Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Signal Transduct Target Ther ; 6(1): 414, 2021 12 06.
Article in English | MEDLINE | ID: covidwho-1556321

ABSTRACT

Azvudine (FNC) is a nucleoside analog that inhibits HIV-1 RNA-dependent RNA polymerase (RdRp). Recently, we discovered FNC an agent against SARS-CoV-2, and have taken it into Phase III trial for COVID-19 patients. FNC monophosphate analog inhibited SARS-CoV-2 and HCoV-OC43 coronavirus with an EC50 between 1.2 and 4.3 µM, depending on viruses or cells, and selective index (SI) in 15-83 range. Oral administration of FNC in rats revealed a substantial thymus-homing feature, with FNC triphosphate (the active form) concentrated in the thymus and peripheral blood mononuclear cells (PBMC). Treating SARS-CoV-2 infected rhesus macaques with FNC (0.07 mg/kg, qd, orally) reduced viral load, recuperated the thymus, improved lymphocyte profiles, alleviated inflammation and organ damage, and lessened ground-glass opacities in chest X-ray. Single-cell sequencing suggested the promotion of thymus function by FNC. A randomized, single-arm clinical trial of FNC on compassionate use (n = 31) showed that oral FNC (5 mg, qd) cured all COVID-19 patients, with 100% viral ribonucleic acid negative conversion in 3.29 ± 2.22 days (range: 1-9 days) and 100% hospital discharge rate in 9.00 ± 4.93 days (range: 2-25 days). The side-effect of FNC is minor and transient dizziness and nausea in 16.12% (5/31) patients. Thus, FNC might cure COVID-19 through its anti-SARS-CoV-2 activity concentrated in the thymus, followed by promoted immunity.


Subject(s)
Antiviral Agents/administration & dosage , Azides/administration & dosage , COVID-19/drug therapy , Deoxycytidine/analogs & derivatives , SARS-CoV-2/metabolism , Thymus Gland , Adult , Aged , Aged, 80 and over , Animals , Coronavirus OC43, Human/metabolism , Deoxycytidine/administration & dosage , Female , Humans , Male , Middle Aged , Rats , Thymus Gland/metabolism , Thymus Gland/virology
2.
Cancer Chemother Pharmacol ; 87(2): 229-239, 2021 02.
Article in English | MEDLINE | ID: covidwho-1279409

ABSTRACT

PURPOSE: The present study was performed to examine relationships between systemic exposure of capecitabine metabolites (5-FU, 5'-DFCR and 5'-DFUR) and toxicity or clinical response in patients with metastatic breast cancer. METHODS: A population pharmacokinetic model for capecitabine and its three metabolites was built. Typical parameter values, characteristics of random distributions, associated with parameters, and covariates impact were estimated. Area under the curve (AUC) were computed for 5-FU and compared with grades of toxicity. Pharmacokinetic modeling was based on data collected on the first treatment cycle. Toxicity was assessed on the two first treatment cycles. RESULTS: The study was conducted in 43 patients. The population pharmacokinetic model (a one-compartment model per compound) was able to capture the very complex absorption process of capecitabine. Statistically significant covariates were cytidine deaminase, alkaline phosphatase and dihydrouracilemia (UH2)/uracilemia (U) ratio. UH2/U ratio was the most significant covariate on 5-FU elimination and CDA on the transformation of 5'-DFCR in 5'-DFUR. A trend was observed between 5-FU AUC and thrombopenia toxicity grades, but not with other toxicities. Best clinical response was not linked to systemic exposure of capecitabine metabolites. CONCLUSION: In our study, we propose a model able to describe, meanwhile, and its main metabolites, with a complex absorption process and inclusion of enzyme activity covariates such as CDA and UH2/U ratio. Trial registration Eudract 2008-004136-20, 2008/11/26.


Subject(s)
Antimetabolites, Antineoplastic/pharmacokinetics , Breast Neoplasms/drug therapy , Capecitabine/pharmacokinetics , Models, Biological , Adult , Aged , Aged, 80 and over , Antimetabolites, Antineoplastic/adverse effects , Area Under Curve , COVID-19/drug therapy , Capecitabine/adverse effects , Deoxycytidine/analogs & derivatives , Deoxycytidine/blood , Female , Floxuridine/blood , Fluorouracil/blood , Humans , Middle Aged , Prospective Studies
3.
Int J Mol Sci ; 22(4)2021 Feb 04.
Article in English | MEDLINE | ID: covidwho-1063411

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. The virus still spreads globally through human-to-human transmission. Nevertheless, there are no specific treatments clinically approved. This study aimed to compare antiviral activity of gemcitabine and its analogue 2'-fluoro-2'-deoxycytidine (2FdC) against SARS-CoV-2 as well as cytotoxicity in vitro. Fluorescent image-based antiviral assays revealed that gemcitabine was highly potent, with a 50% effective concentration (EC50) of 1.2 µM, more active than the well-known nucleoside monophosphate remdesivir (EC50 = 35.4 µM). In contrast, 2FdC was marginally active (EC50 = 175.2 µM). For all three compounds, the 50% cytotoxic concentration (CC50) values were over 300 µM toward Vero CCL-81 cells. Western blot and quantitative reverse-transcription polymerase chain reaction analyses verified that gemcitabine blocked viral protein expression in virus-infected cells, not only Vero CCL-81 cells but also Calu-3 human lung epithelial cells in a dose-dependent manner. It was found that gemcitabine has a synergistic effect when combined with remdesivir. This report suggests that the difluoro group of gemcitabine is critical for the antiviral activity and that its combination with other evaluated antiviral drugs, such as remdesivir, could be a desirable option to treat SARS-CoV-2 infection.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19/drug therapy , Deoxycytidine/analogs & derivatives , SARS-CoV-2/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Antiviral Agents/pharmacology , COVID-19/metabolism , COVID-19/virology , Cell Line , Chlorocebus aethiops , Deoxycytidine/pharmacology , Drug Therapy, Combination , Humans , Inhibitory Concentration 50 , SARS-CoV-2/physiology , Vero Cells , Virus Replication/drug effects
4.
Tumori ; 107(6): NP24-NP27, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-992257

ABSTRACT

BACKGROUND: Pancreatic acinar cell carcinoma (PACC) is a rare tumor, accounting for about 1% of all pancreatic exocrine cancers. Consensus on the management of metastatic PACC remains unclear. CASE PRESENTATION: Starting from April 2019, a patient first received chemotherapy with two cycles of gemcitabine and nab-paclitaxel and two cycles of SOX regimen. After progression of disease evaluated based on RECIST 1.1, toripalimab and SOX regimen was administered because of PD-L1-positive expression, high tumor mutation burden (TMB), and somatic FANCA deletion in the tumor. Both the primary and metastatic tumor mass shrank significantly after two courses. The patient exhibited sustained partial response for at least six courses with well-controlled toxic effects. Then the treatment had to be stopped for 2 months because of the coronavirus disease 2019 pandemic. Computed tomography scan in March 2020 showed disease progression. Time from initiating treatment to tumor progression on toripalimab and SOX regimen treatment took up to at least 8 months. CONCLUSIONS: We present the first case report where a PD-L1 positive, high TMB, and FANCA-deleted pancreatic acinar cell carcinoma was treated using chemotherapy combined with immunotherapy, in which the patient exhibited satisfactory response and tolerance.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , B7-H1 Antigen/metabolism , Biomarkers, Tumor/genetics , Carcinoma, Acinar Cell/drug therapy , Immunotherapy/methods , Mutation , Pancreatic Neoplasms/drug therapy , Aged , Albumins/administration & dosage , Antibodies, Monoclonal, Humanized/administration & dosage , Carcinoma, Acinar Cell/genetics , Carcinoma, Acinar Cell/immunology , Carcinoma, Acinar Cell/pathology , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Humans , Male , Paclitaxel/administration & dosage , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology
7.
Emerg Microbes Infect ; 9(1): 1170-1173, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-324574

ABSTRACT

The emerging SARS-CoV-2 infection associated with the outbreak of viral pneumonia in China is ongoing worldwide. There are no approved antiviral therapies to treat this viral disease. Here we examined the antiviral abilities of three broad-spectrum antiviral compounds gemcitabine, lycorine and oxysophoridine against SARS-CoV-2 in cell culture. We found that all three tested compounds inhibited viral replication in Vero-E6 cells at noncytotoxic concentrations. The antiviral effect of gemcitabine was suppressed efficiently by the cytidine nucleosides. Additionally, combination of gemcitabine with oxysophoridine had an additive antiviral effect against SARS-CoV-2. Our results demonstrate that broad-spectrum antiviral compounds may have a priority for the screening of antiviral compounds against newly emerging viruses to control viral infection.


Subject(s)
Alkaloids/pharmacology , Amaryllidaceae Alkaloids/pharmacology , Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Deoxycytidine/analogs & derivatives , Phenanthridines/pharmacology , Virus Replication/drug effects , Animals , Betacoronavirus/growth & development , Betacoronavirus/metabolism , Cell Survival/drug effects , Chlorocebus aethiops , Chloroquine/pharmacology , Deoxycytidine/pharmacology , Dose-Response Relationship, Drug , Drug Combinations , Drug Synergism , SARS-CoV-2 , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL