Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Cells ; 11(7)2022 Apr 05.
Article in English | MEDLINE | ID: covidwho-1776139

ABSTRACT

The global health emergency for SARS-CoV-2 (COVID-19) created an urgent need to develop new treatments and therapeutic drugs. In this study, we tested, for the first time on human cells, a new tetravalent neutralizing antibody (15033-7) targeting Spike protein and a synthetic peptide homologous to dipeptidyl peptidase-4 (DPP4) receptor on host cells. Both could represent powerful immunotherapeutic candidates for COVID-19 treatment. The infection begins in the proximal airways, namely the alveolar type 2 (AT2) cells of the distal lung, which express both ACE2 and DPP4 receptors. Thus, to evaluate the efficacy of both approaches, we developed three-dimensional (3D) complex lung organoid structures (hLORGs) derived from human-induced pluripotent stem cells (iPSCs) and resembling the in vivo organ. Afterward, hLORGs were infected by different SARS-CoV-2 S pseudovirus variants and treated by the Ab15033-7 or DPP4 peptide. Using both approaches, we observed a significant reduction of viral entry and a modulation of the expression of genes implicated in innate immunity and inflammatory response. These data demonstrate the efficacy of such approaches in strongly reducing the infection efficiency in vitro and, importantly, provide proof-of-principle evidence that hiPSC-derived hLORGs represent an ideal in vitro system for testing both therapeutic and preventive modalities against COVID-19.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , COVID-19/drug therapy , Dipeptidyl Peptidase 4/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Lung/metabolism , Organoids/metabolism , SARS-CoV-2
2.
Front Immunol ; 13: 835686, 2022.
Article in English | MEDLINE | ID: covidwho-1742218

ABSTRACT

Angiotensin converting enzyme-2 (ACE2) and associated proteins play a pivotal role in various physiological and pathological events, such as immune activation, inflammation, gut barrier maintenance, intestinal stem cell proliferation, and apoptosis. Although many of these clinical events are quite significant in SIV/HIV infection, expression profiling of these proteins has not been well reported. Considering the different pathological consequences in the gut after HIV infection, we hypothesized that the expression of ACE2 and associated proteins of the Renin-angiotensin system (RAS) could be compromised after SIV/HIV infection. We quantified the gene expression of ACE2 as well as AGTR1/2, ADAM17, and TMPRSS2, and compared between SIV infected and uninfected rhesus macaques (Macaca mulatta; hereafter abbreviated RMs). The gene expression analysis revealed significant downregulation of ACE2 and upregulation of AGTR2 and inflammatory cytokine IL-6 in the gut of infected RMs. Protein expression profiling also revealed significant upregulation of AGTR2 after infection. The expression of ACE2 in protein level was also decreased, but not significantly, after infection. To understand the entirety of the process in newly regenerated epithelial cells, a global transcriptomic study of enteroids raised from intestinal stem cells was performed. Interestingly, most of the genes associated with the RAS, such as DPP4, MME, ANPEP, ACE2, ENPEP, were found to be downregulated in SIV infection. HNFA1 was found to be a key regulator of ACE2 and related protein expression. Jejunum CD4+ T cell depletion and increased IL-6 mRNA, MCP-1 and AGTR2 expression may signal inflammation, monocyte/macrophage accumulation and epithelial apoptosis in accelerating SIV pathogenesis. Overall, the findings in the study suggested a possible impact of SIV/HIV infection on expression of ACE2 and RAS-associated proteins resulting in the loss of gut homeostasis. In the context of the current COVID-19 pandemic, the outcome of SARS-CoV-2 and HIV co-infection remains uncertain and needs further investigation as the significance profile of ACE2, a viral entry receptor for SARS-CoV-2, and its expression in mRNA and protein varied in the current study. There is a concern of aggravated SARS-CoV-2 outcomes due to possible serious pathological events in the gut resulting from compromised expression of RAS- associated proteins in SIV/HIV infection.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , CD4-Positive T-Lymphocytes/immunology , Jejunum/metabolism , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Immunodeficiency Virus/physiology , Animals , Cells, Cultured , Cytokines/metabolism , Dipeptidyl Peptidase 4/metabolism , Gene Expression Regulation , Humans , Inflammation Mediators , Jejunum/pathology , Macaca mulatta , Receptor, Angiotensin, Type 2/metabolism
3.
Biomark Med ; 16(5): 317-330, 2022 04.
Article in English | MEDLINE | ID: covidwho-1703144

ABSTRACT

Aim: To investigate the serum circulating DPP4 activity in patients with COVID-19 disease. Materials & methods: Serum samples from 102 hospitalized COVID-19 patients and 43 post-COVID-19 plasma donors and 39 SARS-CoV-2 naive controls and their medical data were used. Circulating DPP4 activities according to different COVID-19 disease peak severity (WHO) groups at sampling and at peak were assessed. Results: A significant decrease (p < 0.0001) in serum DPP4 activity was found in study groups of higher disease severity. When the circulating DPP4 activity was assessed as a prognostic marker, the logistic regression (p = 0.0023) indicated that the enzyme activity is a predictor of mortality (median 9.5 days before death) with receiver operating characteristic area under the curves of 73.33% (p[area = 0.5] < 0.0001) as single predictor and 83.45% (p[area = 0.5] < 0.0001) in combination with age among hospitalized patients with COVID-19. Conclusion: Decreased circulating DPP4 activity is associated with severe COVID-19 disease and is a strong prognostic biomarker of mortality.


Subject(s)
Biomarkers/blood , COVID-19/blood , Dipeptidyl Peptidase 4/blood , Inpatients/statistics & numerical data , Adult , Aged , Biomarkers/metabolism , C-Reactive Protein/metabolism , COVID-19/diagnosis , COVID-19/therapy , Dipeptidyl Peptidase 4/metabolism , Female , Humans , Interleukin-6/blood , Interleukin-6/metabolism , Logistic Models , Male , Middle Aged , Multivariate Analysis , Prognosis , ROC Curve , Retrospective Studies , SARS-CoV-2/physiology , Severity of Illness Index
4.
Hum Immunol ; 83(4): 346-355, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1702841

ABSTRACT

COVID-19 originated in Wuhan city, China, in 2019 erupted a global pandemic that had put down nearly 3 million lives and hampered the socio-economic conditions of all nations. Despite the available treatments, this disease is not being controlled totally and spreading swiftly. The deadly virus commences infection by hACE2 receptor and its co-receptors (DPP4) engagement with the viral spike protein in the lung alveolar epithelial cells, indicating a primary therapeutic target. The current research attempts to design an in-silico Bispecific antibody (BsAb) against viral spike glycoprotein and DPP4 receptors. Regdanvimab and Begelomab were identified to block the D614G mutated spike glycoprotein of SARS-CoV-2 and host DPP4 receptor, respectively. The designed BsAb was modified by using KIH (Knobs into Holes) and CrossMAb techniques to prevent heavy chain and light chain mispairings. Following the modifications, the site-specific molecular docking studies were performed, revealing a relatively higher binding affinity of BsAb with spike glycoprotein and DPP4 co-receptor than control BsAb. Also, for blocking the primary entry receptor, hACE2, an anti-viral peptide was linked to the Fc region of BsAb that blocks the hACE2 receptor by linker cleavage inside the infected host. Thus, the designed BsAb and anti-viral peptide therapy could be a promising triumvirate way to obstruct the viral entry by blocking the receptor engagement.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Dipeptidyl Peptidase 4/metabolism , Humans , Immunoglobulin G , Molecular Docking Simulation , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
5.
Sci Rep ; 12(1): 188, 2022 01 07.
Article in English | MEDLINE | ID: covidwho-1612207

ABSTRACT

Patients with diabetes are more likely to be infected with Coronavirus disease 2019 (COVID-19), and the risk of death is significantly higher than ordinary patients. Dipeptidyl peptidase-4 (DPP4) is one of the functional receptor of human coronavirus. Exploring the relationship between diabetes mellitus targets and DPP4 is particularly important for the management of patients with diabetes and COVID-19. We intend to study the protein interaction through the protein interaction network in order to find a new clue for the management of patients with diabetes with COVID-19. Diabetes mellitus targets were obtained from GeneCards database. Targets with a relevance score exceeding 20 were included, and DPP4 protein was added manually. The initial protein interaction network was obtained through String. The targets directly related to DPP4 were selected as the final analysis targets. Importing them into String again to obtain the protein interaction network. Module identification, gene ontology (GO) analysis and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis were carried out respectively. The impact of DPP4 on the whole network was analyzed by scoring the module where it located. 43 DPP4-related proteins were finally selected from the diabetes mellitus targets and three functional modules were found by the cluster analysis. Module 1 was involved in insulin secretion and glucagon signaling pathway, module 2 and module 3 were involved in signaling receptor binding. The scoring results showed that LEP and apoB in module 1 were the highest, and the scores of INS, IL6 and ALB of cross module associated proteins of module 1 were the highest. DPP4 is widely associated with key proteins in diabetes mellitus. COVID-19 may affect DPP4 in patients with diabetes mellitus, leading to high mortality of diabetes mellitus combined with COVID-19. DPP4 inhibitors and IL-6 antagonists can be considered to reduce the effect of COVID-19 infection on patients with diabetes.


Subject(s)
COVID-19/metabolism , Diabetes Mellitus, Type 2/metabolism , Dipeptidyl Peptidase 4/metabolism , Protein Interaction Maps , SARS-CoV-2/physiology , COVID-19/complications , COVID-19/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Drug Discovery , Humans , Protein Interaction Maps/drug effects
6.
Clin Immunol ; 230: 108824, 2021 09.
Article in English | MEDLINE | ID: covidwho-1482503

ABSTRACT

The current intersection of the COVID-19 and HIV-1 pandemics, has raised concerns about the risk for poor COVID-19 outcomes particularly in regions like sub-Saharan Africa, disproportionally affected by HIV. DPP4/CD26 has been suggested to be a potential therapeutic target and a biomarker for risk in COVID-19 patients with high risk co-morbidities. We therefore evaluated soluble DPP4 (sDPP4) levels and activity in plasma of 131 HIV-infected and 20 HIV-uninfected South African individuals. Flow cytometry was performed to compare cell surface expression of DPP4/CD26 and activation markers on peripheral blood mononuclear cells of extreme clinical phenotypes. Progressors had lower specific DPP4 activity and lower frequency of CD3+ T-cells expressing CD26 than HIV-1 controllers, but more activated CD3+CD26+ T-cells. The frequency of CD26-expressing T-cells negatively correlated with HLA-DR+ and CD38+ T-cells. Divergent DPP4/CD26 expression between HIV-1 controllers and progressors may have implications for risk and treatment of COVID-19 in people living with HIV.


Subject(s)
COVID-19/complications , Dipeptidyl Peptidase 4/metabolism , HIV Infections/complications , HIV-1 , SARS-CoV-2 , Adult , CD4 Lymphocyte Count , Case-Control Studies , Comorbidity , Cross-Sectional Studies , Disease Susceptibility , Female , Humans , Male , Risk Factors , South Africa , Viral Load , Young Adult
7.
Pharmacol Res Perspect ; 9(1): e00691, 2021 02.
Article in English | MEDLINE | ID: covidwho-1384293

ABSTRACT

Coronaviruses represent global health threat. In this century, they have already caused two epidemics and one serious pandemic. Although, at present, there are no approved drugs and therapies for the treatment and prevention of human coronaviruses, several agents, FDA-approved, and preclinical, have shown in vitro and/or in vivo antiviral activity. An in-depth analysis of the current situation leads to the identification of several potential drugs that could have an impact on the fight against coronaviruses infections. In this review, we discuss the virology of human coronaviruses highlighting the main biological targets and summarize the current state-of-the-art of possible therapeutic options to inhibit coronaviruses infections. We mostly focus on FDA-approved and preclinical drugs targeting viral conserved elements.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Coronavirus Infections/metabolism , Coronavirus/metabolism , Dipeptidyl Peptidase 4/metabolism , Severe Acute Respiratory Syndrome/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Angiotensin-Converting Enzyme Inhibitors/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/metabolism , Antiviral Agents/administration & dosage , Antiviral Agents/metabolism , Azoles/administration & dosage , Azoles/metabolism , COVID-19/drug therapy , Coronavirus/drug effects , Coronavirus Infections/drug therapy , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/metabolism , Humans , Isoindoles , Naphthoquinones/administration & dosage , Naphthoquinones/metabolism , Organoselenium Compounds/administration & dosage , Organoselenium Compounds/metabolism , Severe Acute Respiratory Syndrome/drug therapy
8.
Viruses ; 13(8)2021 08 23.
Article in English | MEDLINE | ID: covidwho-1367926

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a global pandemic causing over 195 million infections and more than 4 million fatalities as of July 2021.To date, it has been demonstrated that a number of mutations in the spike glycoprotein (S protein) of SARS-CoV-2 variants of concern abrogate or reduce the neutralization potency of several therapeutic antibodies and vaccine-elicited antibodies. Therefore, the development of additional vaccine platforms with improved supply and logistic profile remains a pressing need. In this work, we have validated the applicability of a peptide-based strategy focused on a preventive as well as a therapeutic purpose. On the basis of the involvement of the dipeptidyl peptidase 4 (DPP4), in addition to the angiotensin converting enzyme 2 (ACE2) receptor in the mechanism of virus entry, we analyzed peptides bearing DPP4 sequences by protein-protein docking and assessed their ability to block pseudovirus infection in vitro. In parallel, we have selected and synthetized peptide sequences located within the highly conserved receptor-binding domain (RBD) of the S protein, and we found that RBD-based vaccines could better promote elicitation of high titers of neutralizing antibodies specific against the regions of interest, as confirmed by immunoinformatic methodologies and in vivo studies. These findings unveil a key antigenic site targeted by broadly neutralizing antibodies and pave the way to the design of pan-coronavirus vaccines.


Subject(s)
Dipeptidyl Peptidase 4/chemistry , Peptide Fragments/immunology , Peptide Fragments/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/drug therapy , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Dipeptidyl Peptidase 4/metabolism , Epitopes, T-Lymphocyte/immunology , Humans , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Protein Domains , Receptors, Coronavirus/chemistry , Receptors, Coronavirus/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Virus Internalization
9.
Int J Mol Sci ; 22(15)2021 Jul 21.
Article in English | MEDLINE | ID: covidwho-1325680

ABSTRACT

Nowadays, type II diabetes mellitus, more specifically ensuing diabetic nephropathy, and severe COVID-19 disease are known to be closely associated. The exact mechanisms behind this association are less known. An implication for the angiotensin-converting enzyme 2 remains controversial. Some researchers have started looking into other potential actors, such as neuropilin-1, mitochondrial glutathione, vitamin D, and DPP4. In particular, neuropilin-1 seems to play an important role in the underlying mechanism linking COVID-19 and diabetic nephropathy. We suggest, based on the findings in this review, that its up-regulation in the diabetic kidney facilitates viral entry in this tissue, and that the engagement of both processes leads to a depletion of neuropilin-1, which was demonstrated to be strongly associated with the pathogenesis of DN. More studies are needed to confirm this hypothesis, and research should be directed towards elucidating the potential roles of all these suggested actors and eventually discovering new therapeutic strategies that could reduce the burden of COVID-19 in patients with diabetic nephropathy.


Subject(s)
COVID-19/complications , COVID-19/immunology , Diabetic Nephropathies/complications , Diabetic Nephropathies/immunology , Angiotensin-Converting Enzyme 2/metabolism , Dipeptidyl Peptidase 4/metabolism , Glutathione/metabolism , Humans , Neuropilin-1/metabolism , SARS Virus/immunology , Vitamin D/metabolism
10.
Methods Mol Biol ; 2099: 137-159, 2020.
Article in English | MEDLINE | ID: covidwho-1292550

ABSTRACT

Since 2012, monthly cases of Middle East respiratory syndrome coronavirus (MERS-CoV) continue to cause severe respiratory disease that is fatal in ~35% of diagnosed individuals. The ongoing threat to global public health and the need for novel therapeutic countermeasures have driven the development of animal models that can reproducibly replicate the pathology associated with MERS-CoV in human infections. The inability of MERS-CoV to replicate in the respiratory tracts of mice, hamsters, and ferrets stymied initial attempts to generate small animal models. Identification of human dipeptidyl peptidase IV (hDPP4) as the receptor for MERS-CoV infection opened the door for genetic engineering of mice. Precise molecular engineering of mouse DPP4 (mDPP4) with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology maintained inherent expression profiles, and limited MERS-CoV susceptibility to tissues that naturally express mDPP4, notably the lower respiratory tract wherein MERS-CoV elicits severe pulmonary pathology. Here, we describe the generation of the 288-330+/+ MERS-CoV mouse model in which mice were made susceptible to MERS-CoV by modifying two amino acids on mDPP4 (A288 and T330), and the use of adaptive evolution to generate novel MERS-CoV isolates that cause fatal respiratory disease. The 288-330+/+ mice are currently being used to evaluate novel drug, antibody, and vaccine therapeutic countermeasures for MERS-CoV. The chapter starts with a historical perspective on the emergence of MERS-CoV and animal models evaluated for MERS-CoV pathogenesis, and then outlines the development of the 288-330+/+ mouse model, assays for assessing a MERS-CoV pulmonary infection in a mouse model, and describes some of the challenges associated with using genetically engineered mice.


Subject(s)
Coronavirus Infections/virology , Dipeptidyl Peptidase 4/genetics , Disease Models, Animal , Mice/genetics , Middle East Respiratory Syndrome Coronavirus/physiology , Respiratory Distress Syndrome/virology , Animals , CRISPR-Cas Systems , Coronavirus Infections/pathology , Dipeptidyl Peptidase 4/metabolism , Disease Susceptibility , Female , Genetic Engineering , Humans , Lung/virology , Male , Mice, Inbred C57BL , Respiratory Distress Syndrome/pathology
11.
Methods Mol Biol ; 2099: 99-106, 2020.
Article in English | MEDLINE | ID: covidwho-1292548

ABSTRACT

Since the emergence of the Middle East respiratory syndrome-coronavirus (MERS-CoV) in 2012, more than 2280 confirmed human infections and 800 associated deaths had been reported to the World Health Organization. MERS-CoV is a single-stranded RNA virus that belongs to the Coronaviridae family. MERS-CoV infection leads to a variety of clinical outcomes in humans ranging from asymptomatic and mild infection to severe acute lung injury and multi-organ failure and death. To study the pathogenesis of MERS-CoV infection and development of medical countermeasures (MCMs) for MERS, a number of genetically modified mouse models have been developed, including various versions of transgenic mice expressing the human DPP4 viral receptor. Tracking and quantifying viral infection, among others, in permissive hosts is a key endpoint for studying MERS pathogenesis and evaluating the efficacy of selected MCMs developed for MERS. In addition to quantifying infectious progeny virus which requires high-containment biosafety level (BSL)-3 laboratory, here we outlined an established real-time quantitative RT-PCR (RT-qPCR)-based procedure to unequivocally quantify MERS-CoV-specific RNAs within the lungs of infected human DPP4 (hDPP4, transgenic (hDPP4 Tg) mice under a standard BSL-2 laboratory.


Subject(s)
Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/genetics , RNA, Viral/analysis , Reverse Transcriptase Polymerase Chain Reaction/methods , Animals , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Disease Models, Animal , Humans , Lung/virology , Mice , Mice, Transgenic , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Real-Time Polymerase Chain Reaction , Receptors, Virus/genetics , Receptors, Virus/metabolism
12.
IUBMB Life ; 73(8): 1005-1015, 2021 08.
Article in English | MEDLINE | ID: covidwho-1291220

ABSTRACT

The kidney is one of the main targets attacked by viruses in patients with a coronavirus infection. Until now, SARS-CoV-2 has been identified as the seventh member of the coronavirus family capable of infecting humans. In the past two decades, humankind has experienced outbreaks triggered by two other extremely infective members of the coronavirus family; the MERS-CoV and the SARS-CoV. According to several investigations, SARS-CoV causes proteinuria and renal impairment or failure. The SARS-CoV was identified in the distal convoluted tubules of the kidney of infected patients. Also, renal dysfunction was observed in numerous cases of MERS-CoV infection. And recently, during the 2019-nCoV pandemic, it was found that the novel coronavirus not only induces acute respiratory distress syndrome (ARDS) but also can induce damages in various organs including the liver, heart, and kidney. The kidney tissue and its cells are targeted massively by the coronaviruses due to the abundant presence of ACE2 and Dpp4 receptors on kidney cells. These receptors are characterized as the main route of coronavirus entry to the victim cells. Renal failure due to massive viral invasion can lead to undesirable complications and enhanced mortality rate, thus more attention should be paid to the pathology of coronaviruses in the kidney. Here, we have provided the most recent knowledge on the coronaviruses (SARS, MERS, and COVID19) pathology and the mechanisms of their impact on the kidney tissue and functions.


Subject(s)
COVID-19/mortality , Coronavirus Infections/mortality , Middle East Respiratory Syndrome Coronavirus/pathogenicity , SARS Virus/pathogenicity , SARS-CoV-2/pathogenicity , Severe Acute Respiratory Syndrome/mortality , Viral Tropism/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Coronavirus Infections/virology , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Gene Expression Regulation , Humans , Kidney/metabolism , Kidney/pathology , Kidney/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/metabolism , Protein Binding , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS Virus/genetics , SARS Virus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/pathology , Severe Acute Respiratory Syndrome/virology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Survival Analysis
13.
Int J Mol Sci ; 22(13)2021 Jun 29.
Article in English | MEDLINE | ID: covidwho-1288902

ABSTRACT

ACE2 has been established as the main receptor for SARS-CoV-2. Since other human coronaviruses are known to use co-receptors for viral cell entry, it has been suggested that DPP4 (CD26) could be a potential additional binding target or co-receptor, supported by early molecular docking simulation studies. However, recent biophysical studies have shown this interaction to be very weak. We have conducted detailed molecular docking simulations to predict the potential binding interactions between the receptor binding domain (RBD) of the spike protein of SARS-CoV-2 and DPP4 and compare them with the interactions observed in the experimentally determined structure of the complex of MERS-CoV with DPP4. Whilst the overall binding mode of the RBD of SARS-CoV-2 to DPP4 is predicted to be similar to that observed in the MERS-CoV-DPP4 complex, including a number of equivalent interactions, important differences in the amino acid sequences of SARS-CoV-2 and MERS-CoV result in substantially weakened interactions with DPP4. This is shown to arise from differences in the predicted proximity, nature and secondary structure at the binding interface on the RBD of SARS-CoV-2. These findings do not support DPP4 being a significant receptor for SARS-CoV-2.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Molecular Docking Simulation , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Crystallography, X-Ray , Dipeptidyl Peptidase 4/chemistry , Humans , Protein Binding , Protein Domains , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Thermodynamics
14.
Nat Commun ; 12(1): 3534, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1265954

ABSTRACT

Metabolic diseases are associated with an increased risk of severe COVID-19 and conversely, new-onset hyperglycemia and complications of preexisting diabetes have been observed in COVID-19 patients. Here, we performed a comprehensive analysis of pancreatic autopsy tissue from COVID-19 patients using immunofluorescence, immunohistochemistry, RNA scope and electron microscopy and detected SARS-CoV-2 viral infiltration of beta-cells in all patients. Using SARS-CoV-2 pseudoviruses, we confirmed that isolated human islet cells are permissive to infection. In eleven COVID-19 patients, we examined the expression of ACE2, TMPRSS and other receptors and factors, such as DPP4, HMBG1 and NRP1, that might facilitate virus entry. Whereas 70% of the COVID-19 patients expressed ACE2 in the vasculature, only 30% displayed ACE2-expression in beta-cells. Even in the absence of manifest new-onset diabetes, necroptotic cell death, immune cell infiltration and SARS-CoV-2 viral infection of pancreatic beta-cells may contribute to varying degrees of metabolic dysregulation in patients with COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Insulin-Secreting Cells/virology , Receptors, Coronavirus/metabolism , SARS-CoV-2/isolation & purification , Serine Endopeptidases/metabolism , Adult , Aged , Autopsy , Diabetes Complications/pathology , Diabetes Complications/virology , Diabetes Mellitus/pathology , Dipeptidyl Peptidase 4/metabolism , Female , HMGN Proteins/metabolism , Humans , Insulin-Secreting Cells/metabolism , Male , Middle Aged , Neuropilin-1/metabolism , Organ Specificity/physiology
15.
Front Immunol ; 12: 597399, 2021.
Article in English | MEDLINE | ID: covidwho-1167337

ABSTRACT

There exists increasing evidence that people with preceding medical conditions, such as diabetes and cancer, have a higher risk of infection with SARS-CoV-2 and are more vulnerable to severe disease. To get insights into the possible role of the immune system upon COVID-19 infection, 2811 genes of the gene ontology term "immune system process GO: 0002376" were selected for coexpression analysis of the human targets of SARS-CoV-2 (HT-SARS-CoV-2) ACE2, TMPRSS2, and FURIN in tissue samples from patients with cancer and diabetes mellitus. The network between HT-SARS-CoV-2 and immune system process genes was analyzed based on functional protein associations using STRING. In addition, STITCH was employed to determine druggable targets. DPP4 was the only immune system process gene, which was coexpressed with the three HT-SARS-CoV-2 genes, while eight other immune genes were at least coexpressed with two HT-SARS-CoV-2 genes. STRING analysis between immune and HT-SARS-CoV-2 genes plotted 19 associations of which there were eight common networking genes in mixed healthy (323) and pan-cancer (11003) tissues in addition to normal (87), cancer (90), and diabetic (128) pancreatic tissues. Using this approach, three commonly applicable druggable connections between HT-SARS-CoV-2 and immune system process genes were identified. These include positive associations of ACE2-DPP4 and TMPRSS2-SRC as well as a negative association of FURIN with ADAM17. Furthermore, 16 drugs were extracted from STITCH (score <0.8) with 32 target genes. Thus, an immunological network associated with HT-SARS-CoV-2 using bioinformatics tools was identified leading to novel therapeutic opportunities for COVID-19.


Subject(s)
Diabetes Mellitus/metabolism , Neoplasms/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/genetics , COVID-19/immunology , COVID-19/metabolism , Databases, Genetic , Diabetes Mellitus/genetics , Diabetes Mellitus/immunology , Diabetes Mellitus/virology , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Furin/genetics , Furin/metabolism , Gene Expression Regulation/immunology , Gene Ontology , Genome-Wide Association Study , Genomics , Humans , Lymphocytes/immunology , Lymphocytes/metabolism , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/virology , Pancreas/immunology , Pancreas/metabolism , Pancreas/virology , Protein Interaction Maps/genetics , Protein Interaction Maps/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism
16.
Life Sci ; 276: 119410, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1152567

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes de COVID-19 disease use as a principal receptor the angiotensin-converting enzyme-2 (ACE2). It has been suggested that dipeptidyl peptidase-4 (DPP4) can be another possible receptor for this virus. The present study aimed to establish if the DPP4 levels and DPP4 polymorphisms are associated with COVID-19 disease and its severity. METHODS: The study included 107 COVID-19 patients and 263 matched-healthy controls. Fifty patients required invasive mechanical ventilation. The DPP4 was quantified in serum using the Bioplex system. Based on the previous results and the functional prediction analysis, we select for the study 5 DPP4 polymorphisms (rs12617336, rs12617656, rs1558957, rs3788979, and rs17574) and these were determined using the 5´exonuclease TaqMan assays. RESULTS: Low levels of DPP4 were observed in COVID-19 patients (46.5 [33.1-57.7] ng/mL) when compared to healthy controls (125.3 [100.3-157.3] ng/mL) (P < 0.0001). Also, patients that required mechanical ventilation showed lower DPP4 levels (42.8 [29.8-56.9] ng/mL) than those that did not need this procedure (49.2 [39.9-65.6] ng/mL) (P = 0.012). DPP4 levels correlated negatively with age, fibrinogen, and platelet levels, and positively with albumin, alanine aminotransferase, and percentage of neutrophils. The DPP4 rs3788979 polymorphism was associated with a high risk of COVID-19 disease and, the TT genotype carriers had the lowest DPP4 levels. CONCLUSIONS: In summary, in the present study, an association of low levels of DPP4 with COVID-19 disease and severity was found. The association of the DPP4 rs3788979 polymorphism with COVID-19 is also reported.


Subject(s)
COVID-19/genetics , Dipeptidyl Peptidase 4/genetics , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/enzymology , COVID-19/epidemiology , COVID-19/pathology , Dipeptidyl Peptidase 4/metabolism , Female , Gene Frequency , Humans , Male , Mexico/epidemiology , Middle Aged , Polymorphism, Single Nucleotide , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Severity of Illness Index
17.
Endocr Rev ; 41(3)2020 06 01.
Article in English | MEDLINE | ID: covidwho-1110054

ABSTRACT

Individuals with diabetes are at increased risk for bacterial, mycotic, parasitic, and viral infections. The severe acute respiratory syndrome (SARS)-CoV-2 (also referred to as COVID-19) coronavirus pandemic highlights the importance of understanding shared disease pathophysiology potentially informing therapeutic choices in individuals with type 2 diabetes (T2D). Two coronavirus receptor proteins, angiotensin-converting enzyme 2 (ACE2) and dipeptidyl peptidase-4 (DPP4) are also established transducers of metabolic signals and pathways regulating inflammation, renal and cardiovascular physiology, and glucose homeostasis. Moreover, glucose-lowering agents such as the DPP4 inhibitors, widely used in subjects with T2D, are known to modify the biological activities of multiple immunomodulatory substrates. Here, we review the basic and clinical science spanning the intersections of diabetes, coronavirus infections, ACE2, and DPP4 biology, highlighting clinical relevance and evolving areas of uncertainty underlying the pathophysiology and treatment of T2D in the context of coronavirus infection.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Pneumonia, Viral/complications , Angiotensin-Converting Enzyme 2 , Animals , COVID-19 , Coronavirus Infections/metabolism , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Gastrointestinal Tract/metabolism , Humans , Insulin/therapeutic use , Lung/metabolism , Obesity/complications , Obesity/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/metabolism , Receptors, Coronavirus , Receptors, Virus/metabolism , Risk Factors , SARS-CoV-2 , Serine Endopeptidases/metabolism
18.
Arch Immunol Ther Exp (Warsz) ; 69(1): 1, 2021 Feb 02.
Article in English | MEDLINE | ID: covidwho-1059378

ABSTRACT

A novel coronavirus disease, COVID-19, has emerged as a global public health issue. Clinical course of disease significantly correlates with the occurrence of some comorbidities, among them type 2 diabetes. According to recent structural studies the dipeptidyl peptidase 4, a key molecule in the pathophysiology of diabetes, may influence the course of COVID-19. Since DPP4 inhibitors, gliptins, are widely used in diabetes patients, the exact role of DPP4 modulation in SARS-CoV-2 infection, at least in that group, urgently needs to be clarified. In this short review, we discuss this issue with more detail.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/drug therapy , Diabetes Mellitus, Type 2/complications , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , COVID-19/complications , COVID-19/enzymology , COVID-19/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Humans
19.
J Endocrinol Invest ; 44(7): 1379-1386, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1053127

ABSTRACT

BACKGROUND: The infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread all over the world, becoming pandemic. Several studies have shown that diabetes mellitus (DM) is an independent risk factor that increases mortality and other adverse outcomes of coronavirus disease-19 (COVID-19). Studies have suggested that SARS-CoV-2 may bind dipeptidyl peptidase-4 (DPP4) for entering cells of the respiratory tract. Besides, DPP4 takes part in immune system regulation. Thus, DPP-4 inhibitors (DPP4i) may play a role against COVID-19. METHODS: We focused on the impact of DPP4i treatment on COVID-19-related outcomes in people with DM. For this purpose, we conducted a systematic review and meta-analysis to summarize the existing evidence on this topic. RESULTS: Retrospective observational studies provide inconsistent results on the association between use of DPP4i and outcomes of COVID-19. While two studies reported significantly lower mortality rates among patients with DM who received DPP4i versus those who did not, a series of other studies showed no effect of DPP4i or even worse outcomes. A meta-analysis of 7 studies yielded a neutral estimate of the risk ratio of COVID-19-related mortality among users of DPP4i (0.81; 95% CI 0.57-1.15). CONCLUSION: In the absence of randomized controlled trials, observational research available so far provides inconclusive results and insufficient evidence to recommend use of DPP4i against COVID-19.


Subject(s)
COVID-19/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Dipeptidyl Peptidase 4/metabolism , Humans , SARS-CoV-2/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL