Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
J Med Virol ; 95(6): e28847, 2023 06.
Article in English | MEDLINE | ID: covidwho-20240737

ABSTRACT

Recently emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants are generally less pathogenic than previous strains. However, elucidating the molecular basis for pulmonary immune response alterations is challenging owing to the virus's heterogeneous distribution within complex tissue structure. Here, we revealed the spatial transcriptomic profiles of pulmonary microstructures at the SARS-CoV-2 infection site in the nine cynomolgus macaques upon inoculation with the Delta and Omicron variants. Delta- and Omicron-infected lungs had upregulation of genes involved in inflammation, cytokine response, complement, cell damage, proliferation, and differentiation pathways. Depending on the tissue microstructures (alveoli, bronchioles, and blood vessels), there were differences in the types of significantly upregulated genes in each pathway. Notably, a limited number of genes involved in cytokine and cell damage response were differentially expressed between bronchioles of the Delta- and Omicron-infection groups. These results indicated that despite a significant antigenic shift in SARS-CoV-2, the host immune response mechanisms induced by the variants were relatively consistent, with limited transcriptional alterations observed only in large airways. This study may aid in understanding the pathogenesis of SARS-CoV-2 and developing a clinical strategy for addressing immune dysregulation by identifying potential transcriptional biomarkers within pulmonary microstructures during infection with emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , SARS-CoV-2/genetics , Transcriptome , COVID-19/genetics , Pulmonary Alveoli , Cytokines/genetics , Macaca
2.
Front Immunol ; 14: 1151058, 2023.
Article in English | MEDLINE | ID: covidwho-2318373

ABSTRACT

Introduction: Mannose-binding lectin (MBL) promotes opsonization, favoring phagocytosis and activation of the complement system in response to different microorganisms, and may influence the synthesis of inflammatory cytokines. This study investigated the association of MBL2 gene polymorphisms with the plasma levels of MBL and inflammatory cytokines in COVID-19. Methods: Blood samples from 385 individuals (208 with acute COVID-19 and 117 post-COVID-19) were subjected to real-time PCR genotyping. Plasma measurements of MBL and cytokines were performed by enzyme-linked immunosorbent assay and flow cytometry, respectively. Results: The frequencies of the polymorphic MBL2 genotype (OO) and allele (O) were higher in patients with severe COVID-19 (p< 0.05). The polymorphic genotypes (AO and OO) were associated with lower MBL levels (p< 0.05). IL-6 and TNF-α were higher in patients with low MBL and severe COVID-19 (p< 0.05). No association of polymorphisms, MBL levels, or cytokine levels with long COVID was observed. Discussion: The results suggest that, besides MBL2 polymorphisms promoting a reduction in MBL levels and therefore in its function, they may also contribute to the development of a more intense inflammatory process responsible for the severity of COVID-19.


Subject(s)
COVID-19 , Mannose-Binding Lectin , Humans , Tumor Necrosis Factor-alpha/genetics , Interleukin-6/genetics , Cytokines/genetics , Post-Acute COVID-19 Syndrome , COVID-19/genetics , Polymorphism, Genetic , Mannose-Binding Lectin/genetics
3.
J Clin Invest ; 133(9)2023 05 01.
Article in English | MEDLINE | ID: covidwho-2320676

ABSTRACT

Inflammation promotes adverse ventricular remodeling, a common antecedent of heart failure. Here, we set out to determine how inflammatory cells affect cardiomyocytes in the remodeling heart. Pathogenic cardiac macrophages induced an IFN response in cardiomyocytes, characterized by upregulation of the ubiquitin-like protein IFN-stimulated gene 15 (ISG15), which posttranslationally modifies its targets through a process termed ISGylation. Cardiac ISG15 is controlled by type I IFN signaling, and ISG15 or ISGylation is upregulated in mice with transverse aortic constriction or infused with angiotensin II; rats with uninephrectomy and DOCA-salt, or pulmonary artery banding; cardiomyocytes exposed to IFNs or CD4+ T cell-conditioned medium; and ventricular tissue of humans with nonischemic cardiomyopathy. By nanoscale liquid chromatography-tandem mass spectrometry, we identified the myofibrillar protein filamin-C as an ISGylation target. ISG15 deficiency preserved cardiac function in mice with transverse aortic constriction and led to improved recovery of mouse hearts ex vivo. Metabolomics revealed that ISG15 regulates cardiac amino acid metabolism, whereas ISG15 deficiency prevented misfolded filamin-C accumulation and induced cardiomyocyte autophagy. In sum, ISG15 upregulation is a feature of pathological ventricular remodeling, and protein ISGylation is an inflammation-induced posttranslational modification that may contribute to heart failure development by altering cardiomyocyte protein turnover.


Subject(s)
Cytokines , Heart Failure , Humans , Rats , Mice , Animals , Cytokines/genetics , Cytokines/metabolism , Filamins , Ventricular Remodeling/genetics , Heart Failure/metabolism , Inflammation , Ubiquitins/genetics
4.
Virology ; 583: 29-35, 2023 06.
Article in English | MEDLINE | ID: covidwho-2306157

ABSTRACT

COVID-19 may cause the release of systemic inflammatory cytokines resulting in severe inflammation. PARP-1 has been identified as a nuclear enzyme that is activated by DNA strand breaks. It has been suggested that PARP-1 has a role in the cytokine storm shown as a cause of mortality in COVID-19, and its inhibition may adversely affect the replication of SARS -CoV-2. We aimed to investigate the relationship between PARP-1 gene polymorphisms and the clinical severity of COVID-19. rs8679 TT genotype was found to increase with the COVID-19 disease severity. The 3'UTR polymorphism rs8679 may cause PARP-1 activity as a result of viral replication increase by changing the binding site of antiviral or anti-inflammatory miRNAs. PARP-1 may affect the severity of COVID-19 by cytokine release and maybe a possible treatment target.


Subject(s)
COVID-19 , MicroRNAs , Poly (ADP-Ribose) Polymerase-1 , Humans , 3' Untranslated Regions , Antiviral Agents/therapeutic use , COVID-19/genetics , Cytokines/genetics , Cytokines/metabolism , DNA Repair , MicroRNAs/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
5.
Int J Mol Sci ; 23(22)2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2298126

ABSTRACT

This study is a successor of our previous work concerning changes in the chemokine profile in infection that are associated with different SARS-CoV-2 genetic variants. The goal of our study was to take into account both the virus and the host immune system by assessing concentrations of cytokines in patients infected with different SARS-CoV-2 variants (ancestral Wuhan strain, Alpha, Delta and Omicron). Our study was performed on 340 biological samples taken from COVID-19 patients and healthy donors in the timespan between May 2020 and April 2022. We performed genotyping of the virus in nasopharyngeal swabs, which was followed by assessment of cytokines' concentration in blood plasma. We noted that out of nearly 30 cytokines, only four showed stable elevation independently of the variant (IL-6, IL-10, IL-18 and IL-27), and we believe them to be 'constant' markers for COVID-19 infection. Cytokines that were studied as potential biomarkers lose their diagnostic value as the virus evolves, and the specter of potential targets for predictive models is narrowing. So far, only four cytokines (IL-6, IL-10, IL-18, and IL-27) showed a consistent rise in concentrations independently of the genetic variant of the virus. Although we believe our findings to be of scientific interest, we still consider them inconclusive; further investigation and comparison of immune responses to different variants of SARS-CoV-2 is required.


Subject(s)
COVID-19 , Cytokines , SARS-CoV-2 , Humans , COVID-19/genetics , Cytokines/genetics , Cytokines/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-18/genetics , Interleukin-18/metabolism , Interleukin-27/genetics , Interleukin-27/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , SARS-CoV-2/genetics
6.
Int J Mol Sci ; 24(7)2023 Apr 04.
Article in English | MEDLINE | ID: covidwho-2299700

ABSTRACT

Interferons (IFNs), divided into type I, type II, and type III IFNs represent proteins that are secreted from cells in response to various stimuli and provide important information for understanding the evolution, structure, and function of the immune system, as well as the signaling pathways of other cytokines and their receptors. They exert comparable, but also distinct physiologic and pathophysiologic activities accompanied by pleiotropic effects, such as the modulation of host responses against bacterial and viral infections, tumor surveillance, innate and adaptive immune responses. IFNs were the first cytokines used for the treatment of tumor patients including hairy leukemia, renal cell carcinoma, and melanoma. However, tumor cells often develop a transient or permanent resistance to IFNs, which has been linked to the escape of tumor cells and unresponsiveness to immunotherapies. In addition, loss-of-function mutations in IFN signaling components have been associated with susceptibility to infectious diseases, such as COVID-19 and mycobacterial infections. In this review, we summarize general features of the three IFN families and their function, the expression and activity of the different IFN signal transduction pathways, and their role in tumor immune evasion and pathogen clearance, with links to alterations in the major histocompatibility complex (MHC) class I and II antigen processing machinery (APM). In addition, we discuss insights regarding the clinical applications of IFNs alone or in combination with other therapeutic options including immunotherapies as well as strategies reversing the deficient IFN signaling. Therefore, this review provides an overview on the function and clinical relevance of the different IFN family members, with a specific focus on the MHC pathways in cancers and infections and their contribution to immune escape of tumors.


Subject(s)
COVID-19 , Neoplasms , Humans , Interferons/metabolism , Antigen Presentation , COVID-19/genetics , Major Histocompatibility Complex , Cytokines/genetics , Histocompatibility Antigens Class I/genetics , Neoplasms/genetics
7.
Virology ; 582: 114-127, 2023 05.
Article in English | MEDLINE | ID: covidwho-2298993

ABSTRACT

Coronavirus infection induces a variety of cellular antiviral responses either dependent on or independent of type I interferons (IFNs). Our previous studies using Affymetrix microarray and transcriptomic analysis revealed the differential induction of three IFN-stimulated genes (ISGs), IRF1, ISG15 and ISG20, by gammacoronavirus infectious bronchitis virus (IBV) infection of IFN-deficient Vero cells and IFN-competent, p53-defcient H1299 cells, respectively. In this report, the induction kinetics and anti-IBV functions of these ISGs as well as mechanisms underlying their differential induction are characterized. The results confirmed that these three ISGs were indeed differentially induced in H1299 and Vero cells infected with IBV, significantly more upregulation of IRF1, ISG15 and ISG20 was elicited in IBV-infected Vero cells than that in H1299 cells. Induction of these ISGs was also detected in cells infected with human coronavirus-OC43 (HCoV-OC43) and porcine epidemic diarrhea virus (PEDV), respectively. Manipulation of their expression by overexpression, knockdown and/or knockout demonstrated that IRF1 played an active role in suppressing IBV replication, mainly through the activation of the IFN pathway. However, a minor, if any, role in inhibiting IBV replication was played by ISG15 and ISG20. Furthermore, p53, but not IRF1, was implicated in regulating the IBV infection-induced upregulation of ISG15 and ISG20. This study provides new information on the mechanisms underlying the induction of these ISGs and their contributions to the host cell antiviral response during IBV infection.


Subject(s)
Coronavirus Infections , Gammacoronavirus , Infectious bronchitis virus , Animals , Humans , Antiviral Agents/pharmacology , Chlorocebus aethiops , Coronavirus Infections/veterinary , Cytokines/genetics , Exoribonucleases , Infectious bronchitis virus/genetics , Swine , Tumor Suppressor Protein p53 , Ubiquitins , Vero Cells
8.
PeerJ ; 11: e14918, 2023.
Article in English | MEDLINE | ID: covidwho-2283900

ABSTRACT

Alveolar macrophages are tissue-resident immune cells that protect epithelial cells in the alveoli from invasion by pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, the interaction between macrophages and SARS-CoV-2 is inevitable. However, little is known about the role of macrophages in SARS-CoV-2 infection. Here, we generated macrophages from human induced pluripotent stem cells (hiPSCs) to investigate the susceptibility of hiPSC-derived macrophages (iMΦ) to the authentic SARS-CoV-2 Delta (B.1.617.2) and Omicron (B.1.1.529) variants as well as their gene expression profiles of proinflammatory cytokines during infection. With undetectable angiotensin-converting enzyme 2 (ACE2) mRNA and protein expression, iMΦ were susceptible to productive infection with the Delta variant, whereas infection of iMΦ with the Omicron variant was abortive. Interestingly, Delta induced cell-cell fusion or syncytia formation in iMΦ, which was not observed in Omicron-infected cells. However, iMΦ expressed moderate levels of proinflammatory cytokine genes in response to SARS-CoV-2 infection, in contrast to strong upregulation of these cytokine genes in response to polarization by lipopolysaccharide (LPS) and interferon-gamma (IFN-γ). Overall, our findings indicate that the SARS-CoV-2 Delta variant can replicate and cause syncytia formation in macrophages, suggesting that the Delta variant can enter cells with undetectable ACE2 levels and exhibit greater fusogenicity.


Subject(s)
COVID-19 , Giant Cells , Induced Pluripotent Stem Cells , Humans , Angiotensin-Converting Enzyme 2/genetics , COVID-19/virology , Cytokines/genetics , Macrophages , SARS-CoV-2/genetics
9.
Expert Rev Clin Immunol ; 18(10): 1023-1032, 2022 10.
Article in English | MEDLINE | ID: covidwho-2269795

ABSTRACT

INTRODUCTION: Generalized pustular psoriasis (GPP) is a rare, severe, immune-mediated and potentially life-threatening skin disease. The rarity, differential diagnoses, relapsing nature, skin and systemic symptoms, complications and limited therapeutic approaches for this disease pose a clinical and psychological burden on patients and their families. AREAS COVERED: Epidemiologic data of GPP in Chinese patients, including the disease prevalence and age of disease onset, as well as epidemiologic data in global populations were reviewed. Multiple proinflammatory cytokines are involved in the disease development and clinical presentation of GPP and the interleukin (IL)-36-mediated signaling pathway play a central role. Furthermore, loss-of-function mutations in IL-36 RN (encoding the IL-36 receptor antagonist) are associated with GPP, suggesting a potential drug target for developing a disease-specific therapeutic approach. Biologic agents, including IL-36 R targeted agents, are promising treatment options, especially as existing conventional therapies are inadequate. Chinese guidelines for the diagnosis and treatment of psoriasis recommend systemic and topical treatment options for GPP and disease complications, as well as for GPP during pregnancy and juvenile GPP. EXPERT OPINION: This review summarizes the epidemiology, pathogenesis, clinical characteristics, disease burden and management of patients with GPP in China, and also describes future treatment targets and related clinical trials.


Subject(s)
Primary Immunodeficiency Diseases , Psoriasis , Acute Disease , Chronic Disease , Cost of Illness , Cytokines/genetics , Female , Humans , Interleukins/genetics , Pregnancy , Psoriasis/diagnosis , Psoriasis/epidemiology , Psoriasis/genetics , Skin/pathology
10.
Lipids Health Dis ; 20(1): 126, 2021 Oct 03.
Article in English | MEDLINE | ID: covidwho-2196306

ABSTRACT

The coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). At present, the COVID-19 has been prevalent worldwide for more than a year and caused more than four million deaths. Liver injury was frequently observed in patients with COVID-19. Recently, a new definition of metabolic dysfunction associated fatty liver disease (MAFLD) was proposed by a panel of international experts, and the relationship between MAFLD and COVID-19 has been actively investigated. Several previous studies indicated that the patients with MAFLD had a higher prevalence of COVID-19 and a tendency to develop severe type of respiratory infection, and others indicated that liver injury would be exacerbated in the patients with MAFLD once infected with COVID-19. The mechanism underlying the relationship between MAFLD and COVID-19 infection has not been thoroughly investigated, and recent studies indicated that multifactorial mechanisms, such as altered host angiotensin converting enzyme 2 (ACE2) receptor expression, direct viral attack, disruption of cholangiocyte function, systemic inflammatory reaction, drug-induced liver injury, hepatic ischemic and hypoxic injury, and MAFLD-related glucose and lipid metabolic disorders, might jointly contribute to both of the adverse hepatic and respiratory outcomes. In this review, we discussed the relationship between MAFLD and COVID-19 based on current available literature, and summarized the recommendations for clinical management of MAFLD patients during the pandemic of COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19/complications , Chemical and Drug Induced Liver Injury/complications , Hypoxia/complications , Liver/metabolism , Non-alcoholic Fatty Liver Disease/complications , SARS-CoV-2/pathogenicity , Age Factors , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/virology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/virology , Cytokines/genetics , Cytokines/metabolism , Dipeptides/therapeutic use , Gene Expression Regulation , Glucose/metabolism , Glycyrrhizic Acid/therapeutic use , Humans , Hypoxia/drug therapy , Hypoxia/pathology , Hypoxia/virology , Liver/drug effects , Liver/pathology , Liver/virology , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/virology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/virology , Receptors, Virus/genetics , Receptors, Virus/metabolism , Severity of Illness Index , COVID-19 Drug Treatment
11.
PLoS Pathog ; 18(1): e1010219, 2022 01.
Article in English | MEDLINE | ID: covidwho-2197167

ABSTRACT

Excessive inflammation is a major cause of morbidity and mortality in many viral infections including influenza. Therefore, there is a need for therapeutic interventions that dampen and redirect inflammatory responses and, ideally, exert antiviral effects. Itaconate is an immunomodulatory metabolite which also reprograms cell metabolism and inflammatory responses when applied exogenously. We evaluated effects of endogenous itaconate and exogenous application of itaconate and its variants dimethyl- and 4-octyl-itaconate (DI, 4OI) on host responses to influenza A virus (IAV). Infection induced expression of ACOD1, the enzyme catalyzing itaconate synthesis, in monocytes and macrophages, which correlated with viral replication and was abrogated by DI and 4OI treatment. In IAV-infected mice, pulmonary inflammation and weight loss were greater in Acod1-/- than in wild-type mice, and DI treatment reduced pulmonary inflammation and mortality. The compounds reversed infection-triggered interferon responses and modulated inflammation in human cells supporting non-productive and productive infection, in peripheral blood mononuclear cells, and in human lung tissue. All three itaconates reduced ROS levels and STAT1 phosphorylation, whereas AKT phosphorylation was reduced by 4OI and DI but increased by itaconate. Single-cell RNA sequencing identified monocytes as the main target of infection and the exclusive source of ACOD1 mRNA in peripheral blood. DI treatment silenced IFN-responses predominantly in monocytes, but also in lymphocytes and natural killer cells. Ectopic synthesis of itaconate in A549 cells, which do not physiologically express ACOD1, reduced infection-driven inflammation, and DI reduced IAV- and IFNγ-induced CXCL10 expression in murine macrophages independent of the presence of endogenous ACOD1. The compounds differed greatly in their effects on cellular gene homeostasis and released cytokines/chemokines, but all three markedly reduced release of the pro-inflammatory chemokines CXCL10 (IP-10) and CCL2 (MCP-1). Viral replication did not increase under treatment despite the dramatically repressed IFN responses. In fact, 4OI strongly inhibited viral transcription in peripheral blood mononuclear cells, and the compounds reduced viral titers (4OI>Ita>DI) in A549 cells whereas viral transcription was unaffected. Taken together, these results reveal itaconates as immunomodulatory and antiviral interventions for influenza virus infection.


Subject(s)
Influenza A virus/immunology , Macrophages/immunology , Orthomyxoviridae Infections/drug therapy , Succinates/pharmacology , A549 Cells , Animals , Carboxy-Lyases/deficiency , Carboxy-Lyases/immunology , Cytokines/genetics , Cytokines/immunology , Humans , Macrophages/virology , Mice , Mice, Knockout , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , THP-1 Cells
12.
Science ; 379(6632): eabo3627, 2023 02 10.
Article in English | MEDLINE | ID: covidwho-2193402

ABSTRACT

Multisystem inflammatory syndrome in children (MIS-C) is a rare and severe condition that follows benign COVID-19. We report autosomal recessive deficiencies of OAS1, OAS2, or RNASEL in five unrelated children with MIS-C. The cytosolic double-stranded RNA (dsRNA)-sensing OAS1 and OAS2 generate 2'-5'-linked oligoadenylates (2-5A) that activate the single-stranded RNA-degrading ribonuclease L (RNase L). Monocytic cell lines and primary myeloid cells with OAS1, OAS2, or RNase L deficiencies produce excessive amounts of inflammatory cytokines upon dsRNA or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) stimulation. Exogenous 2-5A suppresses cytokine production in OAS1-deficient but not RNase L-deficient cells. Cytokine production in RNase L-deficient cells is impaired by MDA5 or RIG-I deficiency and abolished by mitochondrial antiviral-signaling protein (MAVS) deficiency. Recessive OAS-RNase L deficiencies in these patients unleash the production of SARS-CoV-2-triggered, MAVS-mediated inflammatory cytokines by mononuclear phagocytes, thereby underlying MIS-C.


Subject(s)
COVID-19 , Cytokines , Endoribonucleases , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , Child , Humans , COVID-19/immunology , Cytokines/genetics , Cytokines/immunology , Endoribonucleases/genetics , Endoribonucleases/metabolism , RNA, Double-Stranded , SARS-CoV-2/genetics , Systemic Inflammatory Response Syndrome/genetics
13.
Front Immunol ; 13: 975848, 2022.
Article in English | MEDLINE | ID: covidwho-2142004

ABSTRACT

Corona Virus Disease 2019 (COVID-19), an acute respiratory infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has spread rapidly worldwide, resulting in a pandemic with a high mortality rate. In clinical practice, we have noted that many critically ill or critically ill patients with COVID-19 present with typical sepsis-related clinical manifestations, including multiple organ dysfunction syndrome, coagulopathy, and septic shock. In addition, it has been demonstrated that severe COVID-19 has some pathological similarities with sepsis, such as cytokine storm, hypercoagulable state after blood balance is disrupted and neutrophil dysfunction. Considering the parallels between COVID-19 and non-SARS-CoV-2 induced sepsis (hereafter referred to as sepsis), the aim of this study was to analyze the underlying molecular mechanisms between these two diseases by bioinformatics and a systems biology approach, providing new insights into the pathogenesis of COVID-19 and the development of new treatments. Specifically, the gene expression profiles of COVID-19 and sepsis patients were obtained from the Gene Expression Omnibus (GEO) database and compared to extract common differentially expressed genes (DEGs). Subsequently, common DEGs were used to investigate the genetic links between COVID-19 and sepsis. Based on enrichment analysis of common DEGs, many pathways closely related to inflammatory response were observed, such as Cytokine-cytokine receptor interaction pathway and NF-kappa B signaling pathway. In addition, protein-protein interaction networks and gene regulatory networks of common DEGs were constructed, and the analysis results showed that ITGAM may be a potential key biomarker base on regulatory analysis. Furthermore, a disease diagnostic model and risk prediction nomogram for COVID-19 were constructed using machine learning methods. Finally, potential therapeutic agents, including progesterone and emetine, were screened through drug-protein interaction networks and molecular docking simulations. We hope to provide new strategies for future research and treatment related to COVID-19 by elucidating the pathogenesis and genetic mechanisms between COVID-19 and sepsis.


Subject(s)
COVID-19 , Sepsis , Biomarkers , Computational Biology/methods , Critical Illness , Cytokines/genetics , Emetine , Gene Expression Profiling/methods , Humans , Molecular Docking Simulation , NF-kappa B/genetics , Progesterone , Receptors, Cytokine/genetics , SARS-CoV-2 , Sepsis/genetics , Sepsis/metabolism
14.
Immunobiology ; 227(6): 152301, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2119151

ABSTRACT

Coronavirus disease-19 (COVID-19) has recently emerged as a respiratory infection with a significant impact on health and society. The pathogenesis is primarily attributed to a dysregulation of cytokines, especially those with pro-inflammatory and anti-inflammatory effects. Interleukin-38 (IL-38) is a recently identified anti-inflammatory cytokine with a proposed involvement in mediating COVID-19 pathogenesis, while the association between IL38 gene variants and disease susceptibility has not been explored. Therefore, a pilot study was designed to evaluate the association of three gene variants in the promoter region of IL38 gene (rs7599662 T/A/C/G, rs28992497 T/C and rs28992498 C/A/T) with COVID-19 risk. DNA sequencing was performed to identify these variants. The study included 148 Iraqi patients with COVID-19 and 113 healthy controls (HC). Only rs7599662 showed a significant negative association with susceptibility to COVID-19. The mutant T allele was presented at a significantly lower frequency in patients compared to HC. Analysis of recessive, dominant and codominant models demonstrated that rs7599662 TT genotype frequency was significantly lower in patients than in HC. In terms of haplotypes (in order: rs7599662, rs28992497 and rs28992498), frequency of CTC haplotype was significantly increased in patients compared to HC, while TTC haplotype showed significantly lower frequency in patients. The three SNPs influenced serum IL-38 levels and homozygous genotypes of mutant alleles were associated with elevated levels. In conclusion, this study indicated that IL38 gene in terms of promoter variants and haplotypes may have important implications for COVID-19 risk.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/genetics , Genotype , Pilot Projects , Iraq , Case-Control Studies , Promoter Regions, Genetic/genetics , Polymorphism, Single Nucleotide , Alleles , Haplotypes , Cytokines/genetics , Interleukins/genetics , Genetic Predisposition to Disease , Gene Frequency
15.
Int J Mol Sci ; 23(16)2022 Aug 16.
Article in English | MEDLINE | ID: covidwho-1987838

ABSTRACT

The epipharynx, located behind the nasal cavity, is responsible for upper respiratory tract immunity; however, it is also the site of frequent acute and chronic inflammation. Previous reports have suggested that chronic epipharyngitis is involved not only in local symptoms such as cough and postnasal drip, but also in systemic inflammatory diseases such as IgA nephropathy and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and Long COVID. Epipharyngeal Abrasive Therapy (EAT), which is an effective treatment for chronic epipharyngitis in Japan, is reported to be effective for these intractable diseases. The sedation of chronic epipharyngitis by EAT induces suppression of the inflammatory cytokines and improves systemic symptoms, which is considered to be one of the mechanisms, but there is no report that has proved this hypothesis. The purpose of this study was to clarify the anti-inflammatory effect of EAT histologically. The study subjects were 8 patients who were not treated with EAT and 11 patients who were treated with EAT for chronic epipharyngitis for 1 month or more. For immunohistochemical assessment, the expression pattern of IL-6 mRNA, which plays a central role in the human cytokine network, was analyzed using in situ hybridization. The expression of IL-6 in the EAT-treated group was significantly lower than those in the EAT nontreated group (p = 0.0015). In addition, EAT suppressed the expression of tumor necrosis factor alpha (TNFα), a crucial proinflammatory cytokine. As a result, continuous EAT suppressed submucosal cell aggregation and reduced inflammatory cytokines. Thus, EAT may contribute to the improvement of systemic inflammatory diseases through the suppression of IL-6 expression.


Subject(s)
Interleukin-6 , Pharyngitis , Cytokines/genetics , Humans , Interleukin-6/genetics , Pharyngitis/therapy , RNA, Messenger/genetics
16.
J Food Biochem ; 46(10): e14352, 2022 10.
Article in English | MEDLINE | ID: covidwho-1961634

ABSTRACT

Dry eye disease (DED) is a complex ocular surface inflammatory disease. Its occurrence varies widely over the world, ranging from 5% to 34%. The use of preservatives, specifically benzalkonium chloride, in the ocular drops worsens the DED conditions. Furthermore, the Covid-19 pandemic increased screen time and the use of face masks and shields. As a result, the number of people suffering from dry eye disease (DED) has increased significantly in recent years. The main objective of our study is to find a solution to manage the dry eye disease (DED) preferably from natural source without any adverse events. In this study, the beneficial effects of capsanthin from Capsicum annum (CCA) were evaluated on benzalkonium chloride (BAC)-induced dry eye disease (DED) in Albino Wistar rats. Oral supplementation of CCA resulted in a statistically significant decrease in intraocular pressure (IOP) (p < .0001), increase in tear break-up time (TBUT) (p < .01), decline in Schirmer test results (p < .01), and decrease in corneal surface inflammation (p < .01). Capsanthin ameliorated in reducing oxidative stress by increasing serum antioxidant levels such as glutathione peroxidase (GPX), nitric oxide (NO), and lactoferrin (LTF) and inhibiting matrix metalloproteinases 2 and 9 (MMP2 and MMP9) (p < .0001). Capsanthin treatment significantly inhibited the expression of inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukins (IL-2, IL-4, IL-6), and pro-inflammatory mediator, matrix metalloproteinase-9 (MMP9). Furthermore, the lacrimal gland expressed vascular cell adhesion molecule (VCAM-1), and prostaglandin-endoperoxide synthase 2 (PTGS2) was suppressed by CCA treatment. PRACTICAL APPLICATIONS: Benzalkonium chloride (BAC), a preservative widely used in the topical ocular drug delivery system (ODDS), causes undesirable effects such as dry eye disease as well as ameliorating intraocular pressure leading to optical nerve damage and irreversible vision loss. Capsanthin from Capsicum annum (CCA) can be used to treat symptoms related to dry eye disease such as inflammation, eye irritation, visual disturbance, ocular discomfort with potential damage to the ocular surface. The CCA may be beneficial in the treatment of glaucoma, an elevated intraocular pressure. Capsanthin from C. annum can be useful in managing DED by increasing tear break-up time (TBUT), declining in Schirmer test results and decreasing in corneal surface inflammation.


Subject(s)
COVID-19 , Capsicum , Dry Eye Syndromes , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/therapeutic use , Benzalkonium Compounds , Cyclooxygenase 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Dry Eye Syndromes/chemically induced , Dry Eye Syndromes/drug therapy , Dry Eye Syndromes/genetics , Fruit/metabolism , Gene Expression , Glutathione Peroxidase/metabolism , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation Mediators , Interleukin-2/metabolism , Interleukin-4 , Interleukin-6/metabolism , Lactoferrin/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Nitric Oxide/metabolism , Pandemics , Rats , Tumor Necrosis Factor-alpha/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Xanthophylls
17.
Genes (Basel) ; 13(7)2022 06 25.
Article in English | MEDLINE | ID: covidwho-1911272

ABSTRACT

The epigenetic features contribute to variations in host susceptibility to SARS-CoV-2 infection and severity of symptoms. This study aimed to evaluate the relationship between the relative expression of microRNAs (miRNAs) and the severity of the disease in COVID-19 patients. The miRNA profiles were monitored during the different stages of the disease course using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression levels of the selected 11 miRNAs were measured in the blood samples collected from 73 patients (moderate, n = 37; severe, n = 25; critically ill, n = 11, a total of 219 longitudinal samples) on hospitalization day and days 7 and 21. Expression changes were expressed as "fold change" compared to healthy controls (n = 10). Our study found that several miRNAs differed according to disease severity, with the miR-155-5p the most strongly upregulated (p = 0.0001). A statistically significant negative correlation was observed between the expression of miR-155-5p and its target gene, the suppressor of cytokine signaling 1 (SOCS1). The relative expression of miR-155-5p was significantly increased and SOCS1 was significantly decreased with the disease progression (r = -0.805 p = 0.0001, r = -0.940 p = 0.0001, r = -0.933 p = 0.0001 for admission, day 7, and day 21, respectively). The overexpression of miR-155-5p has significantly increased inflammatory cytokine production and promoted COVID-19 progression. We speculated that microRNA-155 facilitates immune inflammation via targeting SOCS1, thus establishing its association with disease prognosis.


Subject(s)
COVID-19 , MicroRNAs , COVID-19/genetics , Cytokines/genetics , Cytokines/metabolism , Humans , MicroRNAs/metabolism , Prognosis , SARS-CoV-2 , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism
18.
Signal Transduct Target Ther ; 7(1): 150, 2022 05 06.
Article in English | MEDLINE | ID: covidwho-1890153
20.
J Med Virol ; 94(9): 4088-4096, 2022 09.
Article in English | MEDLINE | ID: covidwho-1838234

ABSTRACT

Innate and acquired immunity responses are crucial for viral infection elimination. However, genetic variations in coding genes may exacerbate the inflammation or initiate devastating cytokine storms which poses severe respiratory conditions in coronavirus disease-19 (COVID-19). Host genetic variations in particular those related to the immune responses determine the patients' susceptibility and COVID-19 severity and pathophysiology. Gene polymorphisms such as single nucleotide polymorphisms (SNPs) of interferons, TNF, IL1, IL4, IL6, IL7, IL10, and IL17 predispose patients to the severe form of COVID-19 or severe acute respiratory syndrome coronavirus-2 (SARS-COV-2). These variations mainly alter the gene expression and cause a severe response by B cells, T cells, monocytes, neutrophils, and natural killer cells participating in a cytokine storm. Moreover, cytokines and chemokines SNPs are associated with the severity of COVID-19 and clinical outcomes depending on the corresponding effect. Additionally, genetic variations in genes encoding toll-like receptors (TLRs) mainly TLR3, TLR7, and TLR9 have been related to the COVID-19 severe respiratory symptoms. The specific relation of these mutations with the novel variants of concern (VOCs) infection remains to be elucidated. Genetic variations mainly within genes encoding proinflammatory cytokines, cytokine receptors, and TLRs predispose patients to COVID-19 disease severity. Understanding host immune gene variations associated with the SARS-COV-2 infection opens insights to control the pathophysiology of emerging viral infections.


Subject(s)
COVID-19 , Cytokines , Receptors, Cytokine , Toll-Like Receptors , COVID-19/genetics , COVID-19/physiopathology , Cytokine Release Syndrome/genetics , Cytokines/genetics , Humans , Receptors, Cytokine/genetics , SARS-CoV-2 , Toll-Like Receptors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL