Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Rep ; 12(1): 6501, 2022 04 20.
Article in English | MEDLINE | ID: covidwho-1921699

ABSTRACT

TaqMan probe-based commercial real-time (RT) PCR kits are expensive but most frequently used in COVID-19 diagnosis. The unprecedented scale of SARS-CoV-2 infections needs to meet the challenge of testing more persons at a reasonable cost. This study developed a simple and cost-effective alternative diagnostic method based on melting curve analysis of SYBR green multiplex assay targeting two virus-specific genes along with a host-specific internal control. A total of 180 randomly selected samples portioning into two subsets based on crude and high-quality RNA extraction were used to compare this assay with a nationwide available commercial kit (Sansure Biotech Inc., (Hunan, China)), so that we could analyze the variation and validity of this in-house developed method. Our customized-designed primers can specifically detect the viral RNA likewise Sansure. We separately optimized SYBR Green RT-PCR reaction of N, E, S, and RdRp genes based on singleplex melting curve analysis at the initial stage. After several rounds of optimization on multiplex assays of different primer combinations, the optimized method finally targeted N and E genes of the SARS-CoV-2 virus, together with the ß-actin gene of the host as an internal control. Comparing with the Sansure commercial kit, our proposed assay provided up to 97% specificity and 93% sensitivity. The cost of each sample processing ranged between ~2 and ~6 USD depending on the purification level of extracted RNA template. Overall, this one-step and one-tube method can revolutionize the COVID-19 diagnosis in low-income countries.


Subject(s)
COVID-19 , Benzothiazoles , COVID-19/diagnosis , COVID-19 Testing , Cost-Benefit Analysis , Diamines , Humans , Quinolines , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
2.
Appl Microbiol Biotechnol ; 106(5-6): 2207-2218, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1712228

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19) continues to threaten public health. For developing countries where vaccines are still in shortage, cheaper alternative molecular methods for SARS-CoV-2 identification can be crucial to prevent the next wave. Therefore, 14 primer sets recommended by the World Health Organization (WHO) was evaluated on testing both clinical patient and environmental samples with the gold standard diagnosis method, TaqMan-based RT-qPCR, and a cheaper alternative method, SYBR Green-based RT-qPCR. Using suitable primer sets, such as ORF1ab, 2019_nCoV_N1 and 2019_nCoV_N3, the performance of the SYBR Green approach was comparable or better than the TaqMan approach, even when considering the newly dominating or emerging variants, including Delta, Eta, Kappa, Lambda, Mu, and Omicron. ORF1ab and 2019_nCoV_N3 were the best combination for sensitive and reliable SARS-CoV-2 molecular diagnostics due to their high sensitivity, specificity, and broad accessibility. KEY POINTS: • With suitable primer sets, the SYBR Green method performs better than the TaqMan one. • With suitable primer sets, both methods should still detect the new variants well. • ORF1ab and 2019_nCoV_N3 were the best combination for SARS-CoV-2 detection.


Subject(s)
COVID-19 , SARS-CoV-2 , Benzothiazoles , COVID-19/diagnosis , Diamines , Humans , Quinolines , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Sensitivity and Specificity
3.
Mol Biol Rep ; 48(11): 7243-7249, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1453812

ABSTRACT

BACKGROUND: The new SARS-CoV-2 variant VOC (202012/01), identified recently in the United Kingdom (UK), exhibits a higher transmissibility rate compared to other variants, and a reproductive number 0.4 higher. In the UK, scientists were able to identify the increase of this new variant through the rise of false negative results for the spike (S) target using a three-target RT-PCR assay (TaqPath kit). METHODS: To control and study the current coronavirus pandemic, it is important to develop a rapid and low-cost molecular test to identify the aforementioned variant. In this work, we designed primer sets specific to the VOC (202012/01) to be used by SYBR Green-based RT-PCR. These primers were specifically designed to confirm the deletion mutations Δ69/Δ70 in the spike and the Δ106/Δ107/Δ108 in the NSP6 gene. We studied 20 samples from positive patients, detected by using the Applied Biosystems TaqPath RT-PCR COVID-19 kit (Thermo Fisher Scientific, Waltham, USA) that included the ORF1ab, S, and N gene targets. 16 samples displayed an S-negative profile (negative for S target and positive for N and ORF1ab targets) and four samples with S, N and ORF1ab positive profile. RESULTS: Our results emphasized that all S-negative samples harbored the mutations Δ69/Δ70 and Δ106/Δ107/Δ108. This protocol could be used as a second test to confirm the diagnosis in patients who were already positive to COVID-19 but showed false negative results for S-gene. CONCLUSIONS: This technique may allow to identify patients carrying the VOC (202012/01) or a closely related variant, in case of shortage in sequencing.


Subject(s)
Benzothiazoles , COVID-19/virology , Diamines , Fluorescent Dyes , Quinolines , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , Costs and Cost Analysis , DNA Primers , Genome, Viral , Humans , Mutation , Real-Time Polymerase Chain Reaction/economics , SARS-CoV-2/genetics , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/genetics , Time Factors
4.
Pol J Vet Sci ; 24(1): 43-49, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1368400

ABSTRACT

In this study, we developed a SYBR Green I real-time PCR method for the rapid and sensitive detection of novel porcine parvovirus 7 (PPV7). Specific primers were designed based on the highly conserved region within the Capsid gene of PPV7. The established method was 1,000 times more sensitive than the conventional PCR method and had a detection limit of 35.6 copies. This method was specific and had no cross-reactions with PCV2, PCV3, PRV, PEDV, PPV1, and PPV6. Experiments testing the intra and interassay precision demonstrated a high reproducibility. Testing the newly established method with 200 clinical samples revealed a detection rate up to 17.5% higher than that of the conventional PCR assay. The established method could provide technical support for clinical diagnosis and epidemiological investigation of PPV7.


Subject(s)
Benzothiazoles , Diamines , Parvoviridae Infections/veterinary , Parvovirus, Porcine/isolation & purification , Quinolines , Real-Time Polymerase Chain Reaction/methods , Swine Diseases/virology , Animals , Parvoviridae Infections/diagnosis , Parvoviridae Infections/virology , Reproducibility of Results , Sensitivity and Specificity , Swine , Swine Diseases/diagnosis
5.
RNA Biol ; 18(12): 2218-2225, 2021 12.
Article in English | MEDLINE | ID: covidwho-1221426

ABSTRACT

Early detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been proven crucial during the efforts to mitigate the effects of the COVID-19 pandemic. Several diagnostic methods have emerged in the past few months, each with different shortcomings and limitations. The current gold standard, RT-qPCR using fluorescent probes, relies on demanding equipment requirements plus the high costs of the probes and specific reaction mixes. To broaden the possibilities of reagents and thermocyclers that could be allocated towards this task, we have optimized an alternative strategy for RT-qPCR diagnosis. This is based on a widely used DNA-intercalating dye and can be implemented with several different qPCR reagents and instruments. Remarkably, the proposed qPCR method performs similarly to the broadly used TaqMan-based detection, in terms of specificity and sensitivity, thus representing a reliable tool. We think that, through enabling the use of vast range of thermocycler models and laboratory facilities for SARS-CoV-2 diagnosis, the alternative proposed here can increase dramatically the testing capability, especially in countries with limited access to costly technology and reagents.


Subject(s)
Benzothiazoles/chemistry , COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Diamines/chemistry , Intercalating Agents/chemistry , Quinolines/chemistry , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , DNA/analysis , DNA/biosynthesis , DNA Primers/chemistry , DNA Primers/metabolism , Humans , Nasopharynx/virology , Real-Time Polymerase Chain Reaction/standards , Sensitivity and Specificity
6.
Sci Rep ; 11(1): 2224, 2021 01 26.
Article in English | MEDLINE | ID: covidwho-1049969

ABSTRACT

Phylogenetic analysis has demonstrated that the etiologic agent of the 2020 pandemic outbreak is a betacoronavirus named SARS-CoV-2. For public health interventions, a diagnostic test with high sensitivity and specificity is required. The gold standard protocol for diagnosis by the Word Health Organization (WHO) is RT-PCR. To detect low viral loads and perform large-scale screening, a low-cost diagnostic test is necessary. Here, we developed a cost-effective test capable of detecting SARS-CoV-2. We validated an auxiliary protocol for molecular diagnosis with the SYBR Green RT-PCR methodology to successfully screen negative cases of SARS-CoV-2. Our results revealed a set of primers with high specificity and no homology with other viruses from the Coronovideae family or human respiratory tract pathogenic viruses, presenting with complementarity only for rhinoviruses/enteroviruses and Legionella spp. Optimization of the annealing temperature and polymerization time led to a high specificity in the PCR products. We have developed a more affordable and swift methodology for negative SARS-CoV-2 screening. This methodology can be applied on a large scale to soften panic and economic burden through guidance for isolation strategies.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Organic Chemicals , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2 , Benzothiazoles , DNA, Single-Stranded , Diamines , Enterovirus , Genome, Viral , Humans , Phylogeny , Polymerase Chain Reaction , Quinolines , Rhinovirus , Sensitivity and Specificity , Temperature , Viral Load
7.
J Virol Methods ; 288: 114012, 2021 02.
Article in English | MEDLINE | ID: covidwho-907187

ABSTRACT

In this study, a SYBR Green I-based real-time reverse transcription-polymerase chain reaction (RT-PCR) was developed for the clinical diagnosis of feline astroviruses (FeAstVs). Specific primers were designed based on the conserved region of the FeAstV ORF1b gene. Experiments for specificity, sensitivity, and repeatability of the assay were carried out. In addition, the assay was evaluated using clinical samples. Specificity analysis indicated that the assay showed negative results with samples of Feline Parvovirus, Feline Herpesvirus, Feline Calicivirus, Feline Bocavirus, and Feline Coronavirus, indicating good specificity of the assay. Sensitivity analysis showed that the SYBR Green I-based real-time RT-PCR method could detect as low as 3.72 × 101 copies/µL of template, which is 100-fold more sensitive compared to the conventional RT-PCR. Both intra-assay and inter-assay variability were lower than 1 %, indicating good reproducibility. Furthermore, an analysis of 150 fecal samples showed that the positive detection rate of SYBR Green I-based real-time RT-PCR was higher than that of the conventional RT-PCR, indicating the high reliability of the method. The assay is cheap and effective. Therefore, it could provide support for the detection of FeAstV in large-scale clinical testing and epidemiological investigation.


Subject(s)
Astroviridae/genetics , Cat Diseases/diagnosis , Cat Diseases/virology , Organic Chemicals , Real-Time Polymerase Chain Reaction , Animals , Benzothiazoles , Cats , Diamines , Quinolines , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , Sensitivity and Specificity
8.
Braz J Microbiol ; 51(3): 1117-1123, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-695574

ABSTRACT

In March 2020, WHO declared a pandemic state due to SARS-CoV-2 having spread. TaqMan-based real-time RT-qPCR is currently the gold standard for COVID-19 diagnosis. However, it is a high-cost assay, inaccessible for the majority of laboratories around the world, making it difficult to diagnose on a large scale. The objective of this study was to standardize lower cost molecular methods for SARS-CoV-2 identification. E gene primers previously determined for TaqMan assays by Colman et al. (2020) were adapted in SYBR Green assay and RT-PCR conventional. The cross-reactivity test was performed with 17 positive samples for other respiratory viruses, and the sensibility test was performed with 8 dilutions (10 based) of SARS-CoV-2 isolated and 63 SARS-CoV-2-positive samples. The SYBR Green assays and conventional RT-PCR have not shown amplification of the 17 respiratory samples positives for other viruses. The SYBR Green-based assay was able to detect all 8 dilutions of the isolate. The conventional PCR detected until 107 dilution, both assays detected the majority of the 63 samples, 98.42% of positivity in SYBR Green, and 93% in conventional PCR. The average Ct variation between SYBR Green and TaqMan was 1.92 and the highest Ct detected by conventional PCR was 35.98. Both of the proposed assays are less sensitive than the current gold standard; however, our data shows a low sensibility variation, suggesting that these methods could be used by laboratories as a lower cost molecular method for SARS-CoV-2 diagnosis.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/diagnosis , Fluorescent Dyes/economics , Organic Chemicals/economics , Pneumonia, Viral/diagnosis , Real-Time Polymerase Chain Reaction/economics , Adolescent , Adult , Animals , Benzothiazoles , Betacoronavirus/genetics , COVID-19 , Child , Chlorocebus aethiops , Coronavirus Infections/economics , Cross Reactions , Diamines , Humans , Middle Aged , Nasopharynx/virology , Oropharynx/virology , Pandemics/economics , Pneumonia, Viral/economics , Quinolines , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2 , Sensitivity and Specificity , Vero Cells , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL