Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Front Immunol ; 12: 635701, 2021.
Article in English | MEDLINE | ID: covidwho-1399135

ABSTRACT

Serological testing is a powerful tool in epidemiological studies for understanding viral circulation and assessing the effectiveness of virus control measures, as is the case of SARS-CoV-2, the pathogenic agent of COVID-19. Immunoassays can quantitatively reveal the concentration of antiviral antibodies. The assessment of antiviral antibody titers may provide information on virus exposure, and changes in IgG levels are also indicative of a reduction in viral circulation. In this work, we describe a serological study for the evaluation of antiviral IgG and IgM antibodies and their correlation with antiviral activity. The serological assay for IgG detection used two SARS-CoV-2 proteins as antigens, the nucleocapsid N protein and the 3CL protease. Cross-reactivity tests in animals have shown high selectivity for detection of antiviral antibodies, using both the N and 3CL antigens. Using samples of human serum from individuals previously diagnosed by PCR for COVID-19, we observed high sensitivity of the ELISA assay. Serological results with human samples also suggest that the combination of higher titers of antiviral IgG antibodies to different antigen targets may be associated with greater neutralization activity, which can be enhanced in the presence of antiviral IgM antibodies.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , COVID-19/diagnosis , COVID-19/prevention & control , Immunologic Surveillance , SARS-CoV-2/immunology , Animals , Antibodies, Viral/blood , Antigens, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Serological Testing/standards , Cross Reactions , Dengue Virus/immunology , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Mice , Mice, Inbred BALB C , Sensitivity and Specificity , Zika Virus/immunology
2.
Front Immunol ; 11: 575074, 2020.
Article in English | MEDLINE | ID: covidwho-1256374

ABSTRACT

Combined cellular and humoral host immune response determine the clinical course of a viral infection and effectiveness of vaccination, but currently the cellular immune response cannot be measured on simple blood samples. As functional activity of immune cells is determined by coordinated activity of signaling pathways, we developed mRNA-based JAK-STAT signaling pathway activity assays to quantitatively measure the cellular immune response on Affymetrix expression microarray data of various types of blood samples from virally infected patients (influenza, RSV, dengue, yellow fever, rotavirus) or vaccinated individuals, and to determine vaccine immunogenicity. JAK-STAT1/2 pathway activity was increased in blood samples of patients with viral, but not bacterial, infection and was higher in influenza compared to RSV-infected patients, reflecting known differences in immunogenicity. High JAK-STAT3 pathway activity was associated with more severe RSV infection. In contrast to inactivated influenza virus vaccine, live yellow fever vaccine did induce JAK-STAT1/2 pathway activity in blood samples, indicating superior immunogenicity. Normal (healthy) JAK-STAT1/2 pathway activity was established, enabling assay interpretation without the need for a reference sample. The JAK-STAT pathway assays enable measurement of cellular immune response for prognosis, therapy stratification, vaccine development, and clinical testing.


Subject(s)
Dengue Virus/immunology , Immunity, Cellular , Orthomyxoviridae/immunology , Respiratory Syncytial Virus, Human/immunology , Rotavirus/immunology , Viral Vaccines/therapeutic use , Virus Diseases/immunology , Yellow fever virus/immunology , Biomarkers/blood , Dengue/blood , Dengue/immunology , Dengue/prevention & control , Dengue/virology , Dengue Vaccines/therapeutic use , Dengue Virus/pathogenicity , Diagnosis, Differential , Host-Pathogen Interactions , Humans , Immunogenicity, Vaccine , Influenza Vaccines/therapeutic use , Influenza, Human/blood , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Oligonucleotide Array Sequence Analysis , Orthomyxoviridae/pathogenicity , Predictive Value of Tests , RNA, Messenger/blood , RNA, Messenger/genetics , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/pathogenicity , Rotavirus/pathogenicity , Rotavirus Infections/blood , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Rotavirus Vaccines , Signal Transduction/genetics , Virus Diseases/blood , Virus Diseases/prevention & control , Virus Diseases/virology , Yellow Fever/blood , Yellow Fever/immunology , Yellow Fever/prevention & control , Yellow Fever/virology , Yellow Fever Vaccine/therapeutic use , Yellow fever virus/pathogenicity
3.
Virol J ; 18(1): 54, 2021 03 11.
Article in English | MEDLINE | ID: covidwho-1133601

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic remains ongoing around the world, including in areas where dengue is endemic. Dengue and COVID-19, to some extent, have similar clinical and laboratory features, which can lead to misdiagnosis, delayed treatment and patient's isolation. The use of rapid diagnostic tests (RDT) is easy and convenient for fast diagnosis, however there may be issues with cross-reactivity with antibodies for other pathogens. METHODS: We assessed the possibility of cross-reactivity between SARS-CoV-2 and dengue antibodies by: (1) testing five brands of COVID-19 IgG / IgM RDTs on 60 RT-PCR-confirmed dengue samples; (2) testing 95 RT-PCR-confirmed COVID-19 samples on dengue RDT; and (3) testing samples positive for COVID-19 IgG and/or IgM on dengue RDT. RESULTS: We observed a high specificity across all five brands of COVID-19 RDTs, ranging from 98.3 to 100%. Out of the confirmed COVID-19 samples, one patient tested positive for dengue IgM only, another tested positive for dengue IgG only. One patient tested positive for dengue IgG, IgM, and NS1, suggesting a co-infection. In COVID-19 IgG and/or IgM samples, 6.3% of COVID-19 IgG-positive samples also tested positive for dengue IgG, while 21.1% of COVID-19 IgM-positive samples also tested positive for dengue IgG. CONCLUSION: Despite the high specificity of the COVID-19 RDT, we observed cross-reactions and false-positive results between dengue and COVID-19. Dengue and COVID-19 co-infection was also found. Health practitioners in dengue endemic areas should be careful when using antibody RDT for the diagnosis of dengue during the COVID-19 pandemic to avoid misdiagnosis.


Subject(s)
Antibodies, Viral/immunology , COVID-19/diagnosis , Cross Reactions/immunology , Dengue Virus/immunology , Dengue/diagnosis , SARS-CoV-2/immunology , Adolescent , Adult , Child , Diagnosis, Differential , Diagnostic Tests, Routine , False Positive Reactions , Female , Humans , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Indonesia , Male , Middle Aged , Sensitivity and Specificity , Viral Nonstructural Proteins/immunology , Young Adult
4.
Rev Med Virol ; 31(6): e2228, 2021 11.
Article in English | MEDLINE | ID: covidwho-1126517

ABSTRACT

Chloroquine (CQ) and hydroxychloroquine (HCQ) have been used as antiviral agents for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection. We performed a systematic review to examine whether prior clinical studies that compared the effects of CQ and HCQ to a control for the treatment of non-SARS-CoV2 infection supported the use of these agents in the present SARS-CoV2 outbreak. PubMed, EMBASE, Scopus and Web of Science (PROSPERO CRD42020183429) were searched from inception through 2 April 2020 without language restrictions. Of 1766 retrieved reports, 18 studies met our inclusion criteria, including 17 prospective controlled studies and one retrospective study. CQ or HCQ were compared to control for the treatment of infectious mononucleosis (EBV, n = 4), warts (human papillomavirus, n = 2), chronic HIV infection (n = 6), acute chikungunya infection (n = 1), acute dengue virus infection (n = 2), chronic HCV (n = 2), and as preventive measures for influenza infection (n = 1). Survival was not evaluated in any study. For HIV, the virus that was most investigated, while two early studies suggested HCQ reduced viral levels, four subsequent ones did not, and in two of these CQ or HCQ increased viral levels and reduced CD4 counts. Overall, three studies concluded CQ or HCQ were effective; four concluded further research was needed to assess the treatments' effectiveness; and 11 concluded that treatment was ineffective or potentially harmful. Prior controlled clinical trials with CQ and HCQ for non-SARS-CoV2 viral infections do not support these agents' use for the SARS-CoV2 outbreak.


Subject(s)
Chikungunya Fever/drug therapy , Chloroquine/therapeutic use , HIV Infections/drug therapy , Hepatitis C, Chronic/drug therapy , Hydroxychloroquine/therapeutic use , Infectious Mononucleosis/drug therapy , Severe Dengue/drug therapy , Warts/drug therapy , Alphapapillomavirus/drug effects , Alphapapillomavirus/immunology , Alphapapillomavirus/pathogenicity , Antiviral Agents/therapeutic use , COVID-19/drug therapy , COVID-19/virology , Chikungunya Fever/immunology , Chikungunya Fever/pathology , Chikungunya Fever/virology , Chikungunya virus/drug effects , Chikungunya virus/immunology , Chikungunya virus/pathogenicity , Dengue Virus/drug effects , Dengue Virus/immunology , Dengue Virus/pathogenicity , HIV/drug effects , HIV/immunology , HIV/pathogenicity , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , Hepacivirus/drug effects , Hepacivirus/immunology , Hepacivirus/pathogenicity , Hepatitis C, Chronic/immunology , Hepatitis C, Chronic/pathology , Hepatitis C, Chronic/virology , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/pathogenicity , Humans , Infectious Mononucleosis/immunology , Infectious Mononucleosis/pathology , Infectious Mononucleosis/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Severe Dengue/immunology , Severe Dengue/pathology , Severe Dengue/virology , Treatment Outcome , Warts/immunology , Warts/pathology , Warts/virology
5.
BMJ Case Rep ; 13(12)2020 Dec 21.
Article in English | MEDLINE | ID: covidwho-991777

ABSTRACT

COVID-19, caused by SARS-CoV-2, has spread globally. Coinfection with other endemic viruses is likely to complicate the clinical presentation and outcome. Information on clinical manifestations and management strategies on COVID-19 coinfection with endemic diseases in children is yet to evolve. The risk of dengue infection exists in 129 countries and it is endemic in more than 100 countries. The SARS-CoV-2 pandemic might overlap with the dengue epidemics in tropical countries. We report the first paediatric case to the best of our knowledge of COVID-19 encephalitis with dengue shock syndrome. This clinical syndrome could be attributed to serological cross-reactivity, incidental coinfection or perhaps a warning for dengue-endemic regions to face the unique challenge of differentiating and managing two disease entities together. Enhanced understanding of potential COVID-19 and dengue coinfection warrants immediate attention of researchers and international health policy makers.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Dengue Virus/immunology , Pandemics , SARS-CoV-2/immunology , Severe Dengue/epidemiology , Adolescent , Antibodies, Viral/analysis , Female , Humans , Severe Dengue/diagnosis , Tomography, X-Ray Computed
6.
Curr Opin Virol ; 43: 71-78, 2020 08.
Article in English | MEDLINE | ID: covidwho-987407

ABSTRACT

The first licensed dengue vaccine led to considerable controversy, and to date, no dengue vaccine is in widespread use. All three leading dengue vaccine candidates are live attenuated vaccines, with the main difference between them being the type of backbone and the extent of chimerization. While CYD-TDV (the first licensed dengue vaccine) does not include non-structural proteins of dengue, TAK-003 contains the dengue virus serotype 2 backbone, and the Butantan/Merck vaccine contains three full-genomes of the four dengue virus serotypes. While dengue-primed individuals can already benefit from vaccination against all four serotypes with the first licensed dengue vaccine CYD-TDV, the need for dengue-naive population has not yet been met. To improve tetravalent protection, sequential vaccination should be considered in addition to a heterologous prime-boost approach.


Subject(s)
Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Animals , Dengue/immunology , Dengue/virology , Dengue Vaccines/administration & dosage , Dengue Vaccines/genetics , Dengue Virus/genetics , Dengue Virus/physiology , Drug Development , Humans
7.
Int J Infect Dis ; 102: 152-154, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-949978

ABSTRACT

Similar symptoms and laboratory findings between dengue and coronavirus disease 2019 (COVID-19) pose a diagnostic challenge in some dengue-endemic countries in Asia. In this study, we reported three cases of suspected COVID-19-dengue coinfection in hospitals of Bali, Indonesia. Serological data demonstrated that patients with positive results for dengue virus (DENV) NS1 antigen and anti-dengue IgM were also reactive to COVID-19 rapid antibody tests, suggesting dengue-COVID-19 coinfection. However, two patients were later confirmed negative for SARS-COV-2 by qRT-PCR, implying a plausible cross-reactivity of anti-dengue and anti-COVID-19 antibodies in the serological test. Coinfection of dengue and COVID-19 was evident in one patient, following confirmation of SARS-COV-2 by qRT-PCR and DENV infection using the NS1 antigen serology test. This case was the first case of dengue and COVID-19 coinfection in Indonesia and revealed possible cross-reactivity between SARS-COV-2 and DENV antibodies based on rapid serological tests. Our study indicates a public health concern regarding COVID-19 and dengue detection in Indonesia as well as in other dengue-endemic countries, and it is important for these nations to manage both pathogens concurrently.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing , COVID-19/diagnosis , Coinfection/diagnosis , Dengue Virus/immunology , Dengue/diagnosis , SARS-CoV-2/immunology , Adult , Aged , COVID-19/immunology , Coinfection/immunology , Cross Reactions , Female , Humans , Middle Aged
8.
Am J Trop Med Hyg ; 103(5): 2005-2011, 2020 11.
Article in English | MEDLINE | ID: covidwho-807890

ABSTRACT

During the COVID-19 pandemic, distinguishing dengue from cases of COVID-19 in endemic areas can be difficult. In a tertiary hospital contending with COVID-19 during a dengue epidemic, a triage strategy of routine COVID-19 testing for febrile patients with viral prodromes was used. All febrile patients with viral prodromes and no epidemiologic risk for COVID-19 were first admitted to a designated ward for COVID-19 testing, where enhanced personal protective equipment was used by healthcare workers until COVID-19 was ruled out. From January to May 2020, 11,086 admissions were screened for COVID-19; 868 cases of COVID-19 were diagnosed in our institution, along with 380 cases of dengue. Only 8.5% (943/11,086) of suspected COVID-19 cases were concurrently tested for dengue serology due to a compatible overlapping clinical syndrome, and dengue was established as an alternative diagnosis in 2% (207/10,218) of suspected COVID-19 cases that tested negative. There were eight COVID-19 cases with likely false-positive dengue serology and one probable COVID-19/dengue coinfection. From April to May 2020, 251 admissions presenting as viral prodromes with no respiratory symptoms were screened; of those, 15 cases had COVID-19, and 2/15 had false-positive dengue IgM. Epidemiology investigations showed no healthcare-associated transmission. In a dengue epidemic season coinciding with a COVID-19 pandemic, dengue was established as an alternative diagnosis in a minority of COVID-19 suspects, likely due to early availability of basic diagnostics. Routine screening of patients with viral prodromes during a dual outbreak of COVID-19 and dengue enabled containment of COVID-19 cases masquerading as dengue with false-positive IgM.


Subject(s)
COVID-19/epidemiology , Dengue/epidemiology , Disease Outbreaks , SARS-CoV-2/isolation & purification , Adult , Aged , COVID-19/complications , COVID-19/diagnosis , COVID-19/therapy , COVID-19 Nucleic Acid Testing , Dengue/complications , Dengue/diagnosis , Dengue/drug therapy , Dengue Virus/immunology , Dengue Virus/isolation & purification , Diagnosis, Differential , Female , Humans , Immunoglobulin M/blood , Male , Middle Aged , Oropharynx/virology , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , Singapore/epidemiology , Tertiary Care Centers , Triage/standards
9.
Rev Med Virol ; 31(2): e2161, 2021 03.
Article in English | MEDLINE | ID: covidwho-777660

ABSTRACT

The coronavirus disease 2019 (Covid-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an international public health crisis with devastating effects. In particular, this pandemic has further exacerbated the burden in tropical and subtropical regions of the world, where dengue fever, caused by dengue virus (DENV), is already endemic to the population. The similar clinical manifestations shared by Covid-19 and dengue fever have raised concerns, especially in dengue-endemic countries with limited resources, leading to diagnostic challenges. In addition, cross-reactivity of the immune responses in these infections is an emerging concern, as pre-existing DENV-antibodies might potentially affect Covid-19 through antibody-dependent enhancement. In this review article, we aimed to raise the issue of Covid-19 and dengue fever misdiagnosis, not only in a clinical setting but also with regards to cross-reactivity between SARS-CoV-2 and DENV antibodies. We also have discussed the potential consequences of overlapping immunological cascades between dengue and Covid-19 on disease severity and vaccine development.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Dengue/epidemiology , Dengue/immunology , Animals , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , Asia/epidemiology , COVID-19/virology , Coinfection/epidemiology , Coinfection/immunology , Coinfection/virology , Dengue/virology , Dengue Virus/immunology , Dengue Virus/pathogenicity , Humans , Pandemics/prevention & control , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
10.
Int J Infect Dis ; 100: 483-489, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-753455

ABSTRACT

Antibody-dependent enhancement (ADE) exists in several kinds of virus. It has a negative influence on antibody therapy for viral infection. This effect was first identified in dengue virus and has since also been described for coronavirus. To date, the rapid spread of the newly emerged coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing coronavirus disease 2019 (COVID-19), has affected over 3.8 million people across the globe. The novel coronavirus poses a great challenge and has caused a wave of panic. In this review, antibody-dependent enhancements in dengue virus and two kinds of coronavirus are summarized. Possible solutions for the effects are reported. We also speculate that ADE may exist in SARS-CoV-2.


Subject(s)
Antibody-Dependent Enhancement , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/virology , Dengue Virus/immunology , Dengue Virus/pathogenicity , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Viral Vaccines/immunology
11.
Mem. Inst. Oswaldo Cruz ; 115: e200225, 2020.
Article in English | LILACS (Americas) | ID: covidwho-723314

ABSTRACT

In the near future, the overlap of Coronavirus disease 2019 (COVID-19) and dengue epidemics is a concrete threat in tropical regions. Co-epidemics of COVID-19 and dengue could be an overwhelming challenge for health systems in low- and middle-income countries. In this work, we investigated potential serological cross-reactions between COVID-19 and dengue patients. Among 32 COVID-19 positive sera, no positive Dengue virus (DENV) IgG/IgM results were observed. On the other hand, one false-positive result was observed among 44 DENV-positive sera tested for COVID-19 antibodies with each of the two rapid tests used. Further data on accuracy of COVID-19 diagnostic test are urgently warranted.


Subject(s)
Humans , Pneumonia, Viral/immunology , Coronavirus Infections/immunology , Cross Reactions , Dengue/immunology , Antibodies, Viral/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Enzyme-Linked Immunosorbent Assay , Dengue Virus/immunology , Pandemics , Betacoronavirus/immunology , SARS-CoV-2 , COVID-19
12.
Nat Rev Immunol ; 20(10): 633-643, 2020 10.
Article in English | MEDLINE | ID: covidwho-711937

ABSTRACT

Antibody-dependent enhancement (ADE) is a mechanism by which the pathogenesis of certain viral infections is enhanced in the presence of sub-neutralizing or cross-reactive non-neutralizing antiviral antibodies. In vitro modelling of ADE has attributed enhanced pathogenesis to Fcγ receptor (FcγR)-mediated viral entry, rather than canonical viral receptor-mediated entry. However, the putative FcγR-dependent mechanisms of ADE overlap with the role of these receptors in mediating antiviral protection in various viral infections, necessitating a detailed understanding of how this diverse family of receptors functions in protection and pathogenesis. Here, we discuss the diversity of immune responses mediated upon FcγR engagement and review the available experimental evidence supporting the role of FcγRs in antiviral protection and pathogenesis through ADE. We explore FcγR engagement in the context of a range of different viral infections, including dengue virus and SARS-CoV, and consider ADE in the context of the ongoing SARS-CoV-2 pandemic.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Antibodies, Viral/administration & dosage , Antibody-Dependent Enhancement/drug effects , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Leukocytes/drug effects , Pneumonia, Viral/drug therapy , Receptors, IgG/immunology , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/biosynthesis , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/biosynthesis , Antibodies, Viral/adverse effects , Antibodies, Viral/biosynthesis , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Dengue/drug therapy , Dengue/immunology , Dengue/virology , Dengue Virus/drug effects , Dengue Virus/immunology , Dengue Virus/pathogenicity , Gene Expression Regulation , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Leukocytes/immunology , Leukocytes/virology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Receptors, IgG/antagonists & inhibitors , Receptors, IgG/genetics , SARS Virus/drug effects , SARS Virus/immunology , SARS Virus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/virology , Signal Transduction , Virus Internalization/drug effects
13.
Nature ; 584(7821): 353-363, 2020 08.
Article in English | MEDLINE | ID: covidwho-643609

ABSTRACT

Antibody-dependent enhancement (ADE) of disease is a general concern for the development of vaccines and antibody therapies because the mechanisms that underlie antibody protection against any virus have a theoretical potential to amplify the infection or trigger harmful immunopathology. This possibility requires careful consideration at this critical point in the pandemic of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we review observations relevant to the risks of ADE of disease, and their potential implications for SARS-CoV-2 infection. At present, there are no known clinical findings, immunological assays or biomarkers that can differentiate any severe viral infection from immune-enhanced disease, whether by measuring antibodies, T cells or intrinsic host responses. In vitro systems and animal models do not predict the risk of ADE of disease, in part because protective and potentially detrimental antibody-mediated mechanisms are the same and designing animal models depends on understanding how antiviral host responses may become harmful in humans. The implications of our lack of knowledge are twofold. First, comprehensive studies are urgently needed to define clinical correlates of protective immunity against SARS-CoV-2. Second, because ADE of disease cannot be reliably predicted after either vaccination or treatment with antibodies-regardless of what virus is the causative agent-it will be essential to depend on careful analysis of safety in humans as immune interventions for COVID-19 move forward.


Subject(s)
Antibodies, Viral/adverse effects , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Coronavirus Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Animals , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/prevention & control , Dengue Virus/immunology , Disease Models, Animal , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/immunology , Macaca mulatta , Mice , Middle East Respiratory Syndrome Coronavirus/immunology , Orthomyxoviridae/immunology , Pandemics , Rats , SARS Virus/immunology , SARS-CoV-2 , Viral Vaccines/adverse effects , Viral Vaccines/immunology
14.
Cytometry A ; 97(7): 662-667, 2020 07.
Article in English | MEDLINE | ID: covidwho-621110

ABSTRACT

SARS-CoV-2 pandemic and recurrent dengue epidemics in tropical countries have turned into a global health threat. While both virus-caused infections may only reveal light symptoms, they can also cause severe diseases. Here, we review the possible antibody-dependent enhancement (ADE) occurrence, known for dengue infections, when there is a second infection with a different virus strain. Consequently, preexisting antibodies do not neutralize infection, but enhance it, possibly by triggering Fcγ receptor-mediated virus uptake. No clinical data exist indicating such mechanism for SARS-CoV-2, but previous coronavirus infections or infection of SARS-CoV-2 convalescent with different SARS-CoV-2 strains could promote ADE, as experimentally shown for antibodies against the MERS-CoV or SARS-CoV spike S protein. © 2020 International Society for Advancement of Cytometry.


Subject(s)
Antibody-Dependent Enhancement/immunology , Betacoronavirus/immunology , Coinfection/immunology , Dengue Virus/immunology , Receptors, IgG/immunology , Spike Glycoprotein, Coronavirus/immunology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Dengue/immunology , Dengue/pathology , Humans , Image Cytometry/methods , Middle East Respiratory Syndrome Coronavirus/immunology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS Virus/immunology , SARS-CoV-2 , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL
...