Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 610
Filter
1.
Nat Commun ; 12(1): 6242, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34716325

ABSTRACT

Despite recent advances in understanding skin scarring, mechanisms triggering hypertrophic scar formation are still poorly understood. In the present study, we investigate mature human hypertrophic scars and developing scars in mice at single cell resolution. Compared to normal skin, we find significant differences in gene expression in most cell types present in scar tissue. Fibroblasts show the most prominent alterations in gene expression, displaying a distinct fibrotic signature. By comparing genes upregulated in murine fibroblasts during scar development with genes highly expressed in mature human hypertrophic scars, we identify a group of serine proteases, tentatively involved in scar formation. Two of them, dipeptidyl-peptidase 4 (DPP4) and urokinase (PLAU), are further analyzed in functional assays, revealing a role in TGFß1-mediated myofibroblast differentiation and over-production of components of the extracellular matrix in vitro. Topical treatment with inhibitors of DPP4 and PLAU during scar formation in vivo shows anti-fibrotic activity and improvement of scar quality, most prominently after application of the PLAU inhibitor BC-11. In this study, we delineate the genetic landscape of hypertrophic scars and present insights into mechanisms involved in hypertrophic scar formation. Our data suggest the use of serine protease inhibitors for the treatment of skin fibrosis.


Subject(s)
Cicatrix/pathology , Dipeptidyl Peptidase 4/genetics , Membrane Proteins/genetics , Animals , Cell Differentiation/drug effects , Cicatrix/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Female , Gene Expression , Humans , Membrane Proteins/metabolism , Mice, Inbred BALB C , Myofibroblasts/drug effects , Myofibroblasts/physiology , Single-Cell Analysis , Sitagliptin Phosphate/pharmacology , Transforming Growth Factor beta1/pharmacology
3.
J Gen Virol ; 102(10)2021 10.
Article in English | MEDLINE | ID: mdl-34704923

ABSTRACT

The highly pathogenic Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a severe respiratory virus. Recent reports indicate additional central nervous system (CNS) involvement. In this study, human DPP4 transgenic mice were infected with MERS-CoV, and viral antigens were first detected in the midbrain-hindbrain 4 days post-infection, suggesting the virus may enter the brainstem via peripheral nerves. Neurons and astrocytes throughout the brain were infected, followed by damage of the blood brain barrier (BBB), as well as microglial activation and inflammatory cell infiltration, which may be caused by complement activation based on the observation of deposition of complement activation product C3 and high expression of C3a receptor (C3aR) and C5a receptor (C5aR1) in neurons and glial cells. It may be concluded that these effects were mediated by complement activation in the brain, because of their reduction resulted from the treatment with mouse C5aR1-specific mAb. Such mAb significantly reduced nucleoprotein expression, suppressed microglial activation and decreased activation of caspase-3 in neurons and p38 phosphorylation in the brain. Collectively, these results suggest that MERS-CoV infection of CNS triggers complement activation, leading to inflammation-mediated damage of brain tissue, and regulating of complement activation could be a promising intervention and adjunctive treatment for CNS injury by MERS-CoV and other coronaviruses.


Subject(s)
Brain/pathology , Complement System Proteins/immunology , Coronavirus Infections/pathology , Dipeptidyl Peptidase 4/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Animals , Blood-Brain Barrier/immunology , Blood-Brain Barrier/pathology , Brain/blood supply , Brain/immunology , Brain/virology , Complement Activation/drug effects , Complement Inactivating Agents/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/virology , Disease Models, Animal , Humans , Inflammation , Mice , Mice, Transgenic , Microglia/immunology , Microglia/pathology
4.
Nat Commun ; 12(1): 5498, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535662

ABSTRACT

Rapid identification of host genes essential for virus replication may expedite the generation of therapeutic interventions. Genetic screens are often performed in transformed cell lines that poorly represent viral target cells in vivo, leading to discoveries that may not be translated to the clinic. Intestinal organoids are increasingly used to model human disease and are amenable to genetic engineering. To discern which host factors are reliable anti-coronavirus therapeutic targets, we generate mutant clonal IOs for 19 host genes previously implicated in coronavirus biology. We verify ACE2 and DPP4 as entry receptors for SARS-CoV/SARS-CoV-2 and MERS-CoV respectively. SARS-CoV-2 replication in IOs does not require the endosomal Cathepsin B/L proteases, but specifically depends on the cell surface protease TMPRSS2. Other TMPRSS family members were not essential. The newly emerging coronavirus variant B.1.1.7, as well as SARS-CoV and MERS-CoV similarly depended on TMPRSS2. These findings underscore the relevance of non-transformed human models for coronavirus research, identify TMPRSS2 as an attractive pan-coronavirus therapeutic target, and demonstrate that an organoid knockout biobank is a valuable tool to investigate the biology of current and future emerging coronaviruses.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Biological Specimen Banks , CRISPR-Cas Systems , Coronavirus , Dipeptidyl Peptidase 4/genetics , Organoids/metabolism , Serine Endopeptidases/genetics , COVID-19 , Cell Line , Humans , Middle East Respiratory Syndrome Coronavirus , SARS-CoV-2 , Transcriptome , Virus Replication
5.
Exp Anim ; 70(4): 541-552, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34219073

ABSTRACT

Exposure to chronic psychosocial stress is a risk factor for various pulmonary diseases. In view of the essential role of dipeptidyl peptidase 4 (DPP4) in animal and human lung pathobiology, we investigated the role of DPP4 in stress-related lung injury in mice. Eight-week-old male mice were randomly divided into a non-stress group and a 2-week immobilization stress group. Non-stress control mice were left undisturbed. The mice subjected to immobilized stress were randomly assigned to the vehicle or the DPP4 inhibitor anagliptin for 2 weeks. Chronic stress reduced subcutaneous and inguinal adipose volumes and increased blood DPP4 levels. The stressed mice showed increased levels in the lungs of genes and/or proteins related to oxidative stress (p67phox, p47phox, p22phox and gp91phox), inflammation (monocyte chemoattractant protein-1, vascular cell adhesion molecule-1, and intracellular adhesion molecule-1), apoptosis (caspase-3, -8, -9), senescence (p16INK4A, p21, and p53) and proteolysis (matrix metalloproteinase-2 to -9, cathepsin S/K, and tissue inhibitor of matrix metalloproteinase-1 and -2), and reduced levels of eNOS, Sirt1, and Bcl-2 proteins; and these effects were reversed by genetic and pharmacological inhibitions of DPP4. We then exposed human umbilical vein endothelial cells in vitro to hydrogen peroxide; anagliptin treatment was also observed to mitigate oxidative and inflammatory molecules in this setting. Anagliptin can improve lung injury in stressed mice, possibly by mitigating vascular inflammation, oxidative stress production, and proteolysis. DPP4 may become a new therapeutic target for chronic psychological stress-related lung disease in humans and animals.


Subject(s)
Dipeptidyl Peptidase 4/genetics , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Inflammation/genetics , Lung Injury/prevention & control , Oxidative Stress , Animals , Dipeptidyl Peptidase 4/metabolism , Male , Mice , Mice, Inbred C57BL , Stress, Physiological , Stress, Psychological
6.
Sci Adv ; 7(25)2021 06.
Article in English | MEDLINE | ID: mdl-34134991

ABSTRACT

Infection by highly pathogenic coronaviruses results in substantial apoptosis. However, the physiological relevance of apoptosis in the pathogenesis of coronavirus infections is unknown. Here, with a combination of in vitro, ex vivo, and in vivo models, we demonstrated that protein kinase R-like endoplasmic reticulum kinase (PERK) signaling mediated the proapoptotic signals in Middle East respiratory syndrome coronavirus (MERS-CoV) infection, which converged in the intrinsic apoptosis pathway. Inhibiting PERK signaling or intrinsic apoptosis both alleviated MERS pathogenesis in vivo. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-CoV induced apoptosis through distinct mechanisms but inhibition of intrinsic apoptosis similarly limited SARS-CoV-2- and SARS-CoV-induced apoptosis in vitro and markedly ameliorated the lung damage of SARS-CoV-2-inoculated human angiotensin-converting enzyme 2 (hACE2) mice. Collectively, our study provides the first evidence that virus-induced apoptosis is an important disease determinant of highly pathogenic coronaviruses and demonstrates that this process can be targeted to attenuate disease severity.


Subject(s)
Antiviral Agents/pharmacology , Apoptosis/drug effects , COVID-19/drug therapy , Coronavirus Infections/drug therapy , eIF-2 Kinase/metabolism , Adenine/analogs & derivatives , Adenine/pharmacology , Angiotensin-Converting Enzyme 2/genetics , Animals , Apoptosis/physiology , COVID-19/etiology , COVID-19/pathology , Cell Line , Coronavirus Infections/etiology , Coronavirus Infections/pathology , Dipeptidyl Peptidase 4/genetics , Epithelial Cells/virology , Female , Humans , Indoles/pharmacology , Lung/virology , Male , Mice, Transgenic , eIF-2 Kinase/antagonists & inhibitors , eIF-2 Kinase/genetics
7.
IUBMB Life ; 73(8): 1005-1015, 2021 08.
Article in English | MEDLINE | ID: mdl-34118117

ABSTRACT

The kidney is one of the main targets attacked by viruses in patients with a coronavirus infection. Until now, SARS-CoV-2 has been identified as the seventh member of the coronavirus family capable of infecting humans. In the past two decades, humankind has experienced outbreaks triggered by two other extremely infective members of the coronavirus family; the MERS-CoV and the SARS-CoV. According to several investigations, SARS-CoV causes proteinuria and renal impairment or failure. The SARS-CoV was identified in the distal convoluted tubules of the kidney of infected patients. Also, renal dysfunction was observed in numerous cases of MERS-CoV infection. And recently, during the 2019-nCoV pandemic, it was found that the novel coronavirus not only induces acute respiratory distress syndrome (ARDS) but also can induce damages in various organs including the liver, heart, and kidney. The kidney tissue and its cells are targeted massively by the coronaviruses due to the abundant presence of ACE2 and Dpp4 receptors on kidney cells. These receptors are characterized as the main route of coronavirus entry to the victim cells. Renal failure due to massive viral invasion can lead to undesirable complications and enhanced mortality rate, thus more attention should be paid to the pathology of coronaviruses in the kidney. Here, we have provided the most recent knowledge on the coronaviruses (SARS, MERS, and COVID19) pathology and the mechanisms of their impact on the kidney tissue and functions.


Subject(s)
COVID-19/mortality , Coronavirus Infections/mortality , Middle East Respiratory Syndrome Coronavirus/pathogenicity , SARS Virus/pathogenicity , SARS-CoV-2/pathogenicity , Severe Acute Respiratory Syndrome/mortality , Viral Tropism/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Gene Expression Regulation , Humans , Kidney/metabolism , Kidney/pathology , Kidney/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/metabolism , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS Virus/genetics , SARS Virus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Survival Analysis
8.
Arch Virol ; 166(8): 2089-2108, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33934196

ABSTRACT

The SARS-CoV-2 pandemic has become one of the most serious health concerns globally. Although multiple vaccines have recently been approved for the prevention of coronavirus disease 2019 (COVID-19), an effective treatment is still lacking. Our knowledge of the pathogenicity of this virus is still incomplete. Studies have revealed that viral factors such as the viral load, duration of exposure to the virus, and viral mutations are important variables in COVID-19 outcome. Furthermore, host factors, including age, health condition, co-morbidities, and genetic background, might also be involved in clinical manifestations and infection outcome. This review focuses on the importance of variations in the host genetic background and pathogenesis of SARS-CoV-2. We will discuss the significance of polymorphisms in the ACE-2, TMPRSS2, vitamin D receptor, vitamin D binding protein, CD147, glucose-regulated protein 78 kDa, dipeptidyl peptidase-4 (DPP4), neuropilin-1, heme oxygenase, apolipoprotein L1, vitamin K epoxide reductase complex 1 (VKORC1), and immune system genes for the clinical outcome of COVID-19.


Subject(s)
COVID-19/genetics , ABO Blood-Group System/genetics , Angiotensin-Converting Enzyme 2/genetics , Apolipoprotein L1/genetics , Basigin/genetics , COVID-19/epidemiology , COVID-19/therapy , Dipeptidyl Peptidase 4/genetics , Heat-Shock Proteins/genetics , Heme Oxygenase-1/genetics , Humans , Immunity/genetics , Neuropilin-1/genetics , Patient Outcome Assessment , Polymorphism, Genetic , Receptors, Calcitriol/genetics , SARS-CoV-2 , Serine Endopeptidases/genetics , Vitamin D-Binding Protein/genetics , Vitamin K Epoxide Reductases/genetics
9.
Curr Med Sci ; 41(2): 297-305, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33877545

ABSTRACT

Since the outbreak of the novel corona virus disease 2019 (COVID-19) at the end of 2019, specific antiviral drugs have been lacking. A Chinese patent medicine Toujiequwen granules has been promoted in the treatment of COVID-19. The present study was designed to reveal the molecular mechanism of Toujiequwen granules against COVID-19. A network pharmacological method was applied to screen the main active ingredients of Toujiequwen granules. Network analysis of 149 active ingredients and 330 drug targets showed the most active ingredient interacting with many drug targets is quercetin. Drug targets most affected by the active ingredients were PTGS2, PTGS1, and DPP4. Drug target disease enrichment analysis showed drug targets were significantly enriched in cardiovascular diseases and digestive tract diseases. An "active ingredient-target-disease" network showed that 57 active ingredients from Toujiequwen granules interacted with 15 key targets of COVID-19. There were 53 ingredients that could act on DPP4, suggesting that DPP4 may become a potential new key target for the treatment of COVID-19. GO analysis results showed that key targets were mainly enriched in the cellular response to lipopolysaccharide, cytokine activity and other functions. KEGG analysis showed they were mainly concentrated in viral protein interaction with cytokine and cytokine receptors and endocrine resistance pathway. The evidence suggests that Toujiequwen granules might play an effective role by improving the symptoms of underlying diseases in patients with COVID-19 and multi-target interventions against multiple signaling pathways related to the pathogenesis of COVID-19.


Subject(s)
COVID-19/drug therapy , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional , SARS-CoV-2/genetics , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/genetics , COVID-19/virology , Cyclooxygenase 1/genetics , Cyclooxygenase 2/genetics , Dipeptidyl Peptidase 4/genetics , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/classification , Gene Expression Regulation, Viral/drug effects , Humans , Quercetin/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Signal Transduction/drug effects
10.
Front Immunol ; 12: 597399, 2021.
Article in English | MEDLINE | ID: mdl-33796097

ABSTRACT

There exists increasing evidence that people with preceding medical conditions, such as diabetes and cancer, have a higher risk of infection with SARS-CoV-2 and are more vulnerable to severe disease. To get insights into the possible role of the immune system upon COVID-19 infection, 2811 genes of the gene ontology term "immune system process GO: 0002376" were selected for coexpression analysis of the human targets of SARS-CoV-2 (HT-SARS-CoV-2) ACE2, TMPRSS2, and FURIN in tissue samples from patients with cancer and diabetes mellitus. The network between HT-SARS-CoV-2 and immune system process genes was analyzed based on functional protein associations using STRING. In addition, STITCH was employed to determine druggable targets. DPP4 was the only immune system process gene, which was coexpressed with the three HT-SARS-CoV-2 genes, while eight other immune genes were at least coexpressed with two HT-SARS-CoV-2 genes. STRING analysis between immune and HT-SARS-CoV-2 genes plotted 19 associations of which there were eight common networking genes in mixed healthy (323) and pan-cancer (11003) tissues in addition to normal (87), cancer (90), and diabetic (128) pancreatic tissues. Using this approach, three commonly applicable druggable connections between HT-SARS-CoV-2 and immune system process genes were identified. These include positive associations of ACE2-DPP4 and TMPRSS2-SRC as well as a negative association of FURIN with ADAM17. Furthermore, 16 drugs were extracted from STITCH (score <0.8) with 32 target genes. Thus, an immunological network associated with HT-SARS-CoV-2 using bioinformatics tools was identified leading to novel therapeutic opportunities for COVID-19.


Subject(s)
Diabetes Mellitus/metabolism , Neoplasms/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/genetics , COVID-19/immunology , COVID-19/metabolism , Databases, Genetic , Diabetes Mellitus/genetics , Diabetes Mellitus/immunology , Diabetes Mellitus/virology , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Furin/genetics , Furin/metabolism , Gene Expression Regulation/immunology , Gene Ontology , Genome-Wide Association Study , Genomics , Humans , Lymphocytes/immunology , Lymphocytes/metabolism , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/virology , Pancreas/immunology , Pancreas/metabolism , Pancreas/virology , Protein Interaction Maps/genetics , Protein Interaction Maps/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
11.
Medicine (Baltimore) ; 100(13): e25209, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33787603

ABSTRACT

ABSTRACT: Cardiovascular disease (CAD) is a devastating illness, but to date there are limited means of predicting a person's coronary stenosis severity and their prognosis. The study was performed to investigate the relationship between dipeptidyl peptidase 4(DPP4) gene polymorphisms and serum lipid profiles, as well as the severity of coronary artery stenosis in patients with CAD and type 2 diabetes (T2DM) for the first time.Herein, 201 patients with CAD and T2DM were enrolled in the Department of Cardiology, Shandong Provincial Qianfoshan Hospital. DPP4 rs3788979 and rs7608798 single nucleotide polymorphisms (SNPs) were genotyped. The general information of all patients was collected, and the associations between DPP4 SNPs and lipid profiles were detected. At the same time, association between SNP polymorphisms and the degree of coronary artery stenosis were analyzed.There was a significant difference in apolipoprotein B (ApoB) levels (P = .011) for the rs3788979 polymorphism, while no difference was identified in other blood lipids or with other mutations. SNP mutation of A to G in rs3788979 was associated with a reduced percentage of severe coronary artery stenosis in female patients (P = .023) as well as those with nosmoking (P = .030), nodrinking (P = 0.007), and nocardiovascular family history (P = 0.015).G allele of rs3788979 is associated with a reduced ApoB level. Besides, we suggest that G allele in rs3788979 may have a cardioprotective effect and prove to be a useful and specific measure when predicting a patient's coronary stenosis severity if diagnosed with CAD and T2DM.


Subject(s)
Coronary Artery Disease/genetics , Coronary Stenosis/genetics , Diabetes Mellitus, Type 2/genetics , Dipeptidyl Peptidase 4/genetics , Lipids/blood , Alleles , Apolipoproteins B/blood , Coronary Artery Disease/blood , Coronary Stenosis/blood , Diabetes Mellitus, Type 2/blood , Female , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Prognosis , Severity of Illness Index
12.
Life Sci ; 276: 119410, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33774023

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes de COVID-19 disease use as a principal receptor the angiotensin-converting enzyme-2 (ACE2). It has been suggested that dipeptidyl peptidase-4 (DPP4) can be another possible receptor for this virus. The present study aimed to establish if the DPP4 levels and DPP4 polymorphisms are associated with COVID-19 disease and its severity. METHODS: The study included 107 COVID-19 patients and 263 matched-healthy controls. Fifty patients required invasive mechanical ventilation. The DPP4 was quantified in serum using the Bioplex system. Based on the previous results and the functional prediction analysis, we select for the study 5 DPP4 polymorphisms (rs12617336, rs12617656, rs1558957, rs3788979, and rs17574) and these were determined using the 5´exonuclease TaqMan assays. RESULTS: Low levels of DPP4 were observed in COVID-19 patients (46.5 [33.1-57.7] ng/mL) when compared to healthy controls (125.3 [100.3-157.3] ng/mL) (P < 0.0001). Also, patients that required mechanical ventilation showed lower DPP4 levels (42.8 [29.8-56.9] ng/mL) than those that did not need this procedure (49.2 [39.9-65.6] ng/mL) (P = 0.012). DPP4 levels correlated negatively with age, fibrinogen, and platelet levels, and positively with albumin, alanine aminotransferase, and percentage of neutrophils. The DPP4 rs3788979 polymorphism was associated with a high risk of COVID-19 disease and, the TT genotype carriers had the lowest DPP4 levels. CONCLUSIONS: In summary, in the present study, an association of low levels of DPP4 with COVID-19 disease and severity was found. The association of the DPP4 rs3788979 polymorphism with COVID-19 is also reported.


Subject(s)
COVID-19/genetics , Dipeptidyl Peptidase 4/genetics , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/enzymology , COVID-19/epidemiology , COVID-19/pathology , Dipeptidyl Peptidase 4/metabolism , Female , Gene Frequency , Humans , Male , Mexico/epidemiology , Middle Aged , Polymorphism, Single Nucleotide , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Severity of Illness Index
13.
Oncol Rep ; 45(4)2021 04.
Article in English | MEDLINE | ID: mdl-33649840

ABSTRACT

Radioactive iodine (RAI, 131I) therapy is the main treatment for thyroid carcinoma (TC). Long noncoding RNA (lncRNA)/microRNA (miR) competing endogenous RNA (ceRNA) networks have aroused great interest for their roles in gene expression. The present study aimed to investigate the effect of lncRNA SNHG7 on the growth and 131I resistance of TC. Differentially expressed lncRNAs in TC and paracancerous tissues were analyzed. The binding of miR­9­5p with small nucleolar RNA host gene 7 (SNHG7) and dipeptidyl­peptidase 4 (DPP4) was identified. Gain­ and loss­of­function analyses of SNHG7 and miR­9­5p were performed to determine their effects on the growth and 131I resistance of TC cells. The activity of the PI3K/Akt pathway was evaluated. Consequently, upregulated SNHG7 was revealed in TC tissues and correlated with 131I resistance. Silencing of SNHG7 or overexpressing miR­9­5p inhibited the growth and 131I resistance of TC cells. SNHG7 acted as a ceRNA of miR­9­5p to enhance DPP4 expression. Overexpressed SNHG7 increased DPP4 expression and activated the PI3K/Akt signaling pathway by sponging miR­9­5p. The in vitro results were reproduced in vivo. In summary, the present study provided evidence that the SNHG7/miR­9­5p/DPP4 ceRNA network could promote the growth and 131I resistance of TC cells via PI3K/Akt activation. The present study may offer novel options for TC treatment.


Subject(s)
Dipeptidyl Peptidase 4/genetics , Iodine Radioisotopes/pharmacology , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/radiotherapy , Animals , Cell Growth Processes/radiation effects , Dipeptidyl Peptidase 4/metabolism , Enzyme Activation , Female , Gene Regulatory Networks , Heterografts , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/metabolism , Radiation Tolerance , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology
14.
Sci Rep ; 11(1): 3359, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33564056

ABSTRACT

Coronaviruses silently circulate in human and animal populations, causing mild to severe diseases. Therefore, livestock are important components of a "One Health" perspective aimed to control these viral infections. However, at present there is no example that considers pig genetic resources in this context. In this study, we investigated the variability of four genes (ACE2, ANPEP and DPP4 encoding for host receptors of the viral spike proteins and TMPRSS2 encoding for a host proteinase) in 23 European (19 autochthonous and three commercial breeds and one wild boar population) and two Asian Sus scrofa populations. A total of 2229 variants were identified in the four candidate genes: 26% of them were not previously described; 29 variants affected the protein sequence and might potentially interact with the infection mechanisms. The results coming from this work are a first step towards a "One Health" perspective that should consider conservation programs of pig genetic resources with twofold objectives: (i) genetic resources could be reservoirs of host gene variability useful to design selection programs to increase resistance to coronaviruses; (ii) the described variability in genes involved in coronavirus infections across many different pig populations might be part of a risk assessment including pig genetic resources.


Subject(s)
Coronavirus Infections/genetics , Genetic Variation , Sus scrofa/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , Breeding , CD13 Antigens/genetics , Dipeptidyl Peptidase 4/genetics , Gene Frequency , Genetics, Population , High-Throughput Nucleotide Sequencing , Humans , INDEL Mutation , One Health , Polymorphism, Single Nucleotide , Receptors, Virus/genetics , Serine Endopeptidases/genetics , Swine , Whole Genome Sequencing
15.
Commun Biol ; 4(1): 144, 2021 01 29.
Article in English | MEDLINE | ID: mdl-33514826

ABSTRACT

Peritoneal dialysis (PD) possesses multiple advantages for end stage renal disease. However, long-term PD triggers peritoneal fibrosis (PF). From the nationwide analysis of diabetic PD patients (n = 19,828), we identified the incidence of PD failure was significantly lower in diabetic patients treated with dipeptidyl peptidase 4 (DPP4) inhibitors. Experimental study further showed high concentration of glucose remarkably enhanced DPP4 to promote epithelial-mesenchymal transition (EMT) in the mesothelial cells. In chlorhexidine gluconate (CG)-induced PF model of rats, DPP4 expression was enriched at thickening peritoneum. Moreover, as to CG-induced PF model, DPP4 deficiency (F344/DuCrlCrlj strain), sitagliptin and exendin-4 treatments significantly inhibited DPP4 to reverse the EMT process, angiogenesis, oxidative stress, and inflammation, resulting in the protection from PF, preservation of peritoneum and the corresponding functional integrity. Furthermore, DPP4 activity was significantly correlated with peritoneal dysfunction. Taken together, DPP4 caused peritoneal dysfunction/PF, whereas inhibition of DPP4 protected the PD patients against PD failure.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Kidney Failure, Chronic/therapy , Peritoneal Dialysis , Peritoneal Fibrosis/prevention & control , Peritoneum/drug effects , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Cell Line , Dipeptidyl Peptidase 4/genetics , Disease Models, Animal , Epithelial-Mesenchymal Transition/drug effects , Female , Humans , Kidney Failure, Chronic/diagnosis , Kidney Failure, Chronic/enzymology , Male , Middle Aged , Mutation, Missense , Peritoneal Dialysis/adverse effects , Peritoneal Fibrosis/enzymology , Peritoneal Fibrosis/pathology , Peritoneum/enzymology , Peritoneum/pathology , Rats, Inbred F344 , Rats, Transgenic , Retrospective Studies , Taiwan , Treatment Outcome , Young Adult
16.
Nat Commun ; 12(1): 216, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431849

ABSTRACT

While a number of human coronaviruses are believed to be originated from ancestral viruses in bats, it remains unclear if bat coronaviruses are ready to cause direct bat-to-human transmission. Here, we report the isolation of a MERS-related coronavirus, Tylonycteris-bat-CoV-HKU4, from lesser bamboo bats. Tylonycteris-bat-CoV-HKU4 replicates efficiently in human colorectal adenocarcinoma and hepatocarcinoma cells with cytopathic effects, and can utilize human-dipeptidyl-peptidase-4 and dromedary camel-dipeptidyl-peptidase-4 as the receptors for cell entry. Flow cytometry, co-immunoprecipitation and surface plasmon resonance assays show that Tylonycteris-bat-CoV-HKU4-receptor-binding-domain can bind human-dipeptidyl-peptidase-4, dromedary camel-dipeptidyl-peptidase-4, and Tylonycteris pachypus-dipeptidyl-peptidase-4. Tylonycteris-bat-CoV-HKU4 can infect human-dipeptidyl-peptidase-4-transgenic mice by intranasal inoculation with self-limiting disease. Positive virus and inflammatory changes were detected in lungs and brains of infected mice, associated with suppression of antiviral cytokines and activation of proinflammatory cytokines and chemokines. The results suggest that MERS-related bat coronaviruses may overcome species barrier by utilizing dipeptidyl-peptidase-4 and potentially emerge in humans by direct bat-to-human transmission.


Subject(s)
Chiroptera/virology , Coronavirus Infections/virology , Dipeptidyl Peptidase 4/metabolism , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Animals , Brain/pathology , Caco-2 Cells , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/transmission , Cytokines/metabolism , Dipeptidyl Peptidase 4/genetics , HEK293 Cells , Host Specificity , Humans , Lung/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/genetics
17.
Antiviral Res ; 185: 104996, 2021 01.
Article in English | MEDLINE | ID: mdl-33309540

ABSTRACT

Middle East Respiratory Syndrome (MERS) is a respiratory disease caused by a coronavirus (MERS-CoV). Since its emergence in 2012, nosocomial amplifications have led to its high epidemic potential and mortality rate of 34.5%. To date, there is an unmet need for vaccines and specific therapeutics for this disease. Available treatments are either supportive medications in use for other diseases or those lacking specificity requiring higher doses. The viral infection mode is initiated by the attachment of the viral spike glycoprotein to the human Dipeptidyl Peptidase IV (DPP4). Our attempts to screen antivirals against MERS led us to identify montelukast sodium hydrate (MSH), an FDA-approved anti-asthma drug, as an agent attenuating MERS-CoV infection. We showed that MSH directly binds to MERS-CoV-Receptor-Binding Domain (RBD) and inhibits its molecular interaction with DPP4 in a dose-dependent manner. Our cell-based inhibition assays using MERS pseudovirions demonstrated that viral infection was significantly inhibited by MSH and was further validated using infectious MERS-CoV culture. Thus, we propose MSH as a potential candidate for therapeutic developments against MERS-CoV infections.


Subject(s)
Acetates/pharmacology , Antiviral Agents/pharmacology , Cyclopropanes/pharmacology , Middle East Respiratory Syndrome Coronavirus/drug effects , Quinolines/pharmacology , Sulfides/pharmacology , Animals , Anti-Asthmatic Agents/pharmacology , Carrier Proteins/drug effects , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Cytochrome P-450 CYP1A2 Inducers/pharmacology , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Drug Repositioning , HEK293 Cells , Humans , Leukotriene Antagonists/pharmacology , Receptors, Virus/genetics , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Virus Internalization/drug effects
18.
Curr Protein Pept Sci ; 22(1): 4-18, 2021.
Article in English | MEDLINE | ID: mdl-33292149

ABSTRACT

Diabetic neuropathy is referred to as a subsequential and debilitating complication belonging to type 1 and type 2 diabetes mellitus. It is a heterogeneous group of disorders with a particularly complex pathophysiology and also includes multiple forms, ranging from normal discomfort to death. The evaluation of diabetic neuropathy is associated with hyperglycemic responses, resulting in an alteration in various metabolic pathways, including protein kinase C pathway, polyol pathway and hexosamine pathway in Schwann and glial cells of neurons. The essential source of neuronal destruction is analogous to these respective metabolic pathways, thus identified as potential therapeutic targets. These pathways regulating therapeutic medications may be used for diabetic neuropathy, however, only target specific drugs could have partial therapeutic activity. Various antidiabetic medications have been approved and marketed, which possess the therapeutic ability to control hyperglycemia and ameliorate the prevalence of diabetic neuropathy. Among all antidiabetic medications, incretin therapy, including Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors, are the most favorable medications for the management of diabetes mellitus and associated peripheral neuropathic complications. Besides enhancing glucose-evoked insulin release from pancreatic ß-cells, these therapeutic agents also play a vital role to facilitate neurite outgrowth and nerve conduction velocity in dorsal root ganglion. Furthermore, incretin therapy also activates cAMP and ERK signalling pathways, resulting in nerve regeneration and repairing. These effects are evidently supported by a series of preclinical data and investigations associated with these medications. However, the literature lacks adequate clinical trial outcomes related to these novel antidiabetic medications. The manuscript emphasizes the pathogenesis, current pharmacological approaches and vivid description of preclinical and clinical data for the effective management of diabetic neuropathy.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Diabetic Neuropathies/drug therapy , Dipeptidyl Peptidase 4/genetics , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Glucagon-Like Peptide-1 Receptor/genetics , Hypoglycemic Agents/therapeutic use , Neuroprotective Agents/therapeutic use , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetic Neuropathies/genetics , Diabetic Neuropathies/metabolism , Diabetic Neuropathies/pathology , Dipeptidyl Peptidase 4/metabolism , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Gene Expression Regulation , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , MAP Kinase Signaling System/drug effects , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Neuroglia/drug effects , Neuroglia/metabolism , Neuroglia/pathology , Neuronal Outgrowth/drug effects , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Schwann Cells/drug effects , Schwann Cells/metabolism , Schwann Cells/pathology
19.
Molecules ; 25(22)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33218025

ABSTRACT

Proteases catalyse irreversible posttranslational modifications that often alter a biological function of the substrate. The protease dipeptidyl peptidase 4 (DPP4) is a pharmacological target in type 2 diabetes therapy primarily because it inactivates glucagon-like protein-1. DPP4 also has roles in steatosis, insulin resistance, cancers and inflammatory and fibrotic diseases. In addition, DPP4 binds to the spike protein of the MERS virus, causing it to be the human cell surface receptor for that virus. DPP4 has been identified as a potential binding target of SARS-CoV-2 spike protein, so this question requires experimental investigation. Understanding protein structure and function requires reliable protocols for production and purification. We developed such strategies for baculovirus generated soluble recombinant human DPP4 (residues 29-766) produced in insect cells. Purification used differential ammonium sulphate precipitation, hydrophobic interaction chromatography, dye affinity chromatography in series with immobilised metal affinity chromatography, and ion-exchange chromatography. The binding affinities of DPP4 to the SARS-CoV-2 full-length spike protein and its receptor-binding domain (RBD) were measured using surface plasmon resonance and ELISA. This optimised DPP4 purification procedure yielded 1 to 1.8 mg of pure fully active soluble DPP4 protein per litre of insect cell culture with specific activity >30 U/mg, indicative of high purity. No specific binding between DPP4 and CoV-2 spike protein was detected by surface plasmon resonance or ELISA. In summary, a procedure for high purity high yield soluble human DPP4 was achieved and used to show that, unlike MERS, SARS-CoV-2 does not bind human DPP4.


Subject(s)
Angiotensin-Converting Enzyme 2/isolation & purification , Dipeptidyl Peptidase 4/isolation & purification , Spike Glycoprotein, Coronavirus/isolation & purification , Angiotensin-Converting Enzyme 2/biosynthesis , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Cloning, Molecular , Dipeptidyl Peptidase 4/biosynthesis , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/genetics , Enzyme-Linked Immunosorbent Assay , Gene Expression , Humans , Kinetics , Models, Molecular , Plasmids/chemistry , Plasmids/metabolism , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Sf9 Cells , Spike Glycoprotein, Coronavirus/biosynthesis , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spodoptera , Surface Plasmon Resonance
20.
Biosci Rep ; 40(12)2020 12 23.
Article in English | MEDLINE | ID: mdl-33205807

ABSTRACT

OBJECTIVE: In some individuals, coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection leads to a variety of serious inflammatory symptoms, including blood clotting and acute respiratory distress. Death due to COVID-19 shows a steep rise in relation to age. Comorbidities such as type 2 diabetes mellitus (T2DM), hypertension, and cardiovascular disease also increase susceptibility. It has been reported that T-cell regulatory dipeptidyl peptidase 4 (DPP4; cluster of differentiation 26 (CD26)) binds to the external spike (S) glycoprotein of SARS-CoV-2 as a receptor, for the viral entry into the host cell. CD26 is expressed on many cells, including T and natural killer (NK) cells of the immune system, as a membrane-anchored form. A soluble form (sCD26) is also found in the blood plasma and cerebrospinal fluid (CSF). Approach and results: To investigate a possible relationship between sCD26 levels, age and pathology, serum samples were collected from control, T2DM and age-related dementia (ARD) subjects. A significant reduction in serum sCD26 levels was seen in relation to age. ARD and T2DM were also associated with lower levels of sCD26. The analysis of blood smears revealed different cellular morphologies: in controls, CD26 was expressed around the neutrophil membrane, whereas in T2DM, excessive sCD26 was found around the mononucleated cells (MNCs). ARD subjects had abnormal fragmented platelets and haemolysis due to low levels of sCD26. CONCLUSIONS: These findings may help to explain the heterogeneity of SARS-CoV-2 infection. High serum sCD26 levels could protect from viral infection by competively inhibiting the virus binding to cellular CD26, whereas low sCD26 levels could increase the risk of infection. If so measuring serum sCD26 level may help to identify individuals at high risk for the COVID-19 infection.


Subject(s)
Biomarkers/blood , COVID-19/etiology , Dipeptidyl Peptidase 4/blood , SARS-CoV-2/pathogenicity , Adult , Age Factors , Aged , Aged, 80 and over , Animals , COVID-19/epidemiology , Comorbidity , Dementia/blood , Dementia/epidemiology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Dipeptidyl Peptidase 4/genetics , Duodenum/metabolism , Gene Expression , Host-Pathogen Interactions , Humans , Mice, Inbred C57BL , Middle Aged , SARS-CoV-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...