profiles in all severity groups. RESULTS: Peak NAb titers correlated with disease severity, and NAb titers declined over the course of 12 months regardless of severity. Multiplex analyses revealed that IP-10, IL-6, IL-7, and VEGF-α were significantly elevated in severe pneumonia cases compared to those with mild symptoms and pneumonia cases. Correlation and network analyses further suggested that cytokine network formation was distinct in different COVID-19 severity groups. CONCLUSIONS: The study findings inform on the long-term kinetics of naturally acquired serological immunity against SARS-CoV-2 and highlight the importance of identifying key cytokine networks for potential therapeutic immunomodulation.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 , Cytokines/blood , COVID-19/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL