Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Viruses ; 13(5)2021 05 04.
Article in English | MEDLINE | ID: covidwho-1383920

ABSTRACT

Viral infections are responsible for several chronic and acute diseases in both humans and animals. Despite the incredible progress in human medicine, several viral diseases, such as acquired immunodeficiency syndrome, respiratory syndromes, and hepatitis, are still associated with high morbidity and mortality rates in humans. Natural products from plants or other organisms are a rich source of structurally novel chemical compounds including antivirals. Indeed, in traditional medicine, many pathological conditions have been treated using plant-derived medicines. Thus, the identification of novel alternative antiviral agents is of critical importance. In this review, we summarize novel phytochemicals with antiviral activity against human viruses and their potential application in treating or preventing viral disease.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , Drug Discovery , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Biological Products/chemistry , Biological Products/therapeutic use , DNA Viruses/drug effects , DNA Viruses/physiology , Drug Development , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , RNA Viruses/drug effects , RNA Viruses/physiology , Virus Diseases/diagnosis , Virus Diseases/drug therapy , Virus Diseases/etiology , Virus Diseases/metabolism , Virus Replication/drug effects
2.
Int J Mol Sci ; 22(17)2021 Aug 29.
Article in English | MEDLINE | ID: covidwho-1374429

ABSTRACT

Heat shock proteins (HSPs) are a large group of chaperones found in most eukaryotes and bacteria. They are responsible for the correct protein folding, protection of the cell against stressors, presenting immune and inflammatory cytokines; furthermore, they are important factors in regulating cell differentiation, survival and death. Although the biological function of HSPs is to maintain cell homeostasis, some of them can be used by viruses both to fold their proteins and increase the chances of survival in unfavorable host conditions. Folding viral proteins as well as replicating many different viruses are carried out by, among others, proteins from the HSP70 and HSP90 families. In some cases, the HSP70 family proteins directly interact with viral polymerase to enhance viral replication or they can facilitate the formation of a viral replication complex and/or maintain the stability of complex proteins. It is known that HSP90 is important for the expression of viral genes at both the transcriptional and the translational levels. Both of these HSPs can form a complex with HSP90 and, consequently, facilitate the entry of the virus into the cell. Current studies have shown the biological significance of HSPs in the course of infection SARS-CoV-2. A comprehensive understanding of chaperone use during viral infection will provide new insight into viral replication mechanisms and therapeutic potential. The aim of this study is to describe the molecular basis of HSP70 and HSP90 participation in some viral infections and the potential use of these proteins in antiviral therapy.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Virus Diseases/pathology , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , DNA Viruses/physiology , Humans , Protein Isoforms/metabolism , RNA Viruses/physiology , SARS-CoV-2/isolation & purification , Virus Diseases/metabolism , Virus Diseases/virology
3.
Viruses ; 13(4)2021 03 24.
Article in English | MEDLINE | ID: covidwho-1231502

ABSTRACT

Redondoviridae is a recently discovered DNA virus family consisting of two species, vientovirus and brisavirus. Here we used PCR amplification and sequencing to characterize redondoviruses in nasal/throat swabs collected longitudinally from a cohort of 58 individuals working with animals in Vietnam. We additionally analyzed samples from animals to which redondovirus DNA-positive participants were exposed. Redondoviruses were detected in approximately 60% of study participants, including 33% (30/91) of samples collected during episodes of acute respiratory disease and in 50% (29/58) of baseline samples (with no respiratory symptoms). Vientovirus (73%; 24/33) was detected more frequently in samples than brisaviruses (27%; 9/33). In the 23 participants with at least 2 redondovirus-positive samples among their longitudinal samples, 10 (43.5%) had identical redondovirus replication-gene sequences detected (sampling duration: 35-132 days). We found no identical redondovirus replication genes in samples from different participants, and no redondoviruses were detected in 53 pooled nasal/throat swabs collected from domestic animals. Phylogenetic analysis described no large-scale geographical clustering between viruses from Vietnam, the US, Spain, and China, indicating that redondoviruses are highly genetically diverse and have a wide geographical distribution. Collectively, our study provides novel insights into the Redondoviridae family in humans, describing a high prevalence, potentially associated with chronic shedding in the respiratory tract with lack of evidence of zoonotic transmission from close animal contacts. The tropism and potential pathogenicity of this viral family remain to be determined.


Subject(s)
DNA Viruses/genetics , DNA Viruses/physiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Viral Zoonoses/epidemiology , Virus Shedding , Adolescent , Adult , Aged , Animals , Child , Cohort Studies , DNA Viruses/classification , Farmers/statistics & numerical data , Female , Humans , Longitudinal Studies , Male , Middle Aged , Nose/virology , Pharynx/virology , Phylogeny , Prevalence , Respiratory Tract Infections/transmission , Sequence Analysis, DNA , Vietnam/epidemiology , Viral Zoonoses/transmission , Young Adult
4.
Mater Sci Eng C Mater Biol Appl ; 112: 110924, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-1017020

ABSTRACT

Research on highly effective antiviral drugs is essential for preventing the spread of infections and reducing losses. Recently, many functional nanoparticles have been shown to possess remarkable antiviral ability, such as quantum dots, gold and silver nanoparticles, nanoclusters, carbon dots, graphene oxide, silicon materials, polymers and dendrimers. Despite their difference in antiviral mechanism and inhibition efficacy, these functional nanoparticles-based structures have unique features as potential antiviral candidates. In this topical review, we highlight the antiviral efficacy and mechanism of these nanoparticles. Specifically, we introduce various methods for analyzing the viricidal activity of functional nanoparticles and the latest advances in antiviral functional nanoparticles. Furthermore, we systematically describe the advantages and disadvantages of these functional nanoparticles in viricidal applications. Finally, we discuss the challenges and prospects of antiviral nanostructures. This topic review covers 132 papers and will enrich our knowledge about the antiviral efficacy and mechanism of various functional nanoparticles.


Subject(s)
Antiviral Agents/chemistry , Nanoparticles/chemistry , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , DNA Viruses/drug effects , DNA Viruses/physiology , Graphite/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Nanoparticles/therapeutic use , Nanoparticles/toxicity , Polymers/chemistry , Quantum Dots/chemistry , Quantum Dots/therapeutic use , Quantum Dots/toxicity , Zika Virus/drug effects , Zika Virus Infection/drug therapy , Zika Virus Infection/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...