Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
J Med Chem ; 64(19): 14332-14343, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1621195

ABSTRACT

In addition to a variety of viral-glycoprotein receptors (e.g., heparan sulfate, Niemann-Pick C1, etc.), dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), from the C-type lectin receptor family, plays one of the most important pathogenic functions for a wide range of viruses (e.g., Ebola, human cytomegalovirus (HCMV), HIV-1, severe acute respiratory syndrome coronavirus 2, etc.) that invade host cells before replication; thus, its inhibition represents a relevant extracellular antiviral therapy. We report two novel p-tBu-calixarene glycoclusters 1 and 2, bearing tetrahydroxamic acid groups, which exhibit micromolar inhibition of soluble DC-SIGN binding and provide nanomolar IC50 inhibition of both DC-SIGN-dependent Jurkat cis-cell infection by viral particle pseudotyped with Ebola virus glycoprotein and the HCMV-gB-recombinant glycoprotein interaction with monocyte-derived dendritic cells expressing DC-SIGN. A unique cooperative involvement of sugar, linker, and calixarene core is likely behind the strong avidity of DC-SIGN for these low-valent systems. We claim herein new promising candidates for the rational development of a large spectrum of antiviral therapeutics.


Subject(s)
Calixarenes/chemistry , Cell Adhesion Molecules/antagonists & inhibitors , Glycoconjugates/metabolism , Glycoproteins/antagonists & inhibitors , Hydroxamic Acids/chemistry , Lectins, C-Type/antagonists & inhibitors , Phenols/chemistry , Receptors, Cell Surface/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Cell Adhesion Molecules/metabolism , Cell Line , Cytomegalovirus/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Ebolavirus/physiology , Glycoconjugates/chemistry , Glycoconjugates/pharmacology , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Jurkat Cells , Lectins, C-Type/metabolism , Models, Biological , Protein Binding , Receptors, Cell Surface/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Viral Proteins/genetics , Viral Proteins/metabolism
2.
EBioMedicine ; 73: 103675, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1596532

ABSTRACT

BACKGROUND: Following the discovery of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its rapid spread throughout the world, new viral variants of concern (VOC) have emerged. There is a critical need to understand the impact of the emerging variants on host response and disease dynamics to facilitate the development of vaccines and therapeutics. METHODS: Syrian golden hamsters are the leading small animal model that recapitulates key aspects of severe coronavirus disease 2019 (COVID-19). We performed intranasal inoculation of SARS-CoV-2 into hamsters with the ancestral virus (nCoV-WA1-2020) or VOC first identified in the United Kingdom (B.1.1.7, alpha) and South Africa (B.1.351, beta) and analyzed viral loads and host responses. FINDINGS: Similar gross and histopathologic pulmonary lesions were observed after infection with all three variants. Although differences in viral genomic copy numbers were noted in the lungs and oral swabs of challenged animals, infectious titers in the lungs were comparable between the variants. Antibody neutralization capacities varied, dependent on the original challenge virus and cross-variant protective capacity. Transcriptional profiling of lung samples 4 days post-challenge (DPC) indicated significant induction of antiviral pathways in response to all three challenges with a more robust inflammatory signature in response to B.1.1.7 infection. Furthermore, no additional mutations in the spike protein were detected at 4 DPC. INTERPRETATIONS: Although disease severity and viral shedding were not significantly different, the emerging VOC induced distinct humoral responses and transcriptional profiles compared to the ancestral virus. These observations suggest potential differences in acute early responses or alterations in immune modulation by VOC. FUNDING: Intramural Research Program, NIAID, NIH; National Center for Research Resources, NIH; National Center for Advancing Translational Sciences, NIH.


Subject(s)
COVID-19/pathology , SARS-CoV-2/isolation & purification , Transcriptome , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , Cricetinae , Dendritic Cells/cytology , Dendritic Cells/metabolism , Disease Models, Animal , Female , Immunity, Humoral , Lung/metabolism , Lung/pathology , Lung/virology , Mesocricetus , Mouth/pathology , Mouth/virology , Nucleocapsid Proteins/metabolism , RNA, Viral/analysis , RNA, Viral/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
4.
Elife ; 102021 04 27.
Article in English | MEDLINE | ID: covidwho-1513055

ABSTRACT

Dendritic cells (DCs) regulate processes ranging from antitumor and antiviral immunity to host-microbe communication at mucosal surfaces. It remains difficult, however, to genetically manipulate human DCs, limiting our ability to probe how DCs elicit specific immune responses. Here, we develop a CRISPR-Cas9 genome editing method for human monocyte-derived DCs (moDCs) that mediates knockouts with a median efficiency of >94% across >300 genes. Using this method, we perform genetic screens in moDCs, identifying mechanisms by which DCs tune responses to lipopolysaccharides from the human microbiome. In addition, we reveal donor-specific responses to lipopolysaccharides, underscoring the importance of assessing immune phenotypes in donor-derived cells, and identify candidate genes that control this specificity, highlighting the potential of our method to pinpoint determinants of inter-individual variation in immunity. Our work sets the stage for a systematic dissection of the immune signaling at the host-microbiome interface and for targeted engineering of DCs for neoantigen vaccination.


Subject(s)
CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Dendritic Cells/immunology , Gene Editing , Genomics , Immunity, Innate/genetics , Bacteroides thetaiotaomicron/immunology , CRISPR-Associated Protein 9/metabolism , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Gene Expression Regulation , Humans , Immunity, Innate/drug effects , Lipopolysaccharides/pharmacology , Phenotype , Signal Transduction , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
5.
Front Immunol ; 12: 732992, 2021.
Article in English | MEDLINE | ID: covidwho-1497075

ABSTRACT

Chronic inflammatory disorders (CID), such as autoimmune diseases, are characterized by overactivation of the immune system and loss of immune tolerance. T helper 17 (Th17) cells are strongly associated with the pathogenesis of multiple CID, including psoriasis, rheumatoid arthritis, and inflammatory bowel disease. In line with the increasingly recognized contribution of innate immune cells to the modulation of dendritic cell (DC) function and DC-driven adaptive immune responses, we recently showed that neutrophils are required for DC-driven Th17 cell differentiation from human naive T cells. Consequently, recruitment of neutrophils to inflamed tissues and lymph nodes likely creates a highly inflammatory loop through the induction of Th17 cells that should be intercepted to attenuate disease progression. Tolerogenic therapy via DCs, the central orchestrators of the adaptive immune response, is a promising strategy for the treatment of CID. Tolerogenic DCs could restore immune tolerance by driving the development of regulatory T cells (Tregs) in the periphery. In this review, we discuss the effects of the tolerogenic adjuvants vitamin D3 (VD3), corticosteroids (CS), and retinoic acid (RA) on both DCs and neutrophils and their potential interplay. We briefly summarize how neutrophils shape DC-driven T-cell development in general. We propose that, for optimization of tolerogenic DC therapy for the treatment of CID, both DCs for tolerance induction and the neutrophil inflammatory loop should be targeted while preserving the potential Treg-enhancing effects of neutrophils.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Autoimmune Diseases/drug therapy , Autoimmunity/drug effects , Dendritic Cells/drug effects , Immune Tolerance/drug effects , Inflammation/drug therapy , Neutrophils/drug effects , Th17 Cells/drug effects , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Inflammation/immunology , Inflammation/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism
6.
Adv Sci (Weinh) ; 8(23): e2100118, 2021 12.
Article in English | MEDLINE | ID: covidwho-1482096

ABSTRACT

Recently, viral infectious diseases, including COVID-19 and Influenza, are the subjects of major concerns worldwide. One strategy for addressing these concerns focuses on nasal vaccines, which have great potential for achieving successful immunization via safe, easy, and affordable approaches. However, conventional nasal vaccines have major limitations resulting from fast removal when pass through nasal mucosa and mucociliary clearance hindering their effectiveness. Herein a nanoparticulate vaccine (NanoVac) exhibiting photochemical immunomodulation and constituting a new self-assembled immunization system of a photoactivatable polymeric adjuvant with influenza virus hemagglutinin for efficient nasal delivery and antigen-specific immunity against pathogenic influenza viruses is described. NanoVac increases the residence period of antigens and further enhances by spatiotemporal photochemical modulation in the nasal cavity. As a consequence, photochemical immunomodulation of NanoVacs successfully induces humoral and cellular immune responses followed by stimulation of mature dendritic cells, plasma cells, memory B cells, and CD4+ and CD8+ T cells, resulting in secretion of antigen-specific immunoglobulins, cytokines, and CD8+ T cells. Notably, challenge with influenza virus after nasal immunization with NanoVacs demonstrates robust prevention of viral infection. Thus, this newly designed vaccine system can serve as a promising strategy for developing vaccines that are active against current hazardous pathogen outbreaks and pandemics.


Subject(s)
Hemagglutinins/chemistry , Influenza Vaccines/administration & dosage , Light , Nanoparticles/chemistry , Orthomyxoviridae Infections/prevention & control , Adjuvants, Immunologic/administration & dosage , Administration, Inhalation , Animals , Antigens/administration & dosage , Antigens/chemistry , Antigens/immunology , Dendritic Cells/cytology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Hemagglutinins/administration & dosage , Hemagglutinins/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Interferon-gamma/metabolism , Male , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Photosensitizing Agents/chemistry , Polymers/chemistry
8.
EMBO J ; 40(20): e106765, 2021 10 18.
Article in English | MEDLINE | ID: covidwho-1436404

ABSTRACT

The current pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and outbreaks of new variants highlight the need for preventive treatments. Here, we identified heparan sulfate proteoglycans as attachment receptors for SARS-CoV-2. Notably, neutralizing antibodies against SARS-CoV-2 isolated from COVID-19 patients interfered with SARS-CoV-2 binding to heparan sulfate proteoglycans, which might be an additional mechanism of antibodies to neutralize infection. SARS-CoV-2 binding to and infection of epithelial cells was blocked by low molecular weight heparins (LMWH). Although dendritic cells (DCs) and mucosal Langerhans cells (LCs) were not infected by SARS-CoV-2, both DC subsets efficiently captured SARS-CoV-2 via heparan sulfate proteoglycans and transmitted the virus to ACE2-positive cells. Notably, human primary nasal cells were infected by SARS-CoV-2, and infection was blocked by pre-treatment with LMWH. These data strongly suggest that heparan sulfate proteoglycans are important attachment receptors facilitating infection and transmission, and support the use of LMWH as prophylaxis against SARS-CoV-2 infection.


Subject(s)
COVID-19/transmission , Heparan Sulfate Proteoglycans/metabolism , Heparin, Low-Molecular-Weight/pharmacology , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/pharmacology , COVID-19/drug therapy , Chlorocebus aethiops , Dendritic Cells/metabolism , Dendritic Cells/virology , Epithelial Cells/metabolism , Epithelial Cells/virology , Host-Pathogen Interactions , Humans , Mucous Membrane/cytology , Mucous Membrane/virology , SARS-CoV-2/metabolism , Syndecan-1/metabolism , Syndecan-4/metabolism , Vero Cells
9.
Viruses ; 13(9)2021 09 15.
Article in English | MEDLINE | ID: covidwho-1411083

ABSTRACT

Type I Interferons (IFN-I) are a family of potent antiviral cytokines that act through the direct restriction of viral replication and by enhancing antiviral immunity. However, these powerful cytokines are a caged lion, as excessive and sustained IFN-I production can drive immunopathology during infection, and aberrant IFN-I production is a feature of several types of autoimmunity. As specialized producers of IFN-I plasmacytoid (p), dendritic cells (DCs) can secrete superb quantities and a wide breadth of IFN-I isoforms immediately after infection or stimulation, and are the focus of this review. Notably, a few days after viral infection pDCs tune down their capacity for IFN-I production, producing less cytokines in response to both the ongoing infection and unrelated secondary stimulations. This process, hereby referred to as "pDC exhaustion", favors viral persistence and associates with reduced innate responses and increased susceptibility to secondary opportunistic infections. On the other hand, pDC exhaustion may be a compromise to avoid IFN-I driven immunopathology. In this review we reflect on the mechanisms that initially induce IFN-I and subsequently silence their production by pDCs during a viral infection. While these processes have been long studied across numerous viral infection models, the 2019 coronavirus disease (COVID-19) pandemic has brought their discussion back to the fore, and so we also discuss emerging results related to pDC-IFN-I production in the context of COVID-19.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , Interferon Type I/biosynthesis , SARS-CoV-2/physiology , Biomarkers , COVID-19/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate/immunology , Immunomodulation , Toll-Like Receptors/metabolism
10.
Viruses ; 13(9)2021 09 02.
Article in English | MEDLINE | ID: covidwho-1390789

ABSTRACT

SARS-CoV-2 uses ACE2 and TMPRSS2 to gain entry into the cell. However, recent studies have shown that SARS-CoV-2 may use additional host factors that are required for the viral lifecycle. Here we used publicly available datasets, CoV-associated genes, and machine learning algorithms to explore the SARS-CoV-2 interaction landscape in different tissues. We found that in general a small fraction of cells express ACE2 in the different tissues, including nasal, bronchi, and lungs. We show that a small fraction of immune cells (including T cells, macrophages, dendritic cells) found in tissues also express ACE2. We show that healthy circulating immune cells do not express ACE2 and TMPRSS2. However, a small fraction of circulating immune cells (including dendritic cells, monocytes, T cells) in the PBMC of COVID-19 patients express ACE2 and TMPRSS2. Additionally, we found that a large spectrum of cells (in tissues and circulation) in both healthy and COVID-19-positive patients were significantly enriched for SARS-CoV-2 factors, such as those associated with RHOA and RAB GTPases, mRNA translation proteins, COPI- and COPII-mediated transport, and integrins. Thus, we propose that further research is needed to explore if SARS-CoV-2 can directly infect tissue and circulating immune cells to better understand the virus' mechanism of action.


Subject(s)
COVID-19/etiology , Disease Susceptibility , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , SARS-CoV-2/physiology , Virus Internalization , COVID-19/blood , Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Expression Profiling , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Immune System/immunology , Immune System/metabolism , Immunity, Innate , Macrophages/immunology , Macrophages/metabolism , Single-Cell Analysis
11.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1374426

ABSTRACT

The current spreading coronavirus SARS-CoV-2 is highly infectious and pathogenic. In this study, we screened the gene expression of three host receptors (ACE2, DC-SIGN and L-SIGN) of SARS coronaviruses and dendritic cells (DCs) status in bulk and single cell transcriptomic datasets of upper airway, lung or blood of COVID-19 patients and healthy controls. In COVID-19 patients, DC-SIGN gene expression was interestingly decreased in lung DCs but increased in blood DCs. Within DCs, conventional DCs (cDCs) were depleted while plasmacytoid DCs (pDCs) were augmented in the lungs of mild COVID-19. In severe cases, we identified augmented types of immature DCs (CD22+ or ANXA1+ DCs) with MHCII downregulation. In this study, our observation indicates that DCs in severe cases stimulate innate immune responses but fail to specifically present SARS-CoV-2. It provides insights into the profound modulation of DC function in severe COVID-19.


Subject(s)
COVID-19/immunology , Cell Adhesion Molecules/genetics , Dendritic Cells/immunology , Gene Expression Regulation/immunology , Lectins, C-Type/genetics , Receptors, Cell Surface/genetics , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/diagnosis , COVID-19/pathology , COVID-19/virology , Cell Adhesion Molecules/metabolism , Datasets as Topic , Dendritic Cells/metabolism , Genome-Wide Association Study , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Lectins, C-Type/metabolism , Lung/immunology , Lung/pathology , Lung/virology , Mendelian Randomization Analysis , Nasopharynx/immunology , Nasopharynx/pathology , Nasopharynx/virology , RNA-Seq , Receptors, Cell Surface/metabolism , Severity of Illness Index , Single-Cell Analysis
12.
Immunol Lett ; 234: 16-32, 2021 06.
Article in English | MEDLINE | ID: covidwho-1173426

ABSTRACT

Inflammasomes are cytosolic multiprotein complexes that crucially contribute to host defense against pathogens but are also involved in the pathogenesis of autoinflammatory diseases. Inflammasome formation leads to activation of effector caspases (caspase-1, 4, 5, or 11), the proteolytic maturation of IL-1ß and IL-18 as well as cleavage of the pore-forming protein Gasdermin D. Dendritic cells are major regulators of immune responses as they bridge innate and adaptive immunity. We here summarize the current knowledge on inflammasome expression and formation in murine bone marrow-, human monocyte-derived as well as murine and human primary dendritic cells. Further, we discuss both, the beneficial and detrimental, involvement of inflammasome activation in dendritic cells in cancer, infections, and autoimmune diseases. As inflammasome activation is typically accompanied by Gasdermin d-mediated pyroptosis, which is an inflammatory form of programmed cell death, inflammasome formation in dendritic cells seems ill-advised. Therefore, we propose that hyperactivation, which is inflammasome activation without the induction of pyroptosis, may be a general model of inflammasome activation in dendritic cells to enhance Th1, Th17 as well as cytotoxic T cell responses.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Inflammasomes/metabolism , Animals , Biomarkers , Cell Communication/genetics , Cell Communication/immunology , Cytokines/metabolism , Disease Susceptibility/immunology , Humans , Immunomodulation , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
14.
Front Immunol ; 12: 647824, 2021.
Article in English | MEDLINE | ID: covidwho-1268248

ABSTRACT

The exact role of innate immune cells upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and their contribution to the formation of the corona virus-induced disease (COVID)-19 associated cytokine storm is not yet fully understood. We show that human in vitro differentiated myeloid dendritic cells (mDC) as well as M1 and M2 macrophages are susceptible to infection with SARS-CoV-2 but are not productively infected. Furthermore, infected mDC, M1-, and M2 macrophages show only slight changes in their activation status. Surprisingly, none of the infected innate immune cells produced the pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, or interferon (IFN)-α. Moreover, even in co-infection experiments using different stimuli, as well as non-influenza (non-flu) or influenza A (flu) viruses, only very minor IL-6 production was induced. In summary, we conclude that mDC and macrophages are unlikely the source of the first wave of cytokines upon infection with SARS-CoV-2.


Subject(s)
COVID-19/immunology , COVID-19/metabolism , Cytokines/metabolism , Dendritic Cells/metabolism , Inflammation Mediators/metabolism , Macrophages/metabolism , SARS-CoV-2/immunology , Biomarkers , COVID-19/virology , Dendritic Cells/immunology , Host-Pathogen Interactions , Humans , Immunity, Innate , Immunophenotyping , Macrophages/immunology , Viral Load
15.
Front Immunol ; 12: 635018, 2021.
Article in English | MEDLINE | ID: covidwho-1211810

ABSTRACT

Objective: Bacterial and viral infectious triggers are linked to spondyloarthritis (SpA) including psoriatic arthritis (PsA) development, likely via dendritic cell activation. We investigated spinal entheseal plasmacytoid dendritic cells (pDCs) toll-like receptor (TLR)-7 and 9 activation and therapeutic modulation, including JAK inhibition. We also investigated if COVID-19 infection, a potent TLR-7 stimulator triggered PsA flares. Methods: Normal entheseal pDCs were characterized and stimulated with imiquimod and CpG oligodeoxynucleotides (ODN) to evaluate TNF and IFNα production. NanoString gene expression assay of total pDCs RNA was performed pre- and post- ODN stimulation. Pharmacological inhibition of induced IFNα protein was performed with Tofacitinib and PDE4 inhibition. The impact of SARS-CoV2 viral infection on PsA flares was evaluated. Results: CD45+HLA-DR+CD123+CD303+CD11c- entheseal pDCs were more numerous than blood pDCs (1.9 ± 0.8% vs 0.2 ± 0.07% of CD45+ cells, p=0.008) and showed inducible IFNα and TNF protein following ODN/imiquimod stimulation and were the sole entheseal IFNα producers. NanoString data identified 11 significantly upregulated differentially expressed genes (DEGs) including TNF in stimulated pDCs. Canonical pathway analysis revealed activation of dendritic cell maturation, NF-κB signaling, toll-like receptor signaling and JAK/STAT signaling pathways following ODN stimulation. Both tofacitinib and PDE4i strongly attenuated ODN induced IFNα. DAPSA scores elevations occurred in 18 PsA cases with SARS-CoV2 infection (9.7 ± 4 pre-infection and 35.3 ± 7.5 during infection). Conclusion: Entheseal pDCs link microbes to TNF/IFNα production. SARS-CoV-2 infection is associated with PsA Flares and JAK inhibition suppressed activated entheseal plasmacytoid dendritic Type-1 interferon responses as pointers towards a novel mechanism of PsA and SpA-related arthropathy.


Subject(s)
Arthritis, Psoriatic/complications , COVID-19/complications , Dendritic Cells/metabolism , Interferon-alpha/metabolism , Janus Kinases/antagonists & inhibitors , Adjuvants, Immunologic/pharmacology , Adult , Aged , COVID-19/genetics , COVID-19/metabolism , Computational Biology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Dendritic Cells/drug effects , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Imiquimod/pharmacology , Janus Kinases/metabolism , Male , Middle Aged , NF-kappa B/metabolism , Oligonucleotides/pharmacology , Phosphodiesterase 4 Inhibitors/pharmacology , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/metabolism , Transcriptome , Tumor Necrosis Factor-alpha/metabolism
16.
J Immunol ; 206(8): 1691-1696, 2021 04 15.
Article in English | MEDLINE | ID: covidwho-1158408

ABSTRACT

Severe COVID-19 disease is associated with elevated inflammatory responses. One form of Aicardi-Goutières syndrome caused by inactivating mutations in ADAR results in reduced adenosine-to-inosine (A-to-I) editing of endogenous dsRNAs, induction of IFNs, IFN-stimulated genes, other inflammatory mediators, morbidity, and mortality. Alu elements, ∼10% of the human genome, are the most common A-to-I-editing sites. Using leukocyte whole-genome RNA-sequencing data, we found reduced A-to-I editing of Alu dsRNAs in patients with severe COVID-19 disease. Dendritic cells infected with COVID-19 also exhibit reduced A-to-I editing of Alu dsRNAs. Unedited Alu dsRNAs, but not edited Alu dsRNAs, are potent inducers of IRF and NF-κB transcriptional responses, IL6, IL8, and IFN-stimulated genes. Thus, decreased A-to-I editing that may lead to accumulation of unedited Alu dsRNAs and increased inflammatory responses is associated with severe COVID-19 disease.


Subject(s)
Adenosine/genetics , Alu Elements/genetics , COVID-19/genetics , Inosine/genetics , RNA Editing/genetics , RNA, Double-Stranded/genetics , SARS-CoV-2 , Severity of Illness Index , Adenosine/metabolism , COVID-19/pathology , Dendritic Cells/metabolism , Dendritic Cells/virology , Genome, Human , Humans , Inosine/metabolism , Interferon Regulatory Factors/metabolism , NF-kappa B/metabolism , RNA-Seq , Signal Transduction/genetics
17.
Front Immunol ; 12: 627548, 2021.
Article in English | MEDLINE | ID: covidwho-1156119

ABSTRACT

Background: Emerging evidence argues that monocytes, circulating innate immune cells, are principal players in COVID-19 pneumonia. The study aimed to investigate the role of soluble (s)CD163 and sCD14 plasmatic levels in predicting disease severity and characterize peripheral blood monocytes and dendritic cells (DCs), in patients with COVID-19 pneumonia (COVID-19 subjects). Methods: On admission, in COVID-19 subjects sCD163 and sCD14 plasmatic levels, and peripheral blood monocyte and DC subsets were compared to healthy donors (HDs). According to clinical outcome, COVID-19 subjects were divided into ARDS and non-ARDS groups. Results: Compared to HDs, COVID-19 subjects showed higher sCD163 (p<0.0001) and sCD14 (p<0.0001) plasmatic levels. We observed higher sCD163 plasmatic levels in the ARDS group compared to the non-ARDS one (p=0.002). The cut-off for sCD163 plasmatic level greater than 2032 ng/ml was predictive of disease severity (AUC: 0.6786, p=0.0022; sensitivity 56.7% [CI: 44.1-68.4] specificity 73.8% [CI: 58.9-84.7]). Positive correlation between plasmatic levels of sCD163, LDH and IL-6 and between plasmatic levels of sCD14, D-dimer and ferritin were found. Compared to HDs, COVID-19 subjects showed lower percentages of non-classical (p=0.0012) and intermediate monocytes (p=0.0447), slanDCs (p<0.0001), myeloid DCs (mDCs, p<0.0001), and plasmacytoid DCs (pDCs, p=0.0014). Compared to the non-ARDS group, the ARDS group showed lower percentages of non-classical monocytes (p=0.0006), mDCs (p=0.0346), and pDCs (p=0.0492). Conclusions: The increase in sCD163 and sCD14 plasmatic levels, observed on hospital admission in COVID-19 subjects, especially in those who developed ARDS, and the correlations of these monocyte/macrophage activation markers with typical inflammatory markers of COVID-19 pneumonia, underline their potential use to assess the risk of progression of the disease. In an early stage of the disease, the assessment of sCD163 plasmatic levels could have clinical utility in predicting the severity of COVID-19 pneumonia.


Subject(s)
Antigens, CD/blood , Antigens, Differentiation, Myelomonocytic/blood , COVID-19/immunology , Dendritic Cells/immunology , Lipopolysaccharide Receptors/blood , Monocytes/immunology , Myeloid Cells/immunology , Receptors, Cell Surface/blood , SARS-CoV-2/immunology , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , Case-Control Studies , Dendritic Cells/metabolism , Dendritic Cells/virology , Disease Progression , Female , Host-Pathogen Interactions , Humans , Immunity, Innate , Male , Middle Aged , Monocytes/metabolism , Monocytes/virology , Myeloid Cells/metabolism , Myeloid Cells/virology , Patient Admission , Phenotype , Severity of Illness Index , Up-Regulation
18.
Sci Signal ; 14(673)2021 03 09.
Article in English | MEDLINE | ID: covidwho-1127536

ABSTRACT

IL-1ß is a key mediator of the cytokine storm linked to high morbidity and mortality from COVID-19, and IL-1ß blockade with anakinra and canakinumab during COVID-19 infection has entered clinical trials. Using mass cytometry of human peripheral blood mononuclear cells, we identified effector memory CD4+ T cells and CD4-CD8low/-CD161+ T cells, specifically those positive for the chemokine receptor CCR6, as the circulating immune subtypes with the greatest response to IL-1ß. This response manifested as increased phosphorylation and, thus, activation of the proinflammatory transcription factor NF-κB and was also seen in other subsets, including CD11c+ myeloid dendritic cells, classical monocytes, two subsets of natural killer cells (CD16-CD56brightCD161- and CD16-CD56dimCD161+), and lineage- (Lin-) cells expressing CD161 and CD25. IL-1ß also induced a rapid but less robust increase in the phosphorylation of the kinase p38 as compared to that of NF-κB in most of these immune cell subsets. Prolonged IL-1ß stimulation increased the phosphorylation of the transcription factor STAT3 and to a lesser extent that of STAT1 and STAT5 across various immune cell types. IL-1ß-induced production of IL-6 likely led to the activation of STAT1 and STAT3 at later time points. Interindividual heterogeneity and inhibition of STAT activation by anakinra raise the possibility that assays measuring NF-κB phosphorylation in response to IL-1ß in CCR6+ T cell subtypes could identify those patients at higher risk of cytokine storm and most likely to benefit from IL-1ß-neutralizing therapies.


Subject(s)
COVID-19/immunology , Interleukin-1beta/blood , T-Lymphocyte Subsets/immunology , COVID-19/blood , COVID-19/complications , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Flow Cytometry , Humans , Interleukin-1beta/pharmacology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Monocytes/classification , Monocytes/immunology , Monocytes/metabolism , NF-kappa B/blood , Pandemics , Phosphorylation , Receptors, CCR6/blood , SARS-CoV-2 , STAT Transcription Factors/blood , STAT Transcription Factors/immunology , Signal Transduction/immunology , T-Lymphocyte Subsets/metabolism , p38 Mitogen-Activated Protein Kinases/blood
19.
Cell ; 184(7): 1836-1857.e22, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1077815

ABSTRACT

COVID-19 exhibits extensive patient-to-patient heterogeneity. To link immune response variation to disease severity and outcome over time, we longitudinally assessed circulating proteins as well as 188 surface protein markers, transcriptome, and T cell receptor sequence simultaneously in single peripheral immune cells from COVID-19 patients. Conditional-independence network analysis revealed primary correlates of disease severity, including gene expression signatures of apoptosis in plasmacytoid dendritic cells and attenuated inflammation but increased fatty acid metabolism in CD56dimCD16hi NK cells linked positively to circulating interleukin (IL)-15. CD8+ T cell activation was apparent without signs of exhaustion. Although cellular inflammation was depressed in severe patients early after hospitalization, it became elevated by days 17-23 post symptom onset, suggestive of a late wave of inflammatory responses. Furthermore, circulating protein trajectories at this time were divergent between and predictive of recovery versus fatal outcomes. Our findings stress the importance of timing in the analysis, clinical monitoring, and therapeutic intervention of COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/metabolism , Dendritic Cells/metabolism , Gene Expression/immunology , Killer Cells, Natural/metabolism , Severity of Illness Index , Adult , Aged , Aged, 80 and over , Biomarkers/metabolism , COVID-19/mortality , Case-Control Studies , Dendritic Cells/cytology , Female , Humans , Killer Cells, Natural/cytology , Longitudinal Studies , Male , Middle Aged , Transcriptome/immunology , Young Adult
20.
J Exp Med ; 218(4)2021 04 05.
Article in English | MEDLINE | ID: covidwho-1061104

ABSTRACT

Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , COVID-19/metabolism , Cell Plasticity/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Interleukin-1 Receptor-Associated Kinases/metabolism , Membrane Transport Proteins/metabolism , SARS-CoV-2/immunology , Biomarkers , COVID-19/drug therapy , COVID-19/virology , Cytokines/metabolism , Dendritic Cells/virology , Host-Pathogen Interactions/immunology , Humans , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Immunomodulation , Immunophenotyping , Inflammation Mediators/metabolism , Interferon Type I/metabolism , Interferons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL