Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Mol Cell Biochem ; 477(1): 225-240, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1469743


Severe acute respiratory syndrome-coronavirus-2 (COVID-19) virus uses Angiotensin-Converting Enzyme 2 (ACE2) as a gateway for their entry into the human body. The ACE2 with cleaved products have emerged as major contributing factors to multiple physiological functions and pathogenic complications leading to the clinical consequences of the COVID-19 infection Decreased ACE2 expression restricts the viral entry into the human cells and reduces the viral load. COVID-19 infection reduces the ACE2 expression and induces post-COVID-19 complications like pneumonia and lung injury. The modulation of the ACE2-Ang (1-7)-Mas (AAM) axis is also being explored as a modality to treat post-COVID-19 complications. Evidence indicates that specific food components may modulate the AAM axis. The variations in the susceptibility to COVID-19 infection and the post-COVID its complications are being correlated with varied dietary habits. Some of the food substances have emerged to have supportive roles in treating post-COVID-19 complications and are being considered as adjuvants to the COVID-19 therapy. It is possible that some of their active ingredients may emerge as the direct treatment for the COVID-19.

Angiotensin I/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/diet therapy , Peptide Fragments/metabolism , Proto-Oncogene Mas/metabolism , Cardiovascular Diseases/pathology , Cardiovascular Diseases/virology , Dietary Proteins/pharmacology , Flavonoids/pharmacology , Humans , Lung/pathology , Lung/virology , Plant Oils/pharmacology , Polyphenols/pharmacology , Terpenes/pharmacology , Virus Internalization , Vitamins/pharmacology
Nutrients ; 13(9)2021 Aug 25.
Article in English | MEDLINE | ID: covidwho-1394978


The beverage hydration index (BHI) facilitates a comparison of relative hydration properties of beverages using water as the standard. The additive effects of electrolytes, carbohydrate, and protein on rehydration were assessed using BHI. Nineteen healthy young adults completed four test sessions in randomized order: deionized water (W), electrolytes only (E), carbohydrate-electrolytes (C + E), and 2 g/L dipeptide (alanyl-glutamine)-electrolytes (AG + E). One liter of beverage was consumed, after which urine and body mass were obtained every 60 min through 240 min. Compared to W, BHI was higher (p = 0.007) for C + E (1.15 ± 0.17) after 120 min and for AG + E (p = 0.021) at 240 min (1.15 ± 0.20). BHI did not differ (p > 0.05) among E, C + E, or AG + E; however, E contributed the greatest absolute net effect (>12%) on BHI relative to W. Net fluid balance was lower for W (p = 0.048) compared to C + E and AG + E after 120 min. AG + E and E elicited higher (p < 0.001) overall urine osmolality vs. W. W also elicited greater reports of stomach bloating (p = 0.02) compared to AG + E and C + E. The addition of electrolytes alone (in the range of sports drinks) did not consistently improve BHI versus water; however, the combination with carbohydrate or dipeptides increased fluid retention, although this occurred earlier for the sports drink than the dipeptide beverage. Electrolyte content appears to make the largest contribution in hydration properties of beverages for young adults when consumed at rest.

Beverages/analysis , Dehydration/prevention & control , Dietary Carbohydrates/pharmacology , Dietary Proteins/pharmacology , Electrolytes/pharmacology , Water-Electrolyte Balance/physiology , Adult , Dietary Carbohydrates/urine , Dietary Proteins/urine , Double-Blind Method , Electrolytes/analysis , Electrolytes/urine , Female , Humans , Male , Time Factors , Water/administration & dosage , Young Adult