Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Microbiol Spectr ; 11(1): e0279622, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2213891

ABSTRACT

The efficient and accurate diagnosis of dengue, a major mosquito-borne disease, is of primary importance for clinical care, surveillance, and outbreak control. The identification of specific dengue virus serotype 1 (DENV-1) to DENV-4 can help in understanding the transmission dynamics and spread of dengue disease. The four rapid low-resource serotype-specific dengue tests use a simple sample preparation reagent followed by reverse transcription-isothermal recombinase polymerase amplification (RT-RPA) combined with lateral flow detection (LFD) technology. Results are obtained directly from clinical sample matrices in 35 min, requiring only a heating block and pipettes for liquid handling. In addition, we demonstrate that the rapid sample preparation step inactivates DENV, improving laboratory safety. Human plasma and serum were spiked with DENV, and DENV was detected with analytical sensitivities of 333 to 22,500 median tissue culture infectious doses (TCID50)/mL. The analytical sensitivities in blood were 94,000 to 333,000 TCID50/mL. Analytical specificity testing confirmed that each test could detect multiple serotype-specific strains but did not respond to strains of other serotypes, closely related flaviviruses, or chikungunya virus. Clinical testing on 80 human serum samples demonstrated test specificities of between 94 and 100%, with a DENV-2 test sensitivity of 100%, detecting down to 0.004 PFU/µL, similar to the sensitivity of the PCR test; the other DENV tests detected down to 0.03 to 10.9 PFU/µL. Collectively, our data suggest that some of our rapid dengue serotyping tests provide a potential alternative to conventional labor-intensive RT-quantitative PCR (RT-qPCR) detection, which requires expensive thermal cycling instrumentation, technical expertise, and prolonged testing times. Our tests provide performance and speed without compromising specificity in human plasma and serum and could become promising tools for the detection of high DENV loads in resource-limited settings. IMPORTANCE The efficient and accurate diagnosis of dengue, a major mosquito-borne disease, is of primary importance for clinical care, surveillance, and outbreak control. This study describes the evaluation of four rapid low-resource serotype-specific dengue tests for the detection of specific DENV serotypes in clinical sample matrices. The tests use a simple sample preparation reagent followed by reverse transcription-isothermal recombinase polymerase amplification (RT-RPA) combined with lateral flow detection (LFD) technology. These tests have several advantages compared to RT-qPCR detection, such as a simple workflow, rapid sample processing and turnaround times (35 min from sample preparation to detection), minimal equipment needs, and improved laboratory safety through the inactivation of the virus during the sample preparation step. The low-resource formats of these rapid dengue serotyping tests have the potential to support effective dengue disease surveillance and enhance the diagnostic testing capacity in resource-limited countries with both endemic dengue and intense coronavirus disease 2019 (COVID-19) transmission.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue/diagnosis , Dengue Virus/classification , Dengue Virus/isolation & purification , Rapid Diagnostic Tests , Recombinases , Sensitivity and Specificity , Serogroup
2.
Rev Soc Bras Med Trop ; 55: e02432022, 2022.
Article in English | MEDLINE | ID: covidwho-2089510

ABSTRACT

BACKGROUND: The risk of possible cross-reactions between serological tests, together with the clinical similarities between dengue fever and COVID-19, can delay diagnosis and increase the risk of both COVID-19 transmission and worsening. The present study aimed to determine the possibility of cross-reactions among rapid serological tests based on clinical symptoms. METHODS: Patients with COVID-19, confirmed by RT-PCR and clinical criteria for diagnosing dengue, were recruited consecutively between September 2020 and August 2021 and underwent rapid immunochromatographic diagnostic (RID) tests for AgNS1, IgM, and IgG. Patients who tested positive for acute-phase dengue IgM and AgNS1 underwent a follow-up test after 12-30 days for diagnostic confirmation. RESULTS: A total of 43 patients were included, 38 of whom required hospital admission, and 8 received intensive care. Seven patients tested positive on the RID tests, comprising 2 NS1 positive (coinfection), one reactive for IgM and IgG (coinfection), three reactive for IgM not confirmed (false-positive), and one reactive for IgG due to previous infection. Two of the 3 patients with coinfection died. Fever, myalgia, headache, and cough were the most common clinical symptoms, while lymphopenia was the most prevalent laboratory finding. CONCLUSIONS: Cross-reactivity was found in only three patients and coinfection in another three patients, two of whom died of severe COVID-19 manifestations.


Subject(s)
COVID-19 , Coinfection , Dengue , Humans , Dengue/complications , Dengue/diagnosis , Coinfection/diagnosis , Immunoglobulin M , COVID-19/diagnosis , Immunoglobulin G , Antibodies, Viral
3.
Rev Inst Med Trop Sao Paulo ; 64: e63, 2022.
Article in English | MEDLINE | ID: covidwho-2054632

ABSTRACT

COVID-19 disease is spread worldwide and diagnostic techniques have been studied in order to contain the pandemic. Immunochromatographic (IC) assays are feasible and a low-cost alternative especially in low and middle-income countries, which lack structure to perform certain diagnostic techniques. Here we evaluate the sensitivity and specificity of eleven different IC tests in 145 serum samples from confirmed cases of COVID-19 using RT-PCR and 100 negative serum samples from blood donors collected in February 2019. We also evaluated the cross-reactivity with dengue using 20 serum samples from patients with confirmed diagnosis for dengue collected in early 2019 through four different tests. We found high sensitivity (92%), specificity (100%) and an almost perfect agreement (Kappa 0.92) of IC assay, especially when we evaluated IgG and IgM combined after 10 days from the onset of symptoms with RT-PCR. However, we detected cross-reactivity between dengue and COVID-19 mainly with IgM antibodies (5 to 20% of cross-reaction) and demonstrated the need for better studies about diagnostic techniques for these diseases.


Subject(s)
COVID-19 , Dengue , Antibodies, Viral , COVID-19/diagnosis , Dengue/diagnosis , Humans , Immunoassay/methods , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Sensitivity and Specificity
4.
J Assoc Physicians India ; 70(9): 11-12, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2025052

ABSTRACT

BACKGROUND: There were widespread unconfirmed reports about the increased severity of dengue post-second wave of the COVID-19 pandemic in India. It is known that a second dengue infection with a different strain in an individual can trigger antibody-dependent enhancement (ADE). A similar phenomenon is hypothesized for severe COVID-19 infection since both dengue and COVID-19 are viral diseases with different and varying strains. However, much research is needed to confirm this hypothesis. In this context, we intended to assess the severity of dengue illness in relation to previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, possibly the role of COVID-19 antibodies as an early predictor of severe dengue illness. OBJECTIVE: To assess the utility of COVID-19 antibodies for early identification of severe dengue illness among children in the post-third-wave period of COVID-19 infection in India. MATERIALS AND METHODS: All hospitalized children with dengue illness were categorized as severe (shock and/or hemorrhage and/or multi-organ dysfunction) and non-severe dengue illness (dengue with or without warning signs) as per WHO definition. COVID-19 antibody titers were estimated in both groups. Clinical features and seroprevalence of COVID-19 antibodies were compared in both groups. RESULT: A total of 31 children were studied (13 severe and 18 non-severe dengue illnesses). The most common symptoms prior to presenting to the hospital included fever (100% in both groups), vomiting (85% in severe and 63% in non-severe), abdominal pain (85% in severe and 50% in non-severe), poor feeding (54% in severe and 28% in non-severe), and skin rashes (15% in severe and none in non-severe). The mean duration from the onset of fever to the first hospital visit was 4.6 days in severe illness and 5.3 days in non-severe dengue illness. The mean duration of hospitalization was 9.7 days in severe dengue illness and 4.1 days in non-severe dengue illness. While 92.3% of all severe dengue had significantly higher COVID-19 antibody titers, it was found elevated only in 44.4% of the children with non-severe dengue illness (p-value 0.0059; Yates' corrected p-value 0.0179). CONCLUSION: Clinical symptoms prior to presenting to the hospital were fever, vomiting, abdominal pain, poor oral feeding, and skin rashes. While fever, vomiting, and abdominal pain were seen commonly in both severe and non-severe dengue illnesses, the presence of skin rash during febrile phase is associated with severe dengue illness only. Hospitalized children having severe dengue had increased seroprevalence of COVID-19 antibodies (92.3%) compared to children with non-severe dengue (44.4%). However, there is no corelation of the severity of dengue illness with absolute values of COVID-19 antibody levels. Therefore, the presence of COVID-19 antibodies (previous COVID-19 infection) can be a predictor of severe illness in children with dengue especially if associated with poor oral feeding and skin rashes. The limitation of the study is its lesser sample size to conclude any definitive statement; nevertheless, the study paves way for a similar cohort of a larger sample size to draw conclusions.


Subject(s)
COVID-19 , Dengue , Severe Dengue , Abdominal Pain , Antibodies, Viral , COVID-19/diagnosis , COVID-19/epidemiology , Child , Child, Hospitalized , Dengue/complications , Dengue/diagnosis , Dengue/epidemiology , Fever/diagnosis , Humans , Pandemics , SARS-CoV-2 , Seroepidemiologic Studies , Severe Dengue/diagnosis , Severe Dengue/epidemiology , Vomiting
5.
BMJ ; 378: o2090, 2022 09 12.
Article in English | MEDLINE | ID: covidwho-2019988
7.
Curr Neurol Neurosci Rep ; 22(8): 515-529, 2022 08.
Article in English | MEDLINE | ID: covidwho-1899317

ABSTRACT

PURPOSE OF REVIEW: To discuss the neurological complications of dengue virus (DENV) infection and their pathogenesis. RECENT FINDINGS: Include recognition of the four different serotypes of DENV and their epidemiology as well as recognition of the expanded dengue syndrome encompassing multisystem involvement in the severe form of the disease including involvement of the central nervous system (CNS). DENV is a neurotropic virus with the ability to infect the supporting cells of the CNS. Neural injury during the acute stage of the infection results from direct neuro-invasion and/or the phenomenon of antibody-dependent enhancement, resulting in plasma leakage and coagulopathy. Immune mechanisms have been implicated in the development of the delayed neurological sequelae through molecular mimicry. A myriad of neurological syndromes has been described as a result of the involvement of the CNS, the peripheral nervous system (PNS), or both. Neurological manifestations in DENV infection are increasingly being recognized, some of which are potentially fatal if not treated promptly. DENV encephalopathy and encephalitis should be considered in the differential diagnosis of other acute febrile encephalopathies, autoimmune encephalitides, and in cases of encephalopathy/encephalitis related to SARS-CoV2 infection, especially in dengue-endemic areas. Acute disseminated encephalomyelitis (ADEM) may be occasionally encountered. Clinicians should be knowledgeable of the expanded dengue syndrome characterized by the concurrent compromise of cardiac, neurological, gastrointestinal, renal, and hematopopoietic systems. Isolated cranial nerve palsies occur rather uncommonly and are often steroid responsive. These neuropathies may result from the direct involvement of cranial nerve nuclei or nerve involvement or may be immune-mediated. Even if the diagnosis of dengue is confirmed, it is absolutely imperative to exclude other well-known causes of isolated cranial nerve palsies. Ischemic and hemorrhagic strokes may occur following dengue fever. The pathogenesis may be beyond the commonly observed thrombocytopenia and include cerebral vasculitis. Involvement of ocular blood vessels may cause maculopathy or retinal hemorrhages. Posterior reversible encephalopathy syndrome (PRES) is uncommon and possibly related to dysregulated cytokine release phenomena. Lastly, any patient developing acute neuromuscular weakness during the course or within a fortnight of remission from dengue fever must be screened for acute inflammatory demyelinating polyneuropathy (AIDP), hypokalemic paralysis, or acute myositis. Rarely, a Miller-Fisher-like syndrome with negative anti-GQ1b antibody may develop.


Subject(s)
Brain Diseases , COVID-19 , Dengue , Encephalitis , Posterior Leukoencephalopathy Syndrome , Dengue/complications , Dengue/diagnosis , Dengue/pathology , Humans , Posterior Leukoencephalopathy Syndrome/complications , RNA, Viral , SARS-CoV-2
8.
Rev Inst Med Trop Sao Paulo ; 64: e13, 2022.
Article in English | MEDLINE | ID: covidwho-1690632

ABSTRACT

Clinical similarities among viral diseases become even more relevant considering the current scenario, especially in Brazil, where there is a high incidence of these diseases and overlapping seasonality. We report the case of a patient with acute clinical manifestations composed of predominant respiratory symptoms and alveolar hemorrhage in which three etiologies (dengue, influenza and COVID-19) were investigated concomitantly. Only the diagnosis of dengue was confirmed. Then, the patient's immunological profile in response to stimulation of mononuclear cells with dengue virus antigen was analyzed in an attempt to identify specific characteristics that could be associated with the clinical manifestation.


Subject(s)
COVID-19 , Dengue , Dengue/complications , Dengue/diagnosis , Diagnosis, Differential , Hemorrhage/diagnosis , Humans , SARS-CoV-2 , Syndrome
9.
PLoS Negl Trop Dis ; 15(4): e0008879, 2021 04.
Article in English | MEDLINE | ID: covidwho-1201424

ABSTRACT

BACKGROUND: As coronavirus 2019 (COVID-19) is spreading globally, several countries are handling dengue epidemics. As both infections are deemed to share similarities at presentation, it would be useful to distinguish COVID-19 from dengue in the context of co-epidemics. Hence, we performed a retrospective cohort study to identify predictors of both infections. METHODOLOGY/PRINCIPAL FINDINGS: All the subjects suspected of COVID-19 between March 23 and May 10, 2020, were screened for COVID-19 within the testing center of the University hospital of Saint-Pierre, Reunion island. The screening consisted in a questionnaire surveyed in face-to-face, a nasopharyngeal swab specimen for the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) reverse transcription polymerase chain-reaction and a rapid diagnostic orientation test for dengue. Factors independently associated with COVID-19 or with dengue were sought using multinomial logistic regression models, taking other febrile illnesses (OFIs) as controls. Adjusted Odds ratios (OR) and 95% Confidence Intervals (95%CI) were assessed. Over a two-month study period, we diagnosed 80 COVID-19, 61 non-severe dengue and 872 OFIs cases eligible to multivariate analysis. Among these, we identified delayed presentation (>3 days) since symptom onset (Odds ratio 1.91, 95% confidence interval 1.07-3.39), contact with a COVID-19 positive case (OR 3.81, 95%CI 2.21-6.55) and anosmia (OR 7.80, 95%CI 4.20-14.49) as independent predictors of COVID-19, body ache (OR 6.17, 95%CI 2.69-14.14), headache (OR 5.03, 95%CI 1.88-13.44) and retro-orbital pain (OR 5.55, 95%CI 2.51-12.28) as independent predictors of dengue, while smoking was less likely observed with COVID-19 (OR 0.27, 95%CI 0.09-0.79) and upper respiratory tract infection symptoms were associated with OFIs. CONCLUSIONS/SIGNIFICANCE: Although prone to potential biases, these data suggest that non-severe dengue may be more symptomatic than COVID-19 in a co-epidemic setting with higher dengue attack rates. At clinical presentation, nine basic clinical and epidemiological indicators may help to distinguish COVID-19 or dengue from each other and other febrile illnesses.


Subject(s)
COVID-19/diagnosis , Dengue/diagnosis , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/physiopathology , COVID-19 Testing , Child , Child, Preschool , Cohort Studies , Dengue/epidemiology , Dengue/physiopathology , Diagnosis, Differential , False Negative Reactions , False Positive Reactions , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Retrospective Studies , Reunion/epidemiology , Young Adult
10.
PLoS Negl Trop Dis ; 15(4): e0009359, 2021 04.
Article in English | MEDLINE | ID: covidwho-1201403

ABSTRACT

BACKGROUND: Dengue is the world's most common mosquito-borne virus but remains diagnostically challenging due to its nonspecific presentation. Access to laboratory confirmation is limited and thus most reported figures are based on clinical diagnosis alone, the accuracy of which is uncertain. This systematic review assesses the diagnostic accuracy of the traditional (1997) and revised (2009) WHO clinical case definitions for dengue fever, the basis for most national guidelines. METHODOLOGY/PRINCIPAL FINDINGS: PubMed, EMBASE, Scopus, OpenGrey, and the annual Dengue Bulletin were searched for studies assessing the diagnostic accuracy of the unmodified clinical criteria. Two reviewers (NR/SL) independently assessed eligibility, extracted data, and evaluated risk of bias using a modified QUADAS-2. Additional records were found by citation network analysis. A meta-analysis was done using a bivariate mixed-effects regression model. Studies that modified criteria were analysed separately. This systematic review protocol was registered on PROSPERO (CRD42020165998). We identified 11 and 12 datasets assessing the 1997 and 2009 definition, respectively, and 6 using modified criteria. Sensitivity was 93% (95% CI: 77-98) and 93% (95% CI: 86-96) for the 1997 and 2009 definitions, respectively. Specificity was 29% (95% CI: 8-65) and 31% (95% CI: 18-48) for the 1997 and 2009 definitions, respectively. Diagnostic performance suffered at the extremes of age. No modification significantly improved accuracy. CONCLUSIONS/SIGNIFICANCE: Diagnostic accuracy of clinical criteria is poor, with significant implications for surveillance and public health responses for dengue control. As the basis for most reported figures, this has relevance to policymakers planning resource allocation and researchers modelling transmission, particularly during COVID-19.


Subject(s)
Dengue/diagnosis , COVID-19/diagnosis , Databases, Factual , Diagnosis, Differential , Humans , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , World Health Organization
11.
Acta Trop ; 214: 105782, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1064690

ABSTRACT

Originated in Wuhan, China, the coronavirus 19 disease (COVID-19) has quickly spread worldwide, reaching countries that already faced other endemics and epidemics. In Brazil, such a concerning situation includes arboviruses, among which the dengue virus stands out. Here, we determined the rate of SARS-CoV-2/dengue virus co-infection in a total of 178 patients with COVID-19 symtoms admitted into a large public hospital of the Federal District of Brazil. Furthermore, we evaluated whether prior or active dengue virus infection influenced hematological, biochemical, and clinical parameters of such patients. One hundred and twelve (63%) individuals tested positive for COVID-19, of which 43 (38.4%) were co-infected with dengue virus, and 50 (44.6%) had antibodies indicative of previous dengue infection. Co-infected patients showed lower numbers of circulating lymphocytes and monocytes, higher glucose rates, and a worse pulmonary condition. Of note, prior infections with dengue virus did not influence clinical parameters, but active dengue fever resulted in higher hospitalization rate. In conclusion, amid the current complex epidemiological scenario in Brazil, our data support the notion that SARS-CoV-2 and dengue co-infection affects an important percentage of COVID-19 patients and leads to worse clinical parameters, requiring greater attention from health authorities.


Subject(s)
COVID-19/blood , COVID-19/diagnosis , Coinfection/blood , Dengue/blood , Dengue/diagnosis , Adult , Alanine Transaminase/blood , Antibodies, Viral/blood , Aspartate Aminotransferases/blood , Blood Glucose/analysis , Brazil , Coinfection/diagnosis , Creatine Kinase/blood , Dengue/immunology , Female , Hospitalization/statistics & numerical data , Humans , Immunoglobulin G/blood , L-Lactate Dehydrogenase/blood , Lymphocyte Count , Male , Sampling Studies
12.
Trop Doct ; 51(1): 106-108, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1052367

ABSTRACT

While the world battles to wrestle with the impact of the COVID-19 pandemic, regions with endemic dengue fever are confronting the possibility of a double pandemic that could completely overpower health care services administrations. Simultaneous outbreaks of dengue and COVID-19, as well as probable cases of overlapping infections, have already started in Latin America and certain Asian countries. There, the healthcare framework is already overburdened and such a deadly duo may completely overwhelm hospital emergency services quite apart from a country's economy. Precise epidemiological and contact history-taking joined with due attention to false-positive dengue serology and the chance of co-infections are key devices for frontline doctors to overcome this seemingly insurmountable challenge.


Subject(s)
COVID-19/prevention & control , Coinfection/prevention & control , Delivery of Health Care , Dengue/prevention & control , COVID-19/diagnosis , COVID-19/epidemiology , Coinfection/diagnosis , Coinfection/epidemiology , Contact Tracing , Dengue/diagnosis , Dengue/epidemiology , Disease Outbreaks/prevention & control , Epidemiological Monitoring , Humans , SARS-CoV-2 , Tropical Medicine
13.
Am J Trop Med Hyg ; 104(2): 487-489, 2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-983830

ABSTRACT

We report a 50-year-old Thai woman with recent travel to Denmark who presented with acute high-grade fever, vomiting, and myalgia for 1 day. Initial laboratory results revealed leukopenia, elevated aspartate transaminase, and elevated alanine transaminase. Chest radiograph showed no pulmonary infiltration. Reverse transcriptase-PCR (RT-PCR) of the nasopharyngeal swab detected SARS-CoV-2, and RT-PCR of the blood detected dengue virus serotype 2. COVID-19 with dengue fever co-infection was diagnosed. Her symptoms were improved with supportive treatment. Integration of clinical manifestations, history of exposure, laboratory profiles, and dynamic of disease progression assisted the physicians in precise diagnosis. Co-circulating and nonspecific presentations of dengue infection and COVID-19 challenge the healthcare system in tropical countries. To solve this threat, multi-sector strategies are required, including public health policy, development of accurate point-of-care testing, and proper prevention for both diseases.


Subject(s)
COVID-19/diagnosis , Coinfection/diagnosis , Coinfection/virology , Dengue/diagnosis , Travel , Dengue Virus/classification , Dengue Virus/genetics , Dengue Virus/isolation & purification , Female , Humans , Middle Aged , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Serogroup , Thailand
14.
An Bras Dermatol ; 96(1): 85-87, 2021.
Article in English | MEDLINE | ID: covidwho-962166

ABSTRACT

There have been several clinical manifestations associated with SARS-CoV-2 infection since 2019, including dermatological signs and symptoms. In this article, the authors report a case of a previously healthy patient with COVID-19 who was mistakenly diagnosed with dengue fever due to a skin rash. By the time the patient's investigation was initiated, Joinville (Santa Catarina, Brazil) had approximately 5,000 confirmed cases of dengue fever and 1,700 cases of COVID-19 in 2020. Thus, the authors emphasize that in endemic regions such as Brazil, the two diseases must be considered until proven otherwise. Finally, the authors warn of the possibility of co-infection with these two viruses in regions that are facing both epidemics at the same time.


Subject(s)
COVID-19 , Dengue , Exanthema , Brazil , Dengue/diagnosis , Exanthema/diagnosis , Humans , SARS-CoV-2
15.
J Trop Pediatr ; 67(1)2021 01 29.
Article in English | MEDLINE | ID: covidwho-960585

ABSTRACT

Dengue is a major health concern in South Asian countries transmitted by bite of day breeder mosquitoes Aedes aegypti and Aedes albopictus. Severity of plasma leak, shock, bleeding tendency and other organ dysfunction can be more pronounced in infants. The management becomes further complicated in the presence of a co-existing COVID-19 infection. Although COVID-19 infection is usually asymptomatic or has mild manifestations in children, however in presence of serious co-infection like dengue it can modify the course of the illness and lead to drastic consequences. Here, we present one such case of a 9-month-old female child who tested positive for dengue as well as COVID-19 during the ongoing corona pandemic and went on to develop shock, encephalopathy with deranged liver enzymes but managed to overcome all odds and recover from the disease by day 14 of illness.


Subject(s)
COVID-19 , Dengue , Multiple Organ Failure/virology , COVID-19/complications , COVID-19/diagnosis , Coinfection/virology , Dengue/complications , Dengue/diagnosis , Female , Humans , India , Infant
16.
J Virol ; 95(4)2021 01 28.
Article in English | MEDLINE | ID: covidwho-952556

ABSTRACT

Positive-strand RNA viruses have been the etiological agents in several major disease outbreaks over the last few decades. Examples of this include flaviviruses, such as dengue virus and Zika virus, which cause millions of yearly infections around the globe, and coronaviruses, such as SARS-CoV-2, the source of the current pandemic. The severity of outbreaks caused by these viruses stresses the importance of research aimed at determining methods to limit virus spread and to curb disease severity. Such studies require molecular tools to decipher virus-host interactions and to develop effective treatments. Here, we describe the generation and characterization of a reporter system that can be used to visualize and identify cells infected with dengue virus or SARS-CoV-2. This system is based on viral protease activity that mediates cleavage and nuclear translocation of an engineered fluorescent protein stably expressed in cells. We show the suitability of this system for live cell imaging, for visualization of single infected cells, and for screening and testing of antiviral compounds. With the integrated modular building blocks, this system is easy to manipulate and can be adapted to any virus encoding a protease, thus offering a high degree of flexibility.IMPORTANCE Reporter systems are useful tools for fast and quantitative visualization of virus-infected cells within a host cell population. Here, we describe a reporter system that takes advantage of virus-encoded proteases expressed in infected cells to cleave an ER-anchored fluorescent protein fused to a nuclear localization sequence. Upon cleavage, the GFP moiety translocates to the nucleus, allowing for rapid detection of the infected cells. Using this system, we demonstrate reliable reporting activity for two major human pathogens from the Flaviviridae and the Coronaviridae families: dengue virus and SARS-CoV-2. We apply this reporter system to live cell imaging and use it for proof-of-concept to validate antiviral activity of a nucleoside analogue. This reporter system is not only an invaluable tool for the characterization of viral replication, but also for the discovery and development of antivirals that are urgently needed to halt the spread of these viruses.


Subject(s)
COVID-19/virology , Dengue Virus/isolation & purification , Dengue/virology , SARS-CoV-2/isolation & purification , A549 Cells , Animals , COVID-19/diagnosis , COVID-19/metabolism , COVID-19/pathology , Cell Line , Chlorocebus aethiops , Dengue/diagnosis , Dengue/metabolism , Dengue/pathology , Dengue Virus/genetics , Dengue Virus/metabolism , Genes, Reporter , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Nuclear Localization Signals/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Vero Cells , Viral Nonstructural Proteins/metabolism , Virus Replication
17.
Int J Infect Dis ; 102: 152-154, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-949978

ABSTRACT

Similar symptoms and laboratory findings between dengue and coronavirus disease 2019 (COVID-19) pose a diagnostic challenge in some dengue-endemic countries in Asia. In this study, we reported three cases of suspected COVID-19-dengue coinfection in hospitals of Bali, Indonesia. Serological data demonstrated that patients with positive results for dengue virus (DENV) NS1 antigen and anti-dengue IgM were also reactive to COVID-19 rapid antibody tests, suggesting dengue-COVID-19 coinfection. However, two patients were later confirmed negative for SARS-COV-2 by qRT-PCR, implying a plausible cross-reactivity of anti-dengue and anti-COVID-19 antibodies in the serological test. Coinfection of dengue and COVID-19 was evident in one patient, following confirmation of SARS-COV-2 by qRT-PCR and DENV infection using the NS1 antigen serology test. This case was the first case of dengue and COVID-19 coinfection in Indonesia and revealed possible cross-reactivity between SARS-COV-2 and DENV antibodies based on rapid serological tests. Our study indicates a public health concern regarding COVID-19 and dengue detection in Indonesia as well as in other dengue-endemic countries, and it is important for these nations to manage both pathogens concurrently.


Subject(s)
Antibodies, Viral/blood , COVID-19 Serological Testing , COVID-19/diagnosis , Coinfection/diagnosis , Dengue Virus/immunology , Dengue/diagnosis , SARS-CoV-2/immunology , Adult , Aged , COVID-19/immunology , Coinfection/immunology , Cross Reactions , Female , Humans , Middle Aged
18.
Am J Trop Med Hyg ; 103(5): 2005-2011, 2020 11.
Article in English | MEDLINE | ID: covidwho-807890

ABSTRACT

During the COVID-19 pandemic, distinguishing dengue from cases of COVID-19 in endemic areas can be difficult. In a tertiary hospital contending with COVID-19 during a dengue epidemic, a triage strategy of routine COVID-19 testing for febrile patients with viral prodromes was used. All febrile patients with viral prodromes and no epidemiologic risk for COVID-19 were first admitted to a designated ward for COVID-19 testing, where enhanced personal protective equipment was used by healthcare workers until COVID-19 was ruled out. From January to May 2020, 11,086 admissions were screened for COVID-19; 868 cases of COVID-19 were diagnosed in our institution, along with 380 cases of dengue. Only 8.5% (943/11,086) of suspected COVID-19 cases were concurrently tested for dengue serology due to a compatible overlapping clinical syndrome, and dengue was established as an alternative diagnosis in 2% (207/10,218) of suspected COVID-19 cases that tested negative. There were eight COVID-19 cases with likely false-positive dengue serology and one probable COVID-19/dengue coinfection. From April to May 2020, 251 admissions presenting as viral prodromes with no respiratory symptoms were screened; of those, 15 cases had COVID-19, and 2/15 had false-positive dengue IgM. Epidemiology investigations showed no healthcare-associated transmission. In a dengue epidemic season coinciding with a COVID-19 pandemic, dengue was established as an alternative diagnosis in a minority of COVID-19 suspects, likely due to early availability of basic diagnostics. Routine screening of patients with viral prodromes during a dual outbreak of COVID-19 and dengue enabled containment of COVID-19 cases masquerading as dengue with false-positive IgM.


Subject(s)
COVID-19/epidemiology , Dengue/epidemiology , Disease Outbreaks , SARS-CoV-2/isolation & purification , Adult , Aged , COVID-19/complications , COVID-19/diagnosis , COVID-19/therapy , COVID-19 Nucleic Acid Testing , Dengue/complications , Dengue/diagnosis , Dengue/drug therapy , Dengue Virus/immunology , Dengue Virus/isolation & purification , Diagnosis, Differential , Female , Humans , Immunoglobulin M/blood , Male , Middle Aged , Oropharynx/virology , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , Singapore/epidemiology , Tertiary Care Centers , Triage/standards
19.
Infez Med ; 28(3): 416-419, 2020 Sep 01.
Article in English | MEDLINE | ID: covidwho-757713

ABSTRACT

Coinfection of SARS-CoV-2 and dengue virus has not been previously reported. We report a confirmed case with favourable outcome, but whether the occurrence of simultaneous infections may alter the usual clinical course of each infection is still unknown.


Subject(s)
Coinfection/diagnosis , Coronavirus Infections/diagnosis , Dengue/diagnosis , Pneumonia, Viral/diagnosis , Adult , Betacoronavirus , COVID-19 , Coronavirus Infections/complications , Dengue/complications , Dengue Virus , Humans , Male , Pandemics , Pneumonia, Viral/complications , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL