Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 585
Filter
Add filters

Document Type
Year range
1.
Int J Biol Sci ; 18(1): 386-408, 2022.
Article in English | MEDLINE | ID: covidwho-1607858

ABSTRACT

Responding to the coronavirus disease 2019 (COVID-19) pandemic has been an unexpected and unprecedented global challenge for humanity in this century. During this crisis, specialists from the laboratories and frontline clinical personnel have made great efforts to prevent and treat COVID-19 by revealing the molecular biological characteristics and epidemic characteristics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, SARS-CoV-2 has severe consequences for public health, including human respiratory system, immune system, blood circulation system, nervous system, motor system, urinary system, reproductive system and digestive system. In the review, we summarize the physiological and pathological damage of SARS-CoV-2 to these systems and its molecular mechanisms followed by clinical manifestation. Concurrently, the prevention and treatment strategies of COVID-19 will be discussed in preclinical and clinical studies. With constantly unfolding and expanding scientific understanding about COVID-19, the updated information can help applied researchers understand the disease to build potential antiviral drugs or vaccines, and formulate creative therapeutic ideas for combating COVID-19 at speed.


Subject(s)
COVID-19/pathology , COVID-19/therapy , Immunotherapy/methods , SARS-CoV-2 , Animals , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19 Vaccines , Cytokines/metabolism , Female , Humans , Immune System , Immunity, Innate , Immunologic Memory , Male , Mice
2.
J Exp Med ; 219(2)2022 02 07.
Article in English | MEDLINE | ID: covidwho-1594167

ABSTRACT

In rare instances, pediatric SARS-CoV-2 infection results in a novel immunodysregulation syndrome termed multisystem inflammatory syndrome in children (MIS-C). We compared MIS-C immunopathology with severe COVID-19 in adults. MIS-C does not result in pneumocyte damage but is associated with vascular endotheliitis and gastrointestinal epithelial injury. In MIS-C, the cytokine release syndrome is characterized by IFNγ and not type I interferon. Persistence of patrolling monocytes differentiates MIS-C from severe COVID-19, which is dominated by HLA-DRlo classical monocytes. IFNγ levels correlate with granzyme B production in CD16+ NK cells and TIM3 expression on CD38+/HLA-DR+ T cells. Single-cell TCR profiling reveals a skewed TCRß repertoire enriched for TRBV11-2 and a superantigenic signature in TIM3+/CD38+/HLA-DR+ T cells. Using NicheNet, we confirm IFNγ as a central cytokine in the communication between TIM3+/CD38+/HLA-DR+ T cells, CD16+ NK cells, and patrolling monocytes. Normalization of IFNγ, loss of TIM3, quiescence of CD16+ NK cells, and contraction of patrolling monocytes upon clinical resolution highlight their potential role in MIS-C immunopathogenesis.


Subject(s)
COVID-19/complications , Hepatitis A Virus Cellular Receptor 2/metabolism , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Monocytes/metabolism , Receptors, IgG/metabolism , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes/immunology , Adolescent , Alveolar Epithelial Cells/pathology , B-Lymphocytes/immunology , Blood Vessels/pathology , COVID-19/immunology , COVID-19/pathology , Cell Proliferation , Child , Cohort Studies , Complement Activation , Cytokines/metabolism , Enterocytes/pathology , Female , Humans , Immunity, Humoral , Inflammation/pathology , Interferon Type I/metabolism , Interleukin-15/metabolism , Lymphocyte Activation/immunology , Male , Receptors, Antigen, T-Cell/metabolism , SARS-CoV-2/immunology , Superantigens/metabolism , Systemic Inflammatory Response Syndrome/pathology
3.
Front Immunol ; 12: 789735, 2021.
Article in English | MEDLINE | ID: covidwho-1581322

ABSTRACT

Background: The host immune response has a prominent role in the progression and outcome of SARS-CoV-2 infection. Lymphopenia has been described as an important feature of SARS-CoV-2 infection and has been associated with severe disease manifestation. Lymphocyte dysregulation and hyper-inflammation have been shown to be associated with a more severe clinical course; however, a T cell subpopulation whose dysfunction correlate with disease progression has yet to be identify. Methods: We performed an immuno-phenotypic analysis of T cell sub-populations in peripheral blood from patients affected by different severity of COVID-19 (n=60) and undergoing a different clinical evolution. Clinical severity was established based on a modified WHO score considering both ventilation support and respiratory capacity (PaO2/FiO2 ratio). The ability of circulating cells at baseline to predict the probability of clinical aggravation was explored through multivariate regression analyses. Results: The immuno-phenotypic analysis performed by multi-colour flow cytometry confirmed that patients suffering from severe COVID-19 harboured significantly reduced circulating T cell subsets, especially for CD4+ T, Th1, and regulatory T cells. Peripheral T cells also correlated with parameters associated with disease severity, i.e., PaO2/FiO2 ratio and inflammation markers. CD4+ T cell subsets showed an important significant association with clinical evolution, with patients presenting markedly decreased regulatory T cells at baseline having a significantly higher risk of aggravation. Importantly, the combination of gender and regulatory T cells allowed distinguishing between improved and worsened patients with an area under the ROC curve (AUC) of 82%. Conclusions: The present study demonstrates the association between CD4+ T cell dysregulation and COVID-19 severity and progression. Our results support the importance of analysing baseline regulatory T cell levels, since they were revealed able to predict the clinical worsening during hospitalization. Regulatory T cells assessment soon after hospital admission could thus allow a better clinical stratification and patient management.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Hospitalization , Lymphocyte Count , SARS-CoV-2/immunology , T-Lymphocytes, Regulatory/immunology , Biomarkers , COVID-19/diagnosis , COVID-19/virology , COVID-19 Serological Testing , Cytokines/blood , Cytokines/metabolism , Disease Progression , Humans , Immunophenotyping , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Prognosis , Public Health Surveillance , ROC Curve , Severity of Illness Index , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/metabolism
4.
Viruses ; 13(12)2021 12 17.
Article in English | MEDLINE | ID: covidwho-1580425

ABSTRACT

BACKGROUND: The SARS-CoV-2 spike protein mediates attachment of the virus to the host cell receptor and fusion between the virus and the cell membrane. The S1 subunit of the spike glycoprotein (S1 protein) contains the angiotensin converting enzyme 2 (ACE2) receptor binding domain. The SARS-CoV-2 variants of concern contain mutations in the S1 subunit. The spike protein is the primary target of neutralizing antibodies generated following infection, and constitutes the viral component of mRNA-based COVID-19 vaccines. METHODS: Therefore, in this work we assessed the effect of exposure (24 h) to 10 nM SARS-CoV-2 recombinant S1 protein on physiologically relevant human bronchial (bro) and alveolar (alv) lung mucosa models cultured at air-liquid interface (ALI) (n = 6 per exposure condition). Corresponding sham exposed samples served as a control. The bro-ALI model was developed using primary bronchial epithelial cells and the alv-ALI model using representative type II pneumocytes (NCI-H441). RESULTS: Exposure to S1 protein induced the surface expression of ACE2, toll like receptor (TLR) 2, and TLR4 in both bro-ALI and alv-ALI models. Transcript expression analysis identified 117 (bro-ALI) and 97 (alv-ALI) differentially regulated genes (p ≤ 0.01). Pathway analysis revealed enrichment of canonical pathways such as interferon (IFN) signaling, influenza, coronavirus, and anti-viral response in the bro-ALI. Secreted levels of interleukin (IL) 4 and IL12 were significantly (p < 0.05) increased, whereas IL6 decreased in the bro-ALI. In the case of alv-ALI, enriched terms involving p53, APRIL (a proliferation-inducing ligand) tight junction, integrin kinase, and IL1 signaling were identified. These terms are associated with lung fibrosis. Further, significantly (p < 0.05) increased levels of secreted pro-inflammatory cytokines IFNγ, IL1ꞵ, IL2, IL4, IL6, IL8, IL10, IL13, and tumor necrosis factor alpha were detected in alv-ALI, whereas IL12 was decreased. Altered levels of these cytokines are also associated with lung fibrotic response. CONCLUSIONS: In conclusion, we observed a typical anti-viral response in the bronchial model and a pro-fibrotic response in the alveolar model. The bro-ALI and alv-ALI models may serve as an easy and robust platform for assessing the pathogenicity of SARS-CoV-2 variants of concern at different lung regions.


Subject(s)
Lung/metabolism , Respiratory Mucosa/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Bronchi/metabolism , Cytokines/metabolism , Gene Expression Profiling , Humans , Models, Biological , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism
5.
Life Sci ; 284: 119201, 2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1574805

ABSTRACT

BACKGROUND: Cytokine storm is the exaggerated immune response often observed in viral infections. It is also intimately linked with the progression of COVID-19 disease as well as associated complications and mortality. Therefore, targeting the cytokine storm might help in reducing COVID-19-associated health complications. The number of COVID-19 associated deaths (as of January 15, 2021; https://www.worldometers.info/coronavirus/) in the USA is high (1199/million) as compared to countries like India (110/million). Although the reason behind this is not clear, spices may have some role in explaining this difference. Spices and herbs are used in different traditional medicines, especially in countries such as India to treat various chronic diseases due to their potent antioxidant and anti-inflammatory properties. AIM: To evaluate the literature available on the anti-inflammatory properties of spices which might prove beneficial in the prevention and treatment of COVID-19 associated cytokine storm. METHOD: A detailed literature search has been conducted on PubMed for collecting information pertaining to the COVID-19; the history, origin, key structural features, and mechanism of infection of SARS-CoV-2; the repurposed drugs in use for the management of COVID-19, and the anti-inflammatory role of spices to combat COVID-19 associated cytokine storm. KEY FINDINGS: The literature search resulted in numerous in vitro, in vivo and clinical trials that have reported the potency of spices to exert anti-inflammatory effects by regulating crucial molecular targets for inflammation. SIGNIFICANCE: As spices are derived from Mother Nature and are inexpensive, they are relatively safer to consume. Therefore, their anti-inflammatory property can be exploited to combat the cytokine storm in COVID-19 patients. This review thus focuses on the current knowledge on the role of spices for the treatment of COVID-19 through suppression of inflammation-linked cytokine storm.


Subject(s)
COVID-19/pathology , Cytokines/metabolism , Inflammation/pathology , Spices , COVID-19/epidemiology , COVID-19/virology , Cytokine Release Syndrome/pathology , Humans , SARS-CoV-2/physiology
6.
Front Immunol ; 12: 778913, 2021.
Article in English | MEDLINE | ID: covidwho-1574246

ABSTRACT

The current global pandemic of the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) causing COVID-19, has infected millions of people and continues to pose a threat to many more. Angiotensin-Converting Enzyme 2 (ACE2) is an important player of the Renin-Angiotensin System (RAS) expressed on the surface of the lung, heart, kidney, neurons, and endothelial cells, which mediates SARS-CoV-2 entry into the host cells. The cytokine storms of COVID-19 arise from the large recruitment of immune cells because of the dis-synchronized hyperactive immune system, lead to many abnormalities including hyper-inflammation, endotheliopathy, and hypercoagulability that produce multi-organ dysfunction and increased the risk of arterial and venous thrombosis resulting in more severe illness and mortality. We discuss the aberrated interconnectedness and forthcoming crosstalks between immunity, the endothelium, and coagulation, as well as how sex disparities affect the severity and outcome of COVID-19 and harm men especially. Further, our conceptual framework may help to explain why persistent symptoms, such as reduced physical fitness and fatigue during long COVID, may be rooted in the clotting system.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2 , Biomarkers , Blood Coagulation , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/etiology , COVID-19/complications , COVID-19/diagnosis , Cytokines/metabolism , Disease Susceptibility , Endothelium/metabolism , Female , Host-Pathogen Interactions/immunology , Humans , Inflammation Mediators , Male , Renin-Angiotensin System , Severity of Illness Index , Sex Factors
7.
Front Immunol ; 12: 733539, 2021.
Article in English | MEDLINE | ID: covidwho-1572288

ABSTRACT

The response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely impacted by the level of virus exposure and status of the host immunity. The nature of protection shown by direct asymptomatic contacts of coronavirus disease 2019 (COVID-19)-positive patients is quite intriguing. In this study, we have characterized the antibody titer, SARS-CoV-2 surrogate virus neutralization, cytokine levels, single-cell T-cell receptor (TCR), and B-cell receptor (BCR) profiling in asymptomatic direct contacts, infected cases, and controls. We observed significant increase in antibodies with neutralizing amplitude in asymptomatic contacts along with cytokines such as Eotaxin, granulocyte-colony stimulating factor (G-CSF), interleukin 7 (IL-7), migration inhibitory factor (MIF), and macrophage inflammatory protein-1α (MIP-1α). Upon single-cell RNA (scRNA) sequencing, we explored the dynamics of the adaptive immune response in few representative asymptomatic close contacts and COVID-19-infected patients. We reported direct asymptomatic contacts to have decreased CD4+ naive T cells with concomitant increase in CD4+ memory and CD8+ Temra cells along with expanded clonotypes compared to infected patients. Noticeable proportions of class switched memory B cells were also observed in them. Overall, these findings gave an insight into the nature of protection in asymptomatic contacts.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Genomics/methods , SARS-CoV-2/immunology , Single-Cell Analysis/methods , Adaptive Immunity/genetics , Adult , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/virology , Cytokines/immunology , Cytokines/metabolism , Female , Gene Expression Profiling/methods , Humans , Male , /metabolism , Middle Aged , SARS-CoV-2/physiology , Sequence Analysis, RNA/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Young Adult
8.
Viruses ; 13(12)2021 12 04.
Article in English | MEDLINE | ID: covidwho-1554851

ABSTRACT

The persistent circulation of SARS-CoV-2 represents an ongoing global threat due to the emergence of new viral variants that can sometimes evade the immune system of previously exposed or vaccinated individuals. We conducted a follow-up study of adult individuals that had received an inactivated SARS-CoV-2 vaccine, evaluating antibody production and neutralizing activity over a period of 6 months. In addition, we performed mice immunization with inactivated SARS-CoV-2, and evaluated the immune response and pathological outcomes against Gamma and Zeta variant infection. Vaccinated individuals produced high levels of antibodies with robust neutralizing activity, which was significantly reduced against Gamma and Zeta variants. Production of IgG anti-S antibodies and neutralizing activity robustly reduced after 6 months of vaccination. Immunized mice demonstrated cellular response against Gamma and Zeta variants, and after viral infection, reduced viral loads, IL-6 expression, and histopathological outcome in the lungs. TNF levels were unchanged in immunized or not immunized mice after infection with the Gamma variant. Furthermore, serum neutralization activity rapidly increases after infection with the Gamma and Zeta variants. Our data suggest that immunization with inactivated WT SARS-CoV-2 induces a promptly responsive cross-reactive immunity response against the Gamma and Zeta variants, reducing COVID-19 pathological outcomes.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccines, Inactivated/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Cross Protection , Cytokines/metabolism , Follow-Up Studies , Humans , Immunization , Lung/metabolism , Lung/pathology , Mice , Vaccines, Inactivated/administration & dosage , Viral Load
9.
Front Immunol ; 12: 748417, 2021.
Article in English | MEDLINE | ID: covidwho-1528820

ABSTRACT

Rationale: Myocardial injury associates significantly and independently with mortality in COVID-19 patients. However, the pathogenesis of myocardial injury in COVID-19 remains unclear, and cardiac involvement by SARS-CoV-2 presents a major challenge worldwide. Objective: This histological and immunohistochemical study sought to clarify the pathogenesis and propose a mechanism with pathways involved in COVID-19 myocardial injury. Methods and Results: Postmortem minimally invasive autopsies were performed in six patients who died from COVID-19, and the myocardium samples were compared to a control group (n=11). Histological analysis was performed using hematoxylin-eosin and toluidine blue staining. Immunohistochemical (IHC) staining was performed using monoclonal antibodies against targets: caspase-1, caspase-9, gasdermin-d, ICAM-1, IL-1ß, IL-4, IL-6, CD163, TNF-α, TGF-ß, MMP-9, type 1 and type 3 collagen. The samples were also assessed for apoptotic cells by TUNEL. Histological analysis showed severe pericardiocyte interstitial edema and higher mast cells counts per high-power field in all COVID-19 myocardium samples. The IHC analysis showed increased expression of caspase-1, ICAM-1, IL-1ß, IL-6, MMP-9, TNF-α, and other markers in the hearts of COVID-19 patients. Expression of caspase-9 did not differ from the controls, while gasdermin-d expression was less. The TUNEL assay was positive in all the COVID-19 samples supporting endothelial apoptosis. Conclusions: The pathogenesis of COVID-19 myocardial injury does not seem to relate to primary myocardiocyte involvement but to local inflammation with associated interstitial edema. We found heightened TGF-ß and interstitial collagen expression in COVID-affected hearts, a potential harbinger of chronic myocardial fibrosis. These results suggest a need for continued clinical surveillance of patients for myocardial dysfunction and arrythmias after recovery from the acute phase of COVID-19.


Subject(s)
COVID-19/metabolism , Heart Injuries/metabolism , SARS-CoV-2 , Aged , Apoptosis , Biopsy , COVID-19/pathology , Caspase 1/metabolism , Collagen/metabolism , Cytokines/metabolism , Female , Heart Injuries/pathology , Humans , Immunohistochemistry , Intercellular Adhesion Molecule-1/metabolism , Male , Matrix Metalloproteinase 9/metabolism , Myocardium/metabolism , Myocardium/pathology
10.
JAMA Netw Open ; 4(11): e2133090, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1516696

ABSTRACT

Importance: Antidepressant use may be associated with reduced levels of several proinflammatory cytokines suggested to be involved with the development of severe COVID-19. An association between the use of selective serotonin reuptake inhibitors (SSRIs)-specifically fluoxetine hydrochloride and fluvoxamine maleate-with decreased mortality among patients with COVID-19 has been reported in recent studies; however, these studies had limited power due to their small size. Objective: To investigate the association of SSRIs with outcomes in patients with COVID-19 by analyzing electronic health records (EHRs). Design, Setting, and Participants: This retrospective cohort study used propensity score matching by demographic characteristics, comorbidities, and medication indication to compare SSRI-treated patients with matched control patients not treated with SSRIs within a large EHR database representing a diverse population of 83 584 patients diagnosed with COVID-19 from January to September 2020 and with a duration of follow-up of as long as 8 months in 87 health care centers across the US. Exposures: Selective serotonin reuptake inhibitors and specifically (1) fluoxetine, (2) fluoxetine or fluvoxamine, and (3) other SSRIs (ie, not fluoxetine or fluvoxamine). Main Outcomes and Measures: Death. Results: A total of 3401 adult patients with COVID-19 prescribed SSRIs (2033 women [59.8%]; mean [SD] age, 63.8 [18.1] years) were identified, with 470 receiving fluoxetine only (280 women [59.6%]; mean [SD] age, 58.5 [18.1] years), 481 receiving fluoxetine or fluvoxamine (285 women [59.3%]; mean [SD] age, 58.7 [18.0] years), and 2898 receiving other SSRIs (1733 women [59.8%]; mean [SD] age, 64.7 [18.0] years) within a defined time frame. When compared with matched untreated control patients, relative risk (RR) of mortality was reduced among patients prescribed any SSRI (497 of 3401 [14.6%] vs 1130 of 6802 [16.6%]; RR, 0.92 [95% CI, 0.85-0.99]; adjusted P = .03); fluoxetine (46 of 470 [9.8%] vs 937 of 7050 [13.3%]; RR, 0.72 [95% CI, 0.54-0.97]; adjusted P = .03); and fluoxetine or fluvoxamine (48 of 481 [10.0%] vs 956 of 7215 [13.3%]; RR, 0.74 [95% CI, 0.55-0.99]; adjusted P = .04). The association between receiving any SSRI that is not fluoxetine or fluvoxamine and risk of death was not statistically significant (447 of 2898 [15.4%] vs 1474 of 8694 [17.0%]; RR, 0.92 [95% CI, 0.84-1.00]; adjusted P = .06). Conclusions and Relevance: These results support evidence that SSRIs may be associated with reduced severity of COVID-19 reflected in the reduced RR of mortality. Further research and randomized clinical trials are needed to elucidate the effect of SSRIs generally, or more specifically of fluoxetine and fluvoxamine, on the severity of COVID-19 outcomes.


Subject(s)
Antidepressive Agents , COVID-19/mortality , Fluoxetine , Fluvoxamine , Serotonin Uptake Inhibitors , Severity of Illness Index , Adult , Aged , Antidepressive Agents/pharmacology , COVID-19/metabolism , Citalopram/pharmacology , Cytokines/metabolism , Female , Fluoxetine/pharmacology , Fluvoxamine/pharmacology , Humans , Male , Middle Aged , Prescription Drugs , Retrospective Studies , Risk , SARS-CoV-2 , Serotonin Uptake Inhibitors/pharmacology , Sertraline , United States
11.
Elife ; 102021 04 27.
Article in English | MEDLINE | ID: covidwho-1513055

ABSTRACT

Dendritic cells (DCs) regulate processes ranging from antitumor and antiviral immunity to host-microbe communication at mucosal surfaces. It remains difficult, however, to genetically manipulate human DCs, limiting our ability to probe how DCs elicit specific immune responses. Here, we develop a CRISPR-Cas9 genome editing method for human monocyte-derived DCs (moDCs) that mediates knockouts with a median efficiency of >94% across >300 genes. Using this method, we perform genetic screens in moDCs, identifying mechanisms by which DCs tune responses to lipopolysaccharides from the human microbiome. In addition, we reveal donor-specific responses to lipopolysaccharides, underscoring the importance of assessing immune phenotypes in donor-derived cells, and identify candidate genes that control this specificity, highlighting the potential of our method to pinpoint determinants of inter-individual variation in immunity. Our work sets the stage for a systematic dissection of the immune signaling at the host-microbiome interface and for targeted engineering of DCs for neoantigen vaccination.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Dendritic Cells/immunology , Gene Editing , Genomics , Immunity, Innate/genetics , Bacteroides thetaiotaomicron/immunology , CRISPR-Associated Protein 9/metabolism , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Gene Expression Regulation , Humans , Immunity, Innate/drug effects , Lipopolysaccharides/pharmacology , Phenotype , Signal Transduction , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
12.
Sci Rep ; 11(1): 21849, 2021 11 08.
Article in English | MEDLINE | ID: covidwho-1505527

ABSTRACT

The huge worldwide demand for vaccines targeting SARS-CoV-2 has necessitated the continued development of novel improved formulations capable of reducing the burden of the COVID-19 pandemic. Herein, we evaluated novel protein subunit vaccine formulations containing a resistin-trimerized spike antigen, SmT1. When combined with sulfated lactosyl archaeol (SLA) archaeosome adjuvant, formulations induced robust antigen-specific humoral and cellular immune responses in mice. Antibodies had strong neutralizing activity, preventing viral spike binding and viral infection. In addition, the formulations were highly efficacious in a hamster challenge model reducing viral load and body weight loss even after a single vaccination. The antigen-specific antibodies generated by our vaccine formulations had stronger neutralizing activity than human convalescent plasma, neutralizing the spike proteins of the B.1.1.7 and B.1.351 variants of concern. As such, our SmT1 antigen along with SLA archaeosome adjuvant comprise a promising platform for the development of efficacious protein subunit vaccine formulations for SARS-CoV-2.


Subject(s)
Adjuvants, Immunologic/chemistry , Antigens, Archaeal/chemistry , COVID-19 Vaccines/therapeutic use , Lipids/chemistry , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Body Weight , COVID-19/therapy , Chlorocebus aethiops , Cricetinae , Cytokines/metabolism , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Passive , Mesocricetus , Mice , Mice, Inbred C57BL , Neutralization Tests , Peptides/chemistry , Protein Domains , SARS-CoV-2 , Toll-Like Receptors/immunology , Vero Cells , Viral Load
13.
Int J Mol Sci ; 22(21)2021 Nov 06.
Article in English | MEDLINE | ID: covidwho-1502441

ABSTRACT

On 11 March 2020, the World Health Organization (WHO) declared a pandemic due to the spread of COVID-19 from Wuhan, China, causing high mortality rates all over the world. The related disease, which mainly affects the lungs, is responsible for the onset of Diffuse Alveolar Damage (DAD) and a hypercoagulability state, frequently leading to Severe Acute Respiratory Syndrome (SARS) and multiorgan failure, particularly in old and severe-critically ill patients. In order to find effective therapeutic strategies, many efforts have been made aiming to shed light on the pathophysiology of COVID-19 disease. Moreover, following the late advent of vaccination campaigns, the need for the comprehension of the pathophysiology of the fatal, although rare, thrombotic adverse events has become mandatory as well. The achievement of such purposes needs a multidisciplinary approach, depending on a correct interpretation of clinical, biochemical, biomolecular, and forensic findings. In this scenario, autopsies have helped in defining, on both gross and histologic examinations, the main changes to which the affected organs undergo and the role in assessing whether a patient is dead "from" or "with" COVID-19, not to mention whether the existence of a causal link exists between vaccination and thrombotic adverse events. In the present work, we explored the role of postmortem immunohistochemistry, and the increasingly used ancillary technique, in helping to understand the mechanism underlying the pathophysiology of both COVID-19 disease and COVID-19 vaccine-related adverse and rare effects.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/pathology , Thrombosis/etiology , Autopsy , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Cytokines/metabolism , Endothelium/metabolism , Endothelium/pathology , Humans , Immunohistochemistry , SARS-CoV-2/isolation & purification
14.
Sci Rep ; 11(1): 13464, 2021 06 29.
Article in English | MEDLINE | ID: covidwho-1500743

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent for coronavirus disease 2019 (COVID-19) that emerged in human populations recently. Severely ill COVID-19 patients exhibit the elevation of proinflammatory cytokines, and such an unbalanced production of proinflammatory cytokines is linked to acute respiratory distress syndrome with high mortality in COVID-19 patients. Our study provides evidence that the ORF3a, M, ORF7a, and N proteins of SARS-CoV-2 were NF-κB activators. The viral sequence from infected zoo lions belonged to clade V, and a single mutation of G251V is found for ORF3a gene compared to all other clades. No significant functional difference was found for clade V ORF3a, indicating the NF-κB activation is conserved among COVID-19 variants. Of the four viral proteins, the ORF7a protein induced the NF-κB dictated proinflammatory cytokines including IL-1α, IL-1ß, IL-6, IL-8, IL-10, TNF-α, and IFNß. The ORF7a protein also induced IL-3, IL-4, IL-7, IL-23. Of 15 different chemokines examined in the study, CCL11, CCL17, CCL19, CCL20, CCL21, CCL22, CCL25, CCL26, CCL27, and CXCL9 were significantly upregulated by ORF7. These cytokines and chemokines were frequently elevated in severely ill COVID-19 patients. Our data provide an insight into how SARS-CoV-2 modulates NF-κB signaling and inflammatory cytokine expressions. The ORF7a protein may be a desirable target for strategic developments to minimize uncontrolled inflammation in COVID-19 patients.


Subject(s)
Cytokines/metabolism , NF-kappa B/metabolism , SARS-CoV-2/metabolism , Viral Proteins/metabolism , Amino Acid Sequence , COVID-19/pathology , COVID-19/virology , Chemokines/genetics , Chemokines/metabolism , Cytokines/genetics , HeLa Cells , Humans , Point Mutation , SARS-CoV-2/isolation & purification , Sequence Alignment , Severity of Illness Index , Up-Regulation , Viral Matrix Proteins/genetics , Viral Proteins/genetics , Viroporin Proteins/chemistry , Viroporin Proteins/genetics , Viroporin Proteins/metabolism
15.
Cytokine ; 149: 155757, 2022 01.
Article in English | MEDLINE | ID: covidwho-1499766

ABSTRACT

BACKGROUND: To determine and compare nasopharyngeal microbiota (NM) composition, in vitro basal (Nil tube), provoked (Mitogen tube) production of cytokines at the early stage of COVID-19. METHODS: This cross-sectional study included 4 age and sex-matched study groups; group 1 (recovered COVID-19) (n = 26), group 2 (mild COVID-19) (n = 24), group 3 (severe COVID-19) (n = 25), and group 4 (healthy controls) (n = 25). The study parameters obtained from the COVID-19 (group 2, and 3) at the early phase of hospital admission. RESULTS: The results from the reaserch deoicted that the Mean ± SD age was 53.09 ± 14.51 years. Some of the in vitro cytokines production was significantly different between the study groups. Some of the findinggs on cytokines depicted a significant differences between study groups were interleukin (IL)-1ß Nil, IL-1ß Mitogen, and their subtraction (i.e Mitogen-Nil). Regarding IL-10, and IL-17a levels, Mitogen, and Mitogen-Nil tube production levels were significantly different between the groups. Surprisingly, most of these measures were lowest in the severe COVID-19 patients' group. Using discriminant analysis effect size (LEfSe), Taxa of NM with significant abundance was determined. About 20 taxa with an LDA score > 4 were identified as candidate biomarkers. Some of these taxa showed a significant correlation with IL-1ß and IL-10 Mitogen and Mitogen- Nil levels (R > 0.3 or < -0.3, p < 0.05). CONCLUSIONS: The findings of this perticular study regarting the early stage of COVID-19 showed that in vitro cytokines production, studies might be more useful than the ordinary cytokines' blood level measurement. Besides, the study identified some NM species that could be candidate biomarkers in managing this infection. However, further detailed studies are needed in these fields.


Subject(s)
COVID-19/metabolism , COVID-19/microbiology , Cytokines/metabolism , Microbiota/physiology , Nasopharynx/microbiology , Nasopharynx/virology , COVID-19/virology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged
16.
mBio ; 12(5): e0198721, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1494967

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has raised concerns about the detrimental effects of antibodies. Antibody-dependent enhancement (ADE) of infection is one of the biggest concerns in terms of not only the antibody reaction to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) upon reinfection with the virus but also the reaction to COVID-19 vaccines. In this study, we evaluated ADE of infection by using COVID-19 convalescent-phase plasma and BHK cells expressing human Fcγ receptors (FcγRs). We found that FcγRIIA and FcγRIIIA mediated modest ADE of infection against SARS-CoV-2. Although ADE of infection was observed in monocyte-derived macrophages infected with SARS-CoV-2, including its variants, proinflammatory cytokine/chemokine expression was not upregulated in macrophages. SARS-CoV-2 infection thus produces antibodies that elicit ADE of infection, but these antibodies do not contribute to excess cytokine production by macrophages. IMPORTANCE Viruses infect cells mainly via specific receptors at the cell surface. Antibody-dependent enhancement (ADE) of infection is an alternative mechanism of infection for viruses to infect immune cells that is mediated by antibodies and IgG receptors (FcγRs). Because ADE of infection contributes to the pathogenesis of some viruses, such as dengue virus and feline coronavirus, it is important to evaluate the precise mechanism of ADE and its contribution to the pathogenesis of SARS-CoV-2. Here, using convalescent-phase plasma from COVID-19 patients, we found that two types of FcγRs, FcγRIIA and FcγRIIIA, mediate ADE of SARS-CoV-2 infection. Although ADE of infection was observed for SARS-CoV-2 and its recent variants, proinflammatory cytokine production in monocyte-derived macrophages was not upregulated. These observations suggest that SARS-CoV-2 infection produces antibodies that elicit ADE of infection, but these antibodies may not be involved in aberrant cytokine release by macrophages during SARS-CoV-2 infection.


Subject(s)
Cytokines/metabolism , Macrophages/metabolism , Receptors, IgG/metabolism , SARS-CoV-2/pathogenicity , Animals , Antibody-Dependent Enhancement/physiology , Cell Line , Cricetinae , Humans , Real-Time Polymerase Chain Reaction , Receptors, IgG/genetics
17.
J Virol ; 95(22): e0127621, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1494956

ABSTRACT

The emergence of life-threatening zoonotic diseases caused by betacoronaviruses, including the ongoing coronavirus disease 19 (COVID-19) pandemic, has highlighted the need for developing preclinical models mirroring respiratory and systemic pathophysiological manifestations seen in infected humans. Here, we showed that C57BL/6J wild-type mice intranasally inoculated with the murine betacoronavirus murine hepatitis coronavirus 3 (MHV-3) develop a robust inflammatory response leading to acute lung injuries, including alveolar edema, hemorrhage, and fibrin thrombi. Although such histopathological changes seemed to resolve as the infection advanced, they efficiently impaired respiratory function, as the infected mice displayed restricted lung distention and increased respiratory frequency and ventilation. Following respiratory manifestation, the MHV-3 infection became systemic, and a high virus burden could be detected in multiple organs along with morphological changes. The systemic manifestation of MHV-3 infection was also marked by a sharp drop in the number of circulating platelets and lymphocytes, besides the augmented concentration of the proinflammatory cytokines interleukin 1 beta (IL-1ß), IL-6, IL-12, gamma interferon (IFN-γ), and tumor necrosis factor (TNF), thereby mirroring some clinical features observed in moderate and severe cases of COVID-19. Importantly, both respiratory and systemic changes triggered by MHV-3 infection were greatly prevented by blocking TNF signaling, either via genetic or pharmacologic approaches. In line with this, TNF blockage also diminished the infection-mediated release of proinflammatory cytokines and virus replication of human epithelial lung cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Collectively, results show that MHV-3 respiratory infection leads to a large range of clinical manifestations in mice and may constitute an attractive, lower-cost, biosafety level 2 (BSL2) in vivo platform for evaluating the respiratory and multiorgan involvement of betacoronavirus infections. IMPORTANCE Mouse models have long been used as valuable in vivo platforms to investigate the pathogenesis of viral infections and effective countermeasures. The natural resistance of mice to the novel betacoronavirus SARS-CoV-2, the causative agent of COVID-19, has launched a race toward the characterization of SARS-CoV-2 infection in other animals (e.g., hamsters, cats, ferrets, bats, and monkeys), as well as adaptation of the mouse model, by modifying either the host or the virus. In the present study, we utilized a natural pathogen of mice, MHV, as a prototype to model betacoronavirus-induced acute lung injure and multiorgan involvement under biosafety level 2 conditions. We showed that C57BL/6J mice intranasally inoculated with MHV-3 develops severe disease, which includes acute lung damage and respiratory distress that precede systemic inflammation and death. Accordingly, the proposed animal model may provide a useful tool for studies regarding betacoronavirus respiratory infection and related diseases.


Subject(s)
Coronavirus Infections/pathology , Disease Models, Animal , Lung/pathology , Murine hepatitis virus/pathogenicity , Animals , Cell Line , Containment of Biohazards , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/metabolism , Humans , Inflammation , Liver/pathology , Liver/virology , Lung/virology , Mice , Murine hepatitis virus/drug effects , Murine hepatitis virus/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Virus Replication/drug effects
18.
Biochim Biophys Acta Mol Basis Dis ; 1868(1): 166295, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1491726

ABSTRACT

Several organs, such as the heart, breasts, intestine, testes, and ovaries, have been reported to be target tissues of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To date, no studies have demonstrated SARS-CoV-2 infection in the female reproductive system. In the present study, we investigated the effects of SARS-CoV-2 infection on ovarian function by comparing follicular fluid (FF) from control and recovered coronavirus disease 2019 (COVID-19) patients and by evaluating the influence of these FF on human endothelial and non-luteinized granulosa cell cultures. Our results showed that most FFs (91.3%) from screened post COVID-19 patients were positive for IgG antibodies against SARS-CoV-2. Additionally, patients with higher levels of IgG against SARS-CoV-2 had lower numbers of retrieved oocytes. While VEGF and IL-1ß were significantly lower in post COVID-19 FF, IL-10 did not differ from that in control FF. Moreover, in COV434 cells stimulated with FF from post COVID-19 patients, steroidogenic acute regulatory protein (StAR), estrogen-receptor ß (Erß), and vascular endothelial growth factor (VEGF) expression were significantly decreased, whereas estrogen-receptor α (ERα) and 3ß-hydroxysteroid dehydrogenase (3ß-HSD) did not change. In endothelial cells stimulated with post COVID-19 FF, we observed a decrease in cell migration without changes in protein expression of certain angiogenic factors. Both cell types showed a significantly higher γH2AX expression when exposed to post COVID-19 FF. In conclusion, our results describe for the first time that the SARS-CoV-2 infection adversely affects the follicular microenvironment, thus dysregulating ovarian function.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , Ovary/metabolism , Reproductive Techniques, Assisted , SARS-CoV-2 , Adult , Antibodies, Viral/immunology , Biomarkers , COVID-19/immunology , Cells, Cultured , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Fertility , Follicular Fluid/metabolism , Granulosa Cells/metabolism , Host-Pathogen Interactions/immunology , Humans , Immunoglobulin G/immunology , Oocytes/metabolism , Young Adult
19.
Immunology ; 164(3): 541-554, 2021 11.
Article in English | MEDLINE | ID: covidwho-1488214

ABSTRACT

IL-33 and ATP are alarmins, which are released upon damage of cellular barriers or are actively secreted upon cell stress. Due to high-density expression of the IL-33 receptor T1/ST2 (IL-33R), and the ATP receptor P2X7, mast cells (MCs) are one of the first highly sensitive sentinels recognizing released IL-33 or ATP in damaged peripheral tissues. Whereas IL-33 induces the MyD88-dependent activation of the TAK1-IKK2-NF-κB signalling, ATP induces the Ca2+ -dependent activation of NFAT. Thereby, each signal alone only induces a moderate production of pro-inflammatory cytokines and lipid mediators (LMs). However, MCs, which simultaneously sense (co-sensing) IL-33 and ATP, display an enhanced and prolonged activation of the TAK1-IKK2-NF-κB signalling pathway. This resulted in a massive production of pro-inflammatory cytokines such as IL-2, IL-4, IL-6 and GM-CSF as well as of arachidonic acid-derived cyclooxygenase (COX)-mediated pro-inflammatory prostaglandins (PGs) and thromboxanes (TXs), hallmarks of strong MC activation. Collectively, these data show that co-sensing of ATP and IL-33 results in hyperactivation of MCs, which resembles to MC activation induced by IgE-mediated crosslinking of the FcεRI. Therefore, the IL-33/IL-33R and/or the ATP/P2X7 signalling axis are attractive targets for therapeutical intervention of diseases associated with the loss of integrity of cellular barriers such as allergic and infectious respiratory reactions.


Subject(s)
Adenosine Triphosphate/metabolism , Hypersensitivity/immunology , Interleukin-33/metabolism , Mast Cells/immunology , Animals , Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/therapeutic use , Cell Degranulation/drug effects , Cytokines/metabolism , Disease Models, Animal , Eicosanoids/metabolism , Humans , Hypersensitivity/drug therapy , Interleukin-1 Receptor-Like 1 Protein/antagonists & inhibitors , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/antagonists & inhibitors , Lipidomics , Mast Cells/drug effects , Mast Cells/metabolism , Mice , Mice, Knockout , NFATC Transcription Factors/genetics , Primary Cell Culture , Receptors, Purinergic P2X7/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology
20.
PLoS Pathog ; 17(10): e1009928, 2021 10.
Article in English | MEDLINE | ID: covidwho-1484868

ABSTRACT

Non-specific protective effects of certain vaccines have been reported, and long-term boosting of innate immunity, termed trained immunity, has been proposed as one of the mechanisms mediating these effects. Several epidemiological studies suggested cross-protection between influenza vaccination and COVID-19. In a large academic Dutch hospital, we found that SARS-CoV-2 infection was less common among employees who had received a previous influenza vaccination: relative risk reductions of 37% and 49% were observed following influenza vaccination during the first and second COVID-19 waves, respectively. The quadrivalent inactivated influenza vaccine induced a trained immunity program that boosted innate immune responses against various viral stimuli and fine-tuned the anti-SARS-CoV-2 response, which may result in better protection against COVID-19. Influenza vaccination led to transcriptional reprogramming of monocytes and reduced systemic inflammation. These epidemiological and immunological data argue for potential benefits of influenza vaccination against COVID-19, and future randomized trials are warranted to test this possibility.


Subject(s)
COVID-19/immunology , Cross Protection/physiology , Immunity, Innate/physiology , Influenza Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/prevention & control , Cytokines/immunology , Cytokines/metabolism , Down-Regulation , Imidazoles/immunology , Incidence , Influenza Vaccines/immunology , Netherlands/epidemiology , Personnel, Hospital , Poly I-C/immunology , Proteomics , Risk Factors , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...