Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
ACS Chem Biol ; 17(1): 17-23, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1569207


Macrodomains are a class of conserved ADP-ribosylhydrolases expressed by viruses of pandemic concern, including coronaviruses and alphaviruses. Viral macrodomains are critical for replication and virus-induced pathogenesis; therefore, these enzymes are a promising target for antiviral therapy. However, no potent or selective viral macrodomain inhibitors currently exist, in part due to the lack of a high-throughput assay for this class of enzymes. Here we developed a high-throughput ADP-ribosylhydrolase assay using the SARS-CoV-2 macrodomain Mac1. We performed a pilot screen that identified dasatinib and dihydralazine as ADP-ribosylhydrolase inhibitors. Importantly, dasatinib inhibits SARS-CoV-2 and MERS-CoV Mac1 but not the closest human homologue, MacroD2. Our study demonstrates the feasibility of identifying selective inhibitors based on ADP-ribosylhydrolase activity, paving the way for the screening of large compound libraries to identify improved macrodomain inhibitors and to explore their potential as antiviral therapies for SARS-CoV-2 and future viral threats.

Antiviral Agents/pharmacology , High-Throughput Screening Assays/methods , N-Glycosyl Hydrolases/antagonists & inhibitors , SARS-CoV-2/drug effects , Dasatinib/pharmacology , Protein Domains , SARS-CoV-2/enzymology
Nature ; 599(7884): 283-289, 2021 11.
Article in English | MEDLINE | ID: covidwho-1404888


Derailed cytokine and immune cell networks account for the organ damage and the clinical severity of COVID-19 (refs. 1-4). Here we show that SARS-CoV-2, like other viruses, evokes cellular senescence as a primary stress response in infected cells. Virus-induced senescence (VIS) is indistinguishable from other forms of cellular senescence and is accompanied by a senescence-associated secretory phenotype (SASP), which comprises pro-inflammatory cytokines, extracellular-matrix-active factors and pro-coagulatory mediators5-7. Patients with COVID-19 displayed markers of senescence in their airway mucosa in situ and increased serum levels of SASP factors. In vitro assays demonstrated macrophage activation with SASP-reminiscent secretion, complement lysis and SASP-amplifying secondary senescence of endothelial cells, which mirrored hallmark features of COVID-19 such as macrophage and neutrophil infiltration, endothelial damage and widespread thrombosis in affected lung tissue1,8,9. Moreover, supernatant from VIS cells, including SARS-CoV-2-induced senescence, induced neutrophil extracellular trap formation and activation of platelets and the clotting cascade. Senolytics such as navitoclax and a combination of dasatinib plus quercetin selectively eliminated VIS cells, mitigated COVID-19-reminiscent lung disease and reduced inflammation in SARS-CoV-2-infected hamsters and mice. Our findings mark VIS as a pathogenic trigger of COVID-19-related cytokine escalation and organ damage, and suggest that senolytic targeting of virus-infected cells is a treatment option against SARS-CoV-2 and perhaps other viral infections.

COVID-19/drug therapy , COVID-19/pathology , COVID-19/virology , Cellular Senescence/drug effects , Molecular Targeted Therapy , SARS-CoV-2/pathogenicity , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Animals , COVID-19/complications , Cell Line , Cricetinae , Dasatinib/pharmacology , Dasatinib/therapeutic use , Disease Models, Animal , Female , Humans , Male , Mice , Quercetin/pharmacology , Quercetin/therapeutic use , SARS-CoV-2/drug effects , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Thrombosis/complications , Thrombosis/immunology , Thrombosis/metabolism
Science ; 373(6552)2021 07 16.
Article in English | MEDLINE | ID: covidwho-1262378


The COVID-19 pandemic has revealed the pronounced vulnerability of the elderly and chronically ill to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced morbidity and mortality. Cellular senescence contributes to inflammation, multiple chronic diseases, and age-related dysfunction, but effects on responses to viral infection are unclear. Here, we demonstrate that senescent cells (SnCs) become hyper-inflammatory in response to pathogen-associated molecular patterns (PAMPs), including SARS-CoV-2 spike protein-1, increasing expression of viral entry proteins and reducing antiviral gene expression in non-SnCs through a paracrine mechanism. Old mice acutely infected with pathogens that included a SARS-CoV-2-related mouse ß-coronavirus experienced increased senescence and inflammation, with nearly 100% mortality. Targeting SnCs by using senolytic drugs before or after pathogen exposure significantly reduced mortality, cellular senescence, and inflammatory markers and increased antiviral antibodies. Thus, reducing the SnC burden in diseased or aged individuals should enhance resilience and reduce mortality after viral infection, including that of SARS-CoV-2.

Aging , Cellular Senescence/drug effects , Coronavirus Infections/mortality , Flavonols/therapeutic use , Pathogen-Associated Molecular Pattern Molecules/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/drug therapy , COVID-19/immunology , COVID-19/mortality , Cell Line , Coronavirus Infections/immunology , Dasatinib/pharmacology , Dasatinib/therapeutic use , Female , Flavonols/pharmacology , Gene Expression Regulation , Humans , Lipopolysaccharides , Male , Mice , Mice, Inbred C57BL , Murine hepatitis virus/immunology , Quercetin/pharmacology , Quercetin/therapeutic use , Receptors, Coronavirus/genetics , Receptors, Coronavirus/metabolism , Specific Pathogen-Free Organisms
Basic Clin Pharmacol Toxicol ; 128(4): 621-624, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-965811


Since the emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019, no vaccine has been approved to counter this infection and the available treatments are mainly directed against the immune pathology caused by the infection. The coronavirus disease 2019 (COVID-19) is currently causing a worldwide pandemic, pointing the urgent need for effective treatment. In such emergency, drug repurposing presents the best option for a rapid antiviral response. We assess here the in vitro activity of nilotinib, imatinib and dasatinib, three Abl tyrosine kinase inhibitors, against SARS-CoV-2. Although the last two compounds do not show antiviral efficacy, we observe inhibition with nilotinib in Vero-E6 cells and Calu-3 cells with EC50s of 1.44 µM and 3.06 µM, respectively. These values are close to the mean peak concentration of nilotinib observed at steady state in serum, making this compound a potential candidate for treatment of COVID-19 in vivo.

Antiviral Agents/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , SARS-CoV-2/drug effects , Animals , Cell Line , Chlorocebus aethiops , Dasatinib/pharmacology , Dose-Response Relationship, Drug , Humans , Imatinib Mesylate/pharmacology , In Vitro Techniques , Vero Cells/virology
Elife ; 92020 11 23.
Article in English | MEDLINE | ID: covidwho-940328


Bruton's tyrosine kinase (BTK) is targeted in the treatment of B-cell disorders including leukemias and lymphomas. Currently approved BTK inhibitors, including Ibrutinib, a first-in-class covalent inhibitor of BTK, bind directly to the kinase active site. While effective at blocking the catalytic activity of BTK, consequences of drug binding on the global conformation of full-length BTK are unknown. Here, we uncover a range of conformational effects in full-length BTK induced by a panel of active site inhibitors, including large-scale shifts in the conformational equilibria of the regulatory domains. Additionally, we find that a remote Ibrutinib resistance mutation, T316A in the BTK SH2 domain, drives spurious BTK activity by destabilizing the compact autoinhibitory conformation of full-length BTK, shifting the conformational ensemble away from the autoinhibited form. Future development of BTK inhibitors will need to consider long-range allosteric consequences of inhibitor binding, including the emerging application of these BTK inhibitors in treating COVID-19.

Treatments for blood cancers, such as leukemia and lymphoma, rely heavily on chemotherapy, using drugs that target a vulnerable aspect of the cancer cells. B-cells, a type of white blood cell that produces antibodies, require a protein called Bruton's tyrosine kinase, or BTK for short, to survive. The drug ibrutinib (Imbruvica) is used to treat B-cell cancers by blocking BTK. The BTK protein consists of several regions. One of them, known as the kinase domain, is responsible for its activity as an enzyme (which allows it to modify other proteins by adding a 'tag' known as a phosphate group). The other regions of BTK, known as regulatory modules, control this activity. In BTK's inactive form, the regulatory modules attach to the kinase domain, blocking the regulatory modules from interacting with other proteins. When BTK is activated, it changes its conformation so the regulatory regions detach and become available for interactions with other proteins, at the same time exposing the active kinase domain. Ibrutinib and other BTK drugs in development bind to the kinase domain to block its activity. However, it is not known how this binding affects the regulatory modules. Previous efforts to study how drugs bind to BTK have used a version of the protein that only had the kinase domain, instead of the full-length protein. Now, Joseph et al. have studied full-length BTK and how it binds to five different drugs. The results reveal that ibrutinib and another drug called dasatinib both indirectly disrupt the normal position of the regulatory domains pushing BTK toward a conformation that resembles the activated state. By contrast, the three other compounds studied do not affect the inactive structure. Joseph et al. also examined a mutation in BTK that confers resistance against ibrutinib. This mutation increases the activity of BTK by disrupting the inactive structure, leading to B cells surviving better. Understanding how drug resistance mechanisms can work will lead to better drug treatment strategies for cancer. BTK is also a target in other diseases such as allergies or asthma and even COVID-19. If interactions between partner proteins and the regulatory domain are important in these diseases, then they may be better treated with drugs that maintain the regulatory modules in their inactive state. This research will help to design drugs that are better able to control BTK activity.

Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Catalytic Domain , Protein Conformation/drug effects , Protein Kinase Inhibitors/pharmacology , Adenine/analogs & derivatives , Adenine/chemistry , Adenine/metabolism , Adenine/pharmacology , Agammaglobulinaemia Tyrosine Kinase/chemistry , Agammaglobulinaemia Tyrosine Kinase/genetics , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/virology , Dasatinib/chemistry , Dasatinib/metabolism , Dasatinib/pharmacology , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/prevention & control , Models, Molecular , Molecular Structure , Mutation , Piperidines/chemistry , Piperidines/metabolism , Piperidines/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , SARS-CoV-2/physiology , src Homology Domains/genetics