Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
ACS Appl Mater Interfaces ; 14(51): 56666-56677, 2022 Dec 28.
Article in English | MEDLINE | ID: covidwho-2185497

ABSTRACT

Lipid nanoparticles (LNPs) are currently having an increasing impact on nanomedicines as delivery agents, among others, of RNA molecules (e.g., short interfering RNA for the treatment of hereditary diseases or messenger RNA for the development of COVID-19 vaccines). Despite this, the delivery of plasmid DNA (pDNA) by LNPs in preclinical studies is still unsatisfactory, mainly due to the lack of systematic structural and functional studies on DNA-loaded LNPs. To tackle this issue, we developed, characterized, and tested a library of 16 multicomponent DNA-loaded LNPs which were prepared by microfluidics and differed in lipid composition, surface functionalization, and manufacturing factors. 8 out of 16 formulations exhibited proper size and zeta potential and passed to the validation step, that is, the simultaneous quantification of transfection efficiency and cell viability in human embryonic kidney cells (HEK-293). The most efficient formulation (LNP15) was then successfully validated both in vitro, in an immortalized adult keratinocyte cell line (HaCaT) and in an epidermoid cervical cancer cell line (CaSki), and in vivo as a nanocarrier to deliver a cancer vaccine against the benchmark target tyrosine-kinase receptor HER2 in C57BL/6 mice. Finally, by a combination of confocal microscopy, transmission electron microscopy and synchrotron small-angle X-ray scattering, we were able to show that the superior efficiency of LNP15 can be linked to its disordered nanostructure consisting of small-size unoriented layers of pDNA sandwiched between closely apposed lipid membranes that undergo massive destabilization upon interaction with cellular lipids. Our results provide new insights into the structure-activity relationship of pDNA-loaded LNPs and pave the way to the clinical translation of this gene delivery technology.


Subject(s)
COVID-19 , Nanoparticles , Animals , Mice , Humans , COVID-19 Vaccines , HEK293 Cells , Lipids/chemistry , Mice, Inbred C57BL , DNA/chemistry , Nanoparticles/chemistry , RNA, Small Interfering
2.
Bioelectrochemistry ; 150: 108329, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2149380

ABSTRACT

This present study is the first investigation of pazopanib-dsDNA binding using bare and modified GCE. The interaction was mainly evaluated based on the decrease of voltammetric signal of deoxyadenosine by differential pulse voltammetry using three different ways, including the incubated solutions, dsDNA biosensor, and nanobiosensor. The nanobiosensor was fabricated with the help of SnO2 nanoparticles and carbon hybrid material. The carbon material is derived from the waste mask, the most used personal protective equipment for the ongoing COVID-19 pandemic. Both materials were synthesized via the green synthesis technique and characterized by various techniques, including BET, TEM, SEM-EDX, AFM, XPS, and XRD. Spectrophotometric and molecular docking studies also evaluated the pazopanib-dsDNA binding. All calculations showed that pazopanib (PZB) was active in the minor grove region of DNA.


Subject(s)
Antineoplastic Agents , Biosensing Techniques , COVID-19 , Nanoparticles , Humans , Carbon/chemistry , Molecular Docking Simulation , Masks , Pandemics , Nanoparticles/chemistry , DNA/chemistry , Biosensing Techniques/methods , Electrodes , Electrochemical Techniques/methods
3.
Biomolecules ; 12(12)2022 12 15.
Article in English | MEDLINE | ID: covidwho-2163233

ABSTRACT

Novel constructed bioactive mixed-ligand complexes (1b) [CuII(L)2(phen)] and (2b) [ZnII(L)2(phen)] {where, L = 2-(4-morpholinobenzylideneamino)phenol), phen = 1,10-phenanthroline} have been structurally analysed by various analytical and spectroscopic techniques, including, magnetic moments, thermogravimetric analysis, and X-ray crystallography. Various analytical and spectral measurements assigned showed that all complexes appear to have an octahedral geometry. Agar gel electrophoresis's output demonstrated that the Cu(II) complex (1b) had efficient deoxyribonucleic cleavage and complex (2b) demonstrated the partial cleavage accomplished with an oxidation agent, which generates spreadable OH● through the Fenton type mechanism. The DNA binding constants observed from viscosity, UV-Vis spectral, fluorometric, and electrochemical titrations were in the following sequence: (1b) > (2b) > (HL), which suggests that the complexes (1b-2b) might intercalate DNA, a possibility that is supported by the biothermodynamic measurements. In addition, the observed binding constant results of BSA by electronic absorption and fluorometric titrations indicate that complex (1b) revealed the best binding efficacy as compared to complex (2b) and free ligand. Interestingly, all compounds are found to interact with BSA through a static approach, as further attested by FRET detection. The DFT and molecular docking calculations were also performed to realize the electronic structure, reactivity, and binding capability of all test samples with CT-DNA, BSA, and the SARS-CoV-2 3CLPro, which revealed the binding energies were in a range of -8.1 to -8.9, -7.5 to -10.5 and -6.7--8.8 kcal/mol, respectively. The higher reactivity of the complexes than the free ligand is supported by the FMO theory. Among all the observed data for antioxidant properties against DPPH᛫, ᛫OH, O2-• and NO᛫ free radicals, complex (1a) had the best biological efficacy. The antimicrobial and cytotoxic characteristics of all test compounds have been studied by screening against certain selected microorganisms as well as against A549, HepG2, MCF-7, and NHDF cell lines, respectively. The observed findings revealed that the activity enhances coordination as compared to free ligand via Overtone's and Tweedy's chelation mechanisms. This is especially encouraging given that in every case, the experimental findings and theoretical detections were in perfect accord.


Subject(s)
Antineoplastic Agents , COVID-19 , Humans , Molecular Docking Simulation , SARS-CoV-2/metabolism , Molecular Dynamics Simulation , Ligands , Fluorescence Resonance Energy Transfer , DNA/chemistry , Antineoplastic Agents/chemistry , Zinc/chemistry , Copper/chemistry
4.
Anal Chem ; 94(42): 14755-14760, 2022 10 25.
Article in English | MEDLINE | ID: covidwho-2076959

ABSTRACT

Development of convenient, accurate, and sensitive methods for rapid screening of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection is highly desired. In this study, we have developed a facile electrochemical aptasensor for the detection of the SARS-CoV-2 S1 protein amplified by dumbbell hybridization chain reaction (DHCR). A triangular prism DNA (TPDNA) nanostructure is first assembled and modified at the electrode interface. Due to the multiple thiol anchors, the immobilization is quite stable. The TPDNA nanostructure also provides an excellent scaffold for better molecular recognition efficiency on the top single-strand region (DHP0). The aptamer sequence toward the SARS-CoV-2 S1 protein is previously localized by partial hybridization with DHP0. In the presence of the target protein, the aptamer sequence is displaced and DHP0 is exposed. After further introduction of the fuel stands of DHCR, compressed DNA linear assembly occurs, and the product can be stacked on the TPDNA nanostructure for the enrichment of electrochemical species. This electrochemical method successfully detects the target protein in clinical samples, which provides a simple, robust, and accurate platform with great potential utility.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Nanostructures , Humans , SARS-CoV-2/genetics , Aptamers, Nucleotide/chemistry , COVID-19/diagnosis , DNA/chemistry , Nanostructures/chemistry , Electrochemical Techniques , Sulfhydryl Compounds , Biosensing Techniques/methods
5.
Biosensors (Basel) ; 12(9)2022 Sep 19.
Article in English | MEDLINE | ID: covidwho-2043579

ABSTRACT

The recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has posed a great challenge for the development of ultra-fast methods for virus identification based on sensor principles. We created a structure modeling surface and size of the SARS-CoV-2 virus and used it in comparison with the standard antigen SARS-CoV-2-the receptor-binding domain (RBD) of the S-protein of the envelope of the SARS-CoV-2 virus from the Wuhan strain-for the development of detection of coronaviruses using a DNA-modified, surface-enhanced Raman scattering (SERS)-based aptasensor in sandwich mode: a primary aptamer attached to the plasmonic surface-RBD-covered Ag nanoparticle-the Cy3-labeled secondary aptamer. Fabricated novel hybrid plasmonic structures based on "Ag mirror-SiO2-nanostructured Ag" demonstrate sensitivity for the detection of investigated analytes due to the combination of localized surface plasmons in nanostructured silver surface and the gap surface plasmons in a thin dielectric layer of SiO2 between silver layers. A specific SERS signal has been obtained from SERS-active compounds with RBD-specific DNA aptamers that selectively bind to the S protein of synthetic virion (dissociation constants of DNA-aptamer complexes with protein in the range of 10 nM). The purpose of the study is to systematically analyze the combination of components in an aptamer-based sandwich system. A developed virus size simulating silver particles adsorbed on an aptamer-coated sensor provided a signal different from free RBD. The data obtained are consistent with the theory of signal amplification depending on the distance of the active compound from the amplifying surface and the nature of such a compound. The ability to detect the target virus due to specific interaction with such DNA is quantitatively controlled by the degree of the quenching SERS signal from the labeled compound. Developed indicator sandwich-type systems demonstrate high stability. Such a platform does not require special permissions to work with viruses. Therefore, our approach creates the promising basis for fostering the practical application of ultra-fast, amplification-free methods for detecting coronaviruses based on SARS-CoV-2.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Metal Nanoparticles , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , COVID-19/diagnosis , DNA/chemistry , Humans , Metal Nanoparticles/chemistry , SARS-CoV-2 , Silicon Dioxide , Silver/chemistry , Spectrum Analysis, Raman/methods
6.
Biosens Bioelectron ; 217: 114714, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2031161

ABSTRACT

Timely and accurate detection of virus is crucial for preventing spread of disease and early treatment of the infected cases. Herein we design an integrated logic-operated three-dimensional DNA walker for colorimetric detection of viral RNA fragments, by taking SARS-CoV-2 as an example. The DNA walker is composed of small amounts of dually-blocked walking strands and large amounts of dual-stem-loop track strands on gold nanoparticles. The walking strand contains a swing arm domain and a DNAzyme domain blocked at both sides of catalytic core, while the track strand contains a substrate domain located at the peripheral larger loop. Only the presence of both ORF1ab and N RNA fragments can fully de-block the walking strand, which then continuously hybridizes with track strands and cleaves them by DNAzyme-catalyzed hydrolysis. As the cleavage of track strands from long-stranded, double stem-loop structure to short-stranded, linear sequence, the DNA walker shows much lowered stability due to decreased negative charge density and diminished steric repulsion, which then gets aggregated at high salt concentration, accompanied by a visible color change. The colorimetric DNA walker detects RNA fragments down to 1 nM, responds dual viral genes in a "AND" logic way, and shows high specificity to target sequence. It can further detect large nucleic acids containing ORF1ab and N sequences, and reach 200 copies/mL detection limit by coupling a simple upstream amplification of sample. The method may provide a convenient way for reliable detection of viral RNA.


Subject(s)
Biosensing Techniques , COVID-19 , DNA, Catalytic , Metal Nanoparticles , Biosensing Techniques/methods , Colorimetry/methods , DNA/chemistry , DNA, Catalytic/chemistry , Gold/chemistry , Humans , Limit of Detection , Logic , Metal Nanoparticles/chemistry , RNA, Viral/genetics , SARS-CoV-2
7.
J Inorg Biochem ; 236: 111953, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1977520

ABSTRACT

A novel series of metal(II) complexes (1-5) [MII(L)2]{Where M = Cu (1), Co (2), Mn (3), Ni (4) and Zn (5)} constructed from 2-(4-morpholinobenzylideneamino)phenol Schiff base ligand (HL) in a 1:2 M ratio and the spectral and analytical results put forward square planar geometry. Spectro-electrochemical, hydrodynamic, gel electrophoresis, and DNA binding/cleavage results for all the compounds demonstrate that complex (1) had excellent DNA binding/cleavage properties compared to other compounds. The observation also suggests that test compounds could intercalate with DNA, and the biothermodynamic property more strongly supports the stabilizing of the double helix DNA with the complexes. BSA binding constant results show that complex (1) exposes the best binding property via a static mode, which is further confirmed by FRET calculations. The DFT calculations and docking results for all compounds towards DNA, BSA and SARS-CoV-19 main protease (3CLPro), reveal the binding energies were in the range of -7.8 to -9.4, -6.6 to -10.2 and - 6.1 - -8.2 kcal/mol for all test compounds respectively. In this case, complexes showed favorable binding energies compared to free ligand, which stimulates further studies aimed at validating the predicted activity as well as contributing to tackling the current and future viral pandemics. The in-vitro antioxidant, antimicrobial, and anticancer results for all compounds revealed that copper complex (1) has better activity compared to others. This might result in an effective anticancer drug for future research, which is especially promising since the observed experimental results for all cases were in close agreement with the theoretical calculations.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Coordination Complexes , Anti-Infective Agents/chemistry , Antineoplastic Agents/chemistry , Antioxidants/chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , DNA/chemistry , DNA Cleavage , Ligands , Metals/chemistry , Molecular Docking Simulation , Morpholines/pharmacology , Peptide Hydrolases/metabolism , Phenols , Schiff Bases/chemistry
8.
Int J Biol Macromol ; 219: 414-427, 2022 Oct 31.
Article in English | MEDLINE | ID: covidwho-1977348

ABSTRACT

Guanine-rich DNA sequences may fold back into non-canonical four-stranded secondary structures termed as G-quadruplexes. The role of G-quadruplexes has already been well established in different diseases like cancer, neurological and viral disorders etc. Also, several small molecules have been reported, which can influence the involvement of G-quadruplexes either through stabilization or destabilization in the cellular environment. Growing statistics have associated G-quadruplex assemblies to a discrete biological process in vivo, including DNA replication, transcription, genomic stability, and epigenetic regulation. DNA G-quadruplex existence in human telomere is well recognized attractive target for anticancer drugs. G-quadruplex-interactive ligands have been known to prevent telomerase access as well as telomere capping. To the best of our understanding, the role of G-quadruplexes in virology, neuropharmacology, cancer progression and its treatment has not been discussed on a single platform till date. This review aims to enhance our knowledge regarding these magical sticky quadruplex structures, which have been quite significantly proved to be the part of many cellular processes along with their established in vivo existence. Understanding regarding stabilizing or destabilizing ligands of these multistranded guanine quadruplex structures might be proved as the facilitator of drug discovery process for many incurable diseases in future.


Subject(s)
Antineoplastic Agents , G-Quadruplexes , Telomerase , Antineoplastic Agents/pharmacology , DNA/chemistry , Epigenesis, Genetic , Guanine/chemistry , Humans , Ligands , Telomerase/chemistry , Telomere/genetics , Telomere/metabolism
9.
Anal Chem ; 94(22): 8041-8049, 2022 06 07.
Article in English | MEDLINE | ID: covidwho-1864719

ABSTRACT

It is intriguing to modulate the fluorescence emission of DNA-scaffolded silver nanoclusters (AgNCs) via confined strand displacement and transient concatenate ligation for amplifiable biosensing of a DNA segment related to SARS-CoV-2 (s2DNA). Herein, three stem-loop structural hairpins for signaling, recognizing, and assisting are designed to assemble a variant three-way DNA device (3WDD) with the aid of two linkers, in which orange-emitting AgNC (oAgNC) is stably clustered and populated in the closed loop of a hairpin reporter. The presence of s2DNA initiates the toehold-mediated strand displacement that is confined in this 3WDD for repeatable recycling amplification, outputting numerous hybrid DNA-duplex conformers that are implemented for a transient "head-tail-head" tandem ligation one by one. As a result, the oAgNC-hosted hairpin loops are quickly opened in loose coil motifs, bringing a significant fluorescence decay of multiple clusters dependent on s2DNA. Demonstrations and understanding of the tunable spectral performance of a hairpin loop-wrapped AgNC via switching 3WDD conformation would be highly beneficial to open a new avenue for applicable biosensing, bioanalysis, or clinical diagnostics.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , DNA/chemistry , DNA/genetics , Humans , Metal Nanoparticles/chemistry , SARS-CoV-2 , Silver/chemistry , Spectrometry, Fluorescence
10.
Int J Mol Sci ; 23(10)2022 May 19.
Article in English | MEDLINE | ID: covidwho-1862813

ABSTRACT

Previous studies suggest that berberine, an isoquinoline alkaloid, has antiviral potential and is a possible therapeutic candidate against SARS-CoV-2. The molecular underpinnings of its action are still unknown. Potential targets include quadruplexes (G4Q) in the viral genome as they play a key role in modulating the biological activity of viruses. While several DNA-G4Q structures and their binding properties have been elucidated, RNA-G4Qs such as RG-1 of the N-gene of SARS-CoV-2 are less explored. Using biophysical techniques, the berberine binding thermodynamics and the associated conformational and hydration changes of RG-1 could be characterized and compared with human telomeric DNA-G4Q 22AG. Berberine can interact with both quadruplexes. Substantial changes were observed in the interaction of berberine with 22AG and RG-1, which adopt different topologies that can also change upon ligand binding. The strength of interaction and the thermodynamic signatures were found to dependent not only on the initial conformation of the quadruplex, but also on the type of salt present in solution. Since berberine has shown promise as a G-quadruplex stabilizer that can modulate viral gene expression, this study may also contribute to the development of optimized ligands that can discriminate between binding to DNA and RNA G-quadruplexes.


Subject(s)
Berberine , Berberine/pharmacology , DNA/chemistry , Humans , RNA/metabolism , SARS-CoV-2
11.
ACS Chem Biol ; 17(4): 840-853, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1852373

ABSTRACT

RNA detection is important in diverse diagnostic and analytical applications. RNAs can be rapidly detected using molecular beacons, which fluoresce upon hybridizing to a target RNA but require oligonucleotides with complex fluorescent dye and quencher conjugations. Here, we describe a simplified method for rapid fluorescence detection of a target RNA using simple unmodified DNA oligonucleotides. To detect RNA, we developed Lettuce, a fluorogenic DNA aptamer that binds and activates the fluorescence of DFHBI-1T, an otherwise nonfluorescent molecule that resembles the chromophore found in green fluorescent protein. Lettuce was selected from a randomized DNA library based on binding to DFHBI-agarose. We further show that Lettuce can be split into two separate oligonucleotide components, which are nonfluorescent on their own but become fluorescent when their proximity is induced by a target RNA. We designed several pairs of split Lettuce fragments that contain an additional 15-20 nucleotides that are complementary to adjacent regions of the SARS-CoV-2 RNA, resulting in Lettuce fluorescence only in the presence of the viral RNA. Overall, these studies describe a simplified RNA detection approach using fully unmodified DNA oligonucleotides that reconstitute the Lettuce aptamer templated by RNA.


Subject(s)
Aptamers, Nucleotide , COVID-19 , Aptamers, Nucleotide/chemistry , COVID-19/diagnosis , DNA/chemistry , Fluorescent Dyes/chemistry , Green Fluorescent Proteins , Humans , RNA/chemistry , RNA, Viral/genetics , SARS-CoV-2/genetics
12.
Anal Chim Acta ; 1208: 339846, 2022 May 22.
Article in English | MEDLINE | ID: covidwho-1797342

ABSTRACT

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the outbreak of the 2019 coronavirus (COVID-19) disease, which greatly challenges the global economy and health. Simple and sensitive diagnosis of COVID-19 at the early stage is important to prevent the spread of pandemics. Herein, we have proposed a target-triggered cascade signal amplification in this work for sensitive analysis of SARS-CoV-2 RNA. Specifically, the presence of SARS-CoV-2 RNA can trigger the catalytic hairpin assembly to generate plenty of DNA duplexes with free 3'-OH termini, which can be recognized and catalyzed by the terminal deoxynucleotidyl transferase (TdT) to generate long strand DNA. The prolonged DNA can absorb substantial Ru(NH3)63+ molecules via electrostatic interaction and produce an enhanced current response. The incorporation of catalytic hairpin assembly and TdT-mediated polymerization effectively lowers the detection limit to 45 fM, with a wide linear range from 0.1 pM to 3000 pM. Moreover, the proposed strategy possesses excellent selectivity to distinguish target RNA with single-base mismatched, three-base mismatched, and random sequences. Notably, the proposed electrochemical biosensor can be applied to analyze targets in complex circumstances containing 10% saliva, which implies its high stability and anti-interference. Moreover, the proposed strategy has been successfully applied to SARS CoV-2 RNA detection in clinical samples and may have the potential to be cultivated as an effective tool for COVID-19 diagnosis.


Subject(s)
Biosensing Techniques , COVID-19 , COVID-19/diagnosis , COVID-19 Testing , DNA/chemistry , DNA Nucleotidylexotransferase/metabolism , Electrochemical Techniques , Humans , Limit of Detection , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , SARS-CoV-2
13.
Int J Mol Sci ; 23(7)2022 Apr 03.
Article in English | MEDLINE | ID: covidwho-1776251

ABSTRACT

Two tetradentate dibasic chelating Schiff base iron (III) chelates were prepared from the reaction of 2,2'-((1E,1'E)-(1,2-phenylenebis(azanylylidene))bis(methanylylidene))bis(4-bromophenol) (PDBS) and 2,2'-((1E,1'E)-((4-chloro-1,2-phenylene)bis(azanylylidene))-bis(methanylylidene))bis(4-bromophenol) (CPBS) with Fe3+ ions. The prepared complexes were fully characterized with spectral and physicochemical tools such as IR, NMR, CHN analysis, TGA, UV-visible spectra, and magnetic moment measurements. Moreover, geometry optimizations for the synthesized ligands and complexes were conducted using the Gaussian09 program through the DFT approach, to find the best structures and key parameters. The prepared compounds were tested as antimicrobial agents against selected strains of bacteria and fungi. The results suggests that the CPBSFe complex has the highest activity, which is close to the reference. An MTT assay was used to screen the newly synthesized compounds against a variety of cell lines, including colon cancer cells, hepatic cellular carcinoma cells, and breast carcinoma cells. The results are expressed by IC50 value, in which the 48 µg/mL value of the CPBSFe complex indicates its success as a potential anticancer agent. The antioxidant behavior of the two imine chelates was studied by DPPH assay. All the tested imine complexes show potent antioxidant activity compared to the standard Vitamin C. Furthermore, the in vitro assay and the mechanism of binding and interaction efficiency of the tested samples with the receptor of COVID-19 core protease viral protein (PDB ID: 6lu7) and the receptor of Gram-negative bacteria (Escherichia coli, PDB ID: 1fj4) were investigated using molecular docking experiments.


Subject(s)
Imines , Chelating Agents/chemistry , Chelating Agents/pharmacology , DNA/chemistry , Density Functional Theory , Ferric Compounds , Humans , Imines/chemistry , Imines/pharmacology , Molecular Docking Simulation , Pharmaceutical Preparations
14.
Biomolecules ; 12(3)2022 02 23.
Article in English | MEDLINE | ID: covidwho-1760346

ABSTRACT

Prokaryotic Argonautes (pAgos) from mesophilic bacteria are attracting increasing attention for their genome editing potential. So far, it has been reported that KmAgo from Kurthia massiliensis can utilize DNA and RNA guide of any sequence to effectively cleave DNA and RNA targets. Here we find that three active pAgos, which have about 50% sequence identity with KmAgo, possess typical DNA-guided DNA target cleavage ability. Among them, RsuAgo from Rummeliibacillus suwonensis is mainly explored for which can cleave both DNA and RNA targets. Interestingly, RsuAgo-mediated RNA target cleavage occurs only with short guide DNAs in a narrow length range (16-20 nt), and mismatches between the guide and target sequence greatly affect the efficiency of RNA target cleavage. RsuAgo-mediated target cleavage shows a preference for a guide strand with a 5'-terminal A residue. Furthermore, we have found that RsuAgo can cleave double-stranded DNA in a low-salt buffer at 37 °C. These properties of RsuAgo provide a new tool for DNA and RNA manipulation at moderate temperatures.


Subject(s)
Argonaute Proteins , Bacterial Proteins , Argonaute Proteins/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA/chemistry , Endonucleases , Planococcaceae , RNA
15.
Int J Mol Sci ; 22(21)2021 Nov 02.
Article in English | MEDLINE | ID: covidwho-1745034

ABSTRACT

A convenient method for the synthesis of the first generation PAMAM dendrimers based on the thiacalix[4]arene has been developed for the first time. Three new PAMAM-calix-dendrimers with the macrocyclic core in cone, partial cone, and 1,3-alternate conformations were obtained with high yields. The interaction of the obtained compounds with salmon sperm DNA resulted in the formation of the associates of the size up to 200 nm, as shown by the UV-Vis spectroscopy, DLS, and TEM. It was demonstrated by the CD method that the structure of the DNA did not undergo significant changes upon binding. The PAMAM-calix-dendrimer based on the macrocycle in cone conformation stabilized DNA and prevented its degradation.


Subject(s)
DNA/chemistry , DNA/metabolism , Dendrimers/chemistry , Phenols/chemistry , Sulfides/chemistry , Animals , Male , Molecular Conformation , Salmon , Spermatozoa/metabolism
16.
Int J Mol Sci ; 23(6)2022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1742489

ABSTRACT

The pandemic emergency determined by the spreading worldwide of the SARS-CoV-2 virus has focused the scientific and economic efforts of the pharmaceutical industry and governments on the possibility to fight the virus by genetic immunization. The genetic material must be delivered inside the cells by means of vectors. Due to the risk of adverse or immunogenic reaction or replication connected with the more efficient viral vectors, non-viral vectors are in many cases considered as a preferred strategy for gene delivery into eukaryotic cells. This paper is devoted to the evaluation of the gene delivery ability of new synthesized gemini bis-pyridinium surfactants with six methylene spacers, both hydrogenated and fluorinated, in comparison with compounds with spacers of different lengths, previously studied. Results from MTT proliferation assay, electrophoresis mobility shift assay (EMSA), transient transfection assay tests and atomic force microscopy (AFM) imaging confirm that pyridinium gemini surfactants could be a valuable tool for gene delivery purposes, but their performance is highly dependent on the spacer length and strictly related to their structure in solution. All the fluorinated compounds are unable to transfect RD-4 cells, if used alone, but they are all able to deliver a plasmid carrying an enhanced green fluorescent protein (EGFP) expression cassette, when co-formulated with 1,2-dioleyl-sn-glycero-3-phosphoethanolamine (DOPE) in a 1:2 ratio. The fluorinated compounds with spacers formed by six (FGP6) and eight carbon atoms (FGP8) give rise to a very interesting gene delivery activity, greater to that of the commercial reagent, when formulated with DOPE. The hydrogenated compound GP16_6 is unable to sufficiently compact the DNA, as shown by AFM images.


Subject(s)
DNA/genetics , Gene Transfer Techniques , Methane/chemistry , Pyridinium Compounds/chemistry , Surface-Active Agents/chemistry , Transfection/methods , A549 Cells , Cell Survival , DNA/chemistry , DNA/metabolism , Genetic Therapy/methods , Halogenation , Humans , Hydrogenation , Methane/metabolism , Microscopy, Atomic Force , Molecular Structure , Plasmids/chemistry , Plasmids/genetics , Plasmids/metabolism , Pyridinium Compounds/metabolism , Reproducibility of Results , Surface-Active Agents/metabolism
17.
Nat Commun ; 13(1): 968, 2022 02 18.
Article in English | MEDLINE | ID: covidwho-1705624

ABSTRACT

DNA/RNA-gold nanoparticle (DNA/RNA-AuNP) nanoprobes have been widely employed for nanobiotechnology applications. Here, we discover that both thiolated and non-thiolated DNA/RNA can be efficiently attached to AuNPs to achieve high-stable spherical nucleic acid (SNA) within minutes under a domestic microwave (MW)-assisted heating-dry circumstance. Further studies show that for non-thiolated DNA/RNA the conjugation is poly (T/U) tag dependent. Spectroscopy, test strip hybridization, and loading counting experiments indicate that low-affinity poly (T/U) tag mediates the formation of a standing-up conformation, which is distributed in the outer layer of SNA structure. In further application studies, CRISPR/Cas9-sgRNA (136 bp), SARS-CoV-2 RNA fragment (1278 bp), and rolling circle amplification (RCA) DNA products (over 1000 bp) can be successfully attached on AuNPs, which overcomes the routine methods in long-chain nucleic acid-AuNP conjugation, exhibiting great promise in biosensing and nucleic acids delivery applications. Current heating-dry strategy has improved traditional DNA/RNA-AuNP conjugation methods in simplicity, rapidity, cost, and universality.


Subject(s)
Biosensing Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Biotechnology/methods , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing/methods , DNA/chemistry , Heating/methods , Humans , Limit of Detection , Microwaves , Nanomedicine/methods , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/isolation & purification , SARS-CoV-2/genetics
18.
ACS Nano ; 16(3): 4726-4733, 2022 03 22.
Article in English | MEDLINE | ID: covidwho-1703529

ABSTRACT

Nucleic acids, including circulating tumor DNA (ctDNA), microRNA, and virus DNA/RNA, have been widely applied as potential disease biomarkers for early clinical diagnosis. In this study, we present a concept of DNA nanostructures transitions for the construction of DNA bipedal walking nanomachine, which integrates dual signal amplification for direct nucleic acid assay. DNA hairpins transition is developed to facilitate the generation of multiple target sequences; meanwhile, the subsequent DNA dumbbell-wheel transition is controlled to achieve the bipedal walker, which cleaves multiple tracks around electrode surface. Through combination of strand displacement reaction and digestion cycles, DNA monolayer at the electrode interface could be engineered and target-induced signal variation is realized. In addition, pH-assisted detachable intermolecular DNA triplex design is utilized for the regeneration of electrochemical biosensor. The high consistency between this work and standard quantitative polymerase chain reaction is validated. Moreover, the feasibilities of this biosensor to detect ctDNA and SARS-CoV-2 RNA in clinical samples are demonstrated with satisfactory accuracy and reliability. Therefore, the proposed approach has great potential applications for nucleic acid based clinical diagnostics.


Subject(s)
Biosensing Techniques , COVID-19 , COVID-19/diagnosis , DNA/chemistry , Electrochemical Techniques , Humans , Limit of Detection , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , Reproducibility of Results , SARS-CoV-2/genetics
19.
Int J Biol Macromol ; 203: 466-480, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1630871

ABSTRACT

The SARS-CoV-2 nucleocapsid protein (N) is a multifunctional promiscuous nucleic acid-binding protein, which plays a major role in nucleocapsid assembly and discontinuous RNA transcription, facilitating the template switch of transcriptional regulatory sequences (TRS). Here, we dissect the structural features of the N protein N-terminal domain (N-NTD) and N-NTD plus the SR-rich motif (N-NTD-SR) upon binding to single and double-stranded TRS DNA, as well as their activities for dsTRS melting and TRS-induced liquid-liquid phase separation (LLPS). Our study gives insights on the specificity for N-NTD(-SR) interaction with TRS. We observed an approximation of the triple-thymidine (TTT) motif of the TRS to ß-sheet II, giving rise to an orientation difference of ~25° between dsTRS and non-specific sequence (dsNS). It led to a local unfavorable energetic contribution that might trigger the melting activity. The thermodynamic parameters of binding of ssTRSs and dsTRS suggested that the duplex dissociation of the dsTRS in the binding cleft is entropically favorable. We showed a preference for TRS in the formation of liquid condensates when compared to NS. Moreover, our results on DNA binding may serve as a starting point for the design of inhibitors, including aptamers, against N, a possible therapeutic target essential for the virus infectivity.


Subject(s)
COVID-19/virology , Nucleic Acids/metabolism , Nucleocapsid Proteins/metabolism , Protein Interaction Domains and Motifs , SARS-CoV-2/physiology , Binding Sites , DNA/chemistry , DNA/metabolism , Gene Expression Regulation, Viral , Host-Pathogen Interactions , Humans , Hydrogen Bonding , Models, Molecular , Nucleic Acids/chemistry , Nucleocapsid Proteins/chemistry , Protein Binding , RNA/chemistry , RNA/metabolism , Spectrum Analysis , Structure-Activity Relationship
20.
SLAS Discov ; 27(2): 79-85, 2022 03.
Article in English | MEDLINE | ID: covidwho-1626620

ABSTRACT

Covalent inhibitors targeting the main protease (Mpro, or 3CLpro) of SARS-CoV-2 have shown promise in preclinical investigations. Herein, we report the discovery of two new series of molecules that irreversibly bind to SARS-CoV-2 Mpro. These acrylamide containing molecules were discovered using our covalent DNA-encoded library (DEL) screening platform. Following selection against SARS-CoV-2 Mpro, off-DNA compounds were synthesized and investigated to determine their inhibitory effects, the nature of their binding, and to generate preliminary structure-activity relationships. LC-MS analysis indicates a 1:1 (covalent) binding stoichiometry between our hit molecules and SARS-CoV-2 Mpro. Fluorescent staining assay for covalent binding in the presence of cell lysate suggests reasonable selectivity for SARS-CoV-2 Mpro. And lastly, inhibition of enzymatic activity was also observed against a panel of 3CLpro enzymes from different coronavirus strains, with IC50 values ranging from inactive to single digit micromolar. Our results indicate that DEL selection is a useful approach for identifying covalent inhibitors of cysteine proteases.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , DNA/chemistry , Drug Discovery/methods , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Cell Line , Feasibility Studies , Humans , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL