Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Commun Biol ; 4(1): 557, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1387494


Dengue virus (DENV) is spread from human to human through the bite of the female Aedes aegypti mosquito and leads to about 100 million clinical infections yearly. Treatment options and vaccine availability for DENV are limited. Defective interfering particles (DIPs) are considered a promising antiviral approach but infectious virus contamination has limited their development. Here, a DENV-derived DIP production cell line was developed that continuously produced DENV-free DIPs. The DIPs contained and could deliver to cells a DENV serotype 2 subgenomic defective-interfering RNA, which was originally discovered in DENV infected patients. The DIPs released into cell culture supernatant were purified and could potently inhibit replication of all DENV serotypes in cells. Antiviral therapeutics are limited for many viral infection. The DIP system described could be re-purposed to make antiviral DIPs for many other RNA viruses such as SARS-CoV-2, yellow fever, West Nile and Zika viruses.

Defective Viruses , Dengue Vaccines/therapeutic use , Dengue Virus/growth & development , Dengue/prevention & control , Virus Replication , Animals , Cell Line, Tumor , Chlorocebus aethiops , Defective Viruses/genetics , Defective Viruses/metabolism , Dengue/virology , Dengue Virus/genetics , Dengue Virus/metabolism , Genes, Reporter , HEK293 Cells , Host-Pathogen Interactions , Humans , Luminescent Proteins/biosynthesis , Luminescent Proteins/genetics , RNA, Viral/biosynthesis , RNA, Viral/genetics , Vero Cells , Viral Load
Front Immunol ; 11: 575074, 2020.
Article in English | MEDLINE | ID: covidwho-1256374


Combined cellular and humoral host immune response determine the clinical course of a viral infection and effectiveness of vaccination, but currently the cellular immune response cannot be measured on simple blood samples. As functional activity of immune cells is determined by coordinated activity of signaling pathways, we developed mRNA-based JAK-STAT signaling pathway activity assays to quantitatively measure the cellular immune response on Affymetrix expression microarray data of various types of blood samples from virally infected patients (influenza, RSV, dengue, yellow fever, rotavirus) or vaccinated individuals, and to determine vaccine immunogenicity. JAK-STAT1/2 pathway activity was increased in blood samples of patients with viral, but not bacterial, infection and was higher in influenza compared to RSV-infected patients, reflecting known differences in immunogenicity. High JAK-STAT3 pathway activity was associated with more severe RSV infection. In contrast to inactivated influenza virus vaccine, live yellow fever vaccine did induce JAK-STAT1/2 pathway activity in blood samples, indicating superior immunogenicity. Normal (healthy) JAK-STAT1/2 pathway activity was established, enabling assay interpretation without the need for a reference sample. The JAK-STAT pathway assays enable measurement of cellular immune response for prognosis, therapy stratification, vaccine development, and clinical testing.

Dengue Virus/immunology , Immunity, Cellular , Orthomyxoviridae/immunology , Respiratory Syncytial Virus, Human/immunology , Rotavirus/immunology , Viral Vaccines/therapeutic use , Virus Diseases/immunology , Yellow fever virus/immunology , Biomarkers/blood , Dengue/blood , Dengue/immunology , Dengue/prevention & control , Dengue/virology , Dengue Vaccines/therapeutic use , Dengue Virus/pathogenicity , Diagnosis, Differential , Host-Pathogen Interactions , Humans , Immunogenicity, Vaccine , Influenza Vaccines/therapeutic use , Influenza, Human/blood , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Oligonucleotide Array Sequence Analysis , Orthomyxoviridae/pathogenicity , Predictive Value of Tests , RNA, Messenger/blood , RNA, Messenger/genetics , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/pathogenicity , Rotavirus/pathogenicity , Rotavirus Infections/blood , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Rotavirus Vaccines , Signal Transduction/genetics , Virus Diseases/blood , Virus Diseases/prevention & control , Virus Diseases/virology , Yellow Fever/blood , Yellow Fever/immunology , Yellow Fever/prevention & control , Yellow Fever/virology , Yellow Fever Vaccine/therapeutic use , Yellow fever virus/pathogenicity
PLoS Comput Biol ; 16(10): e1008292, 2020 10.
Article in English | MEDLINE | ID: covidwho-874143


The lack of effective vaccines for many endemic diseases often forces policymakers to rely on non-immunizing control measures, such as vector control, to reduce the massive burden of these diseases. Controls can have well-known counterintuitive effects on endemic infections, including the honeymoon effect, in which partially effective controls cause not only a greater initial reduction in infection than expected, but also large outbreaks during control resulting from accumulation of susceptibles. Unfortunately, many control measures cannot be maintained indefinitely, and the results of cessation are poorly understood. Here, we examine the results of stopped or failed non-immunizing control measures in endemic settings. By using a mathematical model to compare the cumulative number of cases expected with and without control, we show that deployment of control can lead to a larger total number of infections, counting from the time that control started, than without any control-the divorce effect. This result is directly related to the population-level loss of immunity resulting from non-immunizing controls and is seen in a variety of models when non-immunizing controls are used against an infection that confers immunity. Finally, we examine three control plans for minimizing the magnitude of the divorce effect in seasonal infections and show that they are incapable of eliminating the divorce effect. While we do not suggest stopping control programs that rely on non-immunizing controls, our results strongly argue that the accumulation of susceptibility should be considered before deploying such controls against endemic infections when indefinite use of the control is unlikely. We highlight that our results are particularly germane to endemic mosquito-borne infections, such as dengue virus, both for routine management involving vector control and for field trials of novel control approaches, and in the context of non-pharmaceutical interventions aimed at COVID-19.

Communicable Disease Control/methods , Endemic Diseases/prevention & control , Immunization Programs , Animals , Basic Reproduction Number , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Culicidae , Dengue Vaccines/therapeutic use , Health Policy , Humans , Insect Vectors , Models, Theoretical , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Public Health , Rubella/prevention & control , Rubella Vaccine/therapeutic use , Seasons , Severe Dengue/prevention & control , Viral Vaccines/therapeutic use