Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Front Public Health ; 10: 769898, 2022.
Article in English | MEDLINE | ID: covidwho-1775977

ABSTRACT

Background: In Africa, rabies causes an estimated 24,000 human deaths annually. Mass dog vaccinations coupled with timely post-exposure prophylaxis (PEP) for dog-bite patients are the main interventions to eliminate human rabies deaths. A well-informed healthcare workforce and the availability and accessibility of rabies biologicals at health facilities are critical in reducing rabies deaths. We assessed awareness and knowledge regarding rabies and the management of rabies among healthcare workers, and PEP availability in rural eastern Kenya. Methodology: We interviewed 73 healthcare workers from 42 healthcare units in 13 wards in Makueni and Kibwezi West sub-counties, Makueni County, Kenya in November 2018. Data on demographics, years of work experience, knowledge of rabies, management of bite and rabies patients, and availability of rabies biologicals were collected and analyzed. Results: Rabies PEP vaccines were available in only 5 (12%) of 42 health facilities. None of the health facilities had rabies immunoglobulins in stock at the time of the study. PEP was primarily administered intramuscularly, with only 11% (n = 8) of the healthcare workers and 17% (7/42) healthcare facilities aware of the dose-sparing intradermal route. Less than a quarter of the healthcare workers were aware of the World Health Organization categorization of bite wounds that guides the use of PEP. Eighteen percent (n = 13) of healthcare workers reported they would administer PEP for category I exposures even though PEP is not recommended for this category of exposure. Only one of six respondents with acute encephalitis consultation considered rabies as a differential diagnosis highlighting the low index of suspicion for rabies. Conclusion: The availability and use of PEP for rabies was sub-optimal. We identified two urgent needs to support rabies elimination programmes: improving availability and access to PEP; and targeted training of the healthcare workers to improve awareness on bite wound management, judicious use of PEP including appropriate risk assessment following bites and the use of the dose-sparing intradermal route in facilities seeing multiple bite patients. Global and domestic funding plan that address these gaps in the human health sector is needed for efficient rabies elimination in Africa.


Subject(s)
Disease Eradication , Health Services Needs and Demand , Rabies , Rural Health , Animals , Bites and Stings/therapy , Disease Eradication/methods , Disease Eradication/organization & administration , Dog Diseases/prevention & control , Dog Diseases/virology , Dogs , Health Knowledge, Attitudes, Practice , Health Personnel/psychology , Humans , Kenya/epidemiology , Mass Vaccination/veterinary , Post-Exposure Prophylaxis/supply & distribution , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Rabies Vaccines/supply & distribution
3.
MMWR Morb Mortal Wkly Rep ; 71(3): 85-89, 2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1637158

ABSTRACT

Wild poliovirus types 2 and 3 were declared eradicated in 2015 and 2019, respectively, and, since 2017, transmission of wild poliovirus type 1 (WPV1) has been detected only in Afghanistan and Pakistan. In 2020, these countries reported their highest number of WPV1 cases since 2014 and experienced outbreaks of type 2 circulating vaccine-derived poliovirus (cVDPV2)* (1); in Afghanistan, the number of WPV1 cases reported increased 93%, from 29 in 2019 to 56 in 2020, with 308 cVDPV2 cases reported. This report describes the activities and progress toward polio eradication in Afghanistan during January 2020-November 2021 and updates previous reports (2-4). Despite restrictions imposed by antigovernment elements since 2018, disruption of polio eradication efforts by the COVID-19 pandemic, and civil and political instability, eradication activities have resumed. During January-November 2021, four WPV1 cases and 43 cVDPV2 cases were detected, representing decreases of 93% from 56 and 85% from 281, respectively, during the same period in 2020. After the assumption of nationwide control by the current de facto government of Afghanistan during August 2021, health officials committed to oral poliovirus vaccine (OPV) campaigns nationwide, with the potential to vaccinate approximately 2.5 million children against poliovirus who were previously not accessible for ≥2 years. Although challenges remain, vigorous, sustained polio eradication efforts in Afghanistan could result in substantial progress toward eradication during 2022-2023.


Subject(s)
Disease Eradication , Immunization Programs , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Population Surveillance , Adult , Afghanistan/epidemiology , Child , Child, Preschool , Disease Outbreaks/prevention & control , Humans , Infant , Poliovirus/isolation & purification , Poliovirus Vaccine, Oral/administration & dosage
4.
Malar J ; 20(1): 481, 2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1623634

ABSTRACT

BACKGROUND: Malaria causes more than 200 million cases of illness and 400,000 deaths each year across 90 countries. The World Health Organization (WHO) set a goal for 35 countries to eliminate malaria by 2030, with an intermediate milestone of 10 countries by 2020. In 2017, the WHO established the Elimination-2020 (E-2020) initiative to help countries achieve their malaria elimination goals and included 21 countries with the potential to eliminate malaria by 2020. METHODS: Across its three levels of activity (country, region and global), the WHO developed normative and implementation guidance on strategies and activities to eliminate malaria; provided technical support and subnational operational assistance; convened national malaria programme managers at three global meetings to share innovations and best practices; advised countries on strengthening their strategy to prevent re-establishment and preparing for WHO malaria certification; and contributed to maintaining momentum towards elimination through periodic evaluations, monitoring and oversight of progress in the E-2020 countries. Changes in the number of indigenous cases in E-2020 countries between 2016 and 2020 are reported, along with the number of countries that eliminated malaria and received WHO certification. RESULTS: The median number of indigenous cases in the E-2020 countries declined from 165.5 (interquartile range [IQR] 14.25-563.75) in 2016 to 78 (IQR 0-356) in 2020; 12 (57%) countries reported reductions in indigenous cases over that period, of which 7 (33%) interrupted malaria transmission and maintained a malaria-free status through 2020 and 4 (19%) were certified malaria-free by the WHO. Two countries experienced outbreaks of malaria in 2020 and 2021 attributed, in part, to the COVID-19 pandemic. CONCLUSIONS: Although the E-2020 countries contributed to the achievement of the 2020 global elimination milestone, the initiative highlights the difficulties countries face to interrupt malaria transmission, even when numbers of cases are very low. The 2025 global elimination milestone is now approaching, and the lessons learned, experience gained, and updated guidance developed during the E-2020 initiative will help serve the countries seeking to eliminate malaria by 2025.


Subject(s)
Disease Eradication , Global Health , Malaria/epidemiology , Malaria/prevention & control , World Health Organization , Endemic Diseases/prevention & control , Guidelines as Topic , Humans , Malaria/transmission , Population Surveillance
6.
Yakugaku Zasshi ; 142(1): 11-15, 2022.
Article in Japanese | MEDLINE | ID: covidwho-1609123

ABSTRACT

The polio eradication program, launched in 1988, has successfully decreased the number of poliomyelitis patients worldwide. However, in areas with immunization gaps where oral polio vaccine coverage has dropped, outbreaks of more virulent vaccine-derived polioviruses (VDPVs) have become a threat to public health. In Japan, inactivated polio vaccine replaced oral polio vaccine as the routine immunization in 2012. Polio environmental surveillance (ES) has been conducted nationwide since 2013 to efficiently monitor the wild type poliovirus or VDPV, which may be imported from overseas. ES may also be utilized to detect other viruses in stool samples. We propose a method of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection based on the polio ES network, and establish a procedure to detect fragments of SARS-CoV-2 genome in wastewater solids. Our findings suggest that polio ES can be used to simultaneously monitor SARS-CoV-2 RNA fragments in sewage waters.


Subject(s)
Environmental Monitoring/methods , Poliovirus/isolation & purification , SARS-CoV-2/isolation & purification , Sewage/virology , Waste Water/virology , Disease Eradication , Humans , Japan , Poliovirus Vaccine, Inactivated , RNA, Viral/isolation & purification , SARS-CoV-2/genetics
8.
Lancet Glob Health ; 10(1): e142-e147, 2022 01.
Article in English | MEDLINE | ID: covidwho-1575199

ABSTRACT

There is increasing evidence that elimination strategies have resulted in better outcomes for public health, the economy, and civil liberties than have mitigation strategies throughout the first year of the COVID-19 pandemic. With vaccines that offer high protection against severe forms of COVID-19, and increasing vaccination coverage, policy makers have had to reassess the trade-offs between different options. The desirability and feasibility of eliminating SARS-CoV-2 compared with other strategies should also be re-evaluated from the perspective of different fields, including epidemiology, public health, and economics. To end the pandemic as soon as possible-be it through elimination or reaching an acceptable endemic level-several key topics have emerged centring around coordination, both locally and internationally, and vaccine distribution. Without coordination it is difficult if not impossible to sustain elimination, which is particularly relevant in highly connected regions, such as Europe. Regarding vaccination, concerns remain with respect to equitable distribution, and the risk of the emergence of new variants of concern. Looking forward, it is crucial to overcome the dichotomy between elimination and mitigation, and to jointly define a long-term objective that can accommodate different political and societal realities.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , COVID-19/epidemiology , Disease Eradication/methods , Humans , Pandemics/prevention & control , SARS-CoV-2 , Vaccination
9.
Biomed Pharmacother ; 146: 112507, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1556976

ABSTRACT

Lectins or clusters of carbohydrate-binding proteins of non-immune origin are distributed chiefly in the Plantae. Lectins have potent anti-infectivity properties for several RNA viruses including SARS-CoV-2. The primary purpose of this review is to review the ability of lectins mediated potential biotherapeutic and bioprophylactic strategy against coronavirus causing COVID-19. Lectins have binding affinity to the glycans of SARS-COV-2 Spike glycoprotein that has N-glycosylation sites. Apart from this, the complement lectin pathway is a "first line host defense" against the viral infection that is activated by mannose-binding lectins. Mannose-binding lectins deficiency in serum influences innate immunity of the host and facilitates infectious diseases including COVID-19. Our accumulated evidence obtained from scientific databases particularly PubMed and Google Scholar databases indicate that mannose-specific/mannose-binding lectins (MBL) have potent efficacies like anti-infectivity, complement cascade induction, immunoadjuvants, DC-SIGN antagonists, or glycomimetic approach, which can prove useful in the strategy of COVID-19 combat along with the glycobiological aspects of SARS-CoV-2 infections and antiviral immunity. For example, plant-derived mannose-specific lectins BanLac, FRIL, Lentil, and GRFT from red algae can inhibit and neutralize SARS-CoV-2 infectivity, as confirmed with in-vitro, in-vivo, and in-silico assessments. Furthermore, Bangladesh has a noteworthy resource of antiviral medicinal plants as well as plant lectins. Intensifying research on the antiviral plant lectins, adopting a glyco-biotechnological approach, and with deeper insights into the "glycovirological" aspects may result in the designing of alternative and potent blueprints against the 21st century's biological pandemic of SARS-CoV-2 causing COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Biological Therapy/methods , COVID-19/prevention & control , Disease Eradication/methods , Plant Lectins/therapeutic use , SARS-CoV-2/drug effects , Animals , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Biological Therapy/trends , COVID-19/epidemiology , Disease Eradication/trends , Humans , Plant Lectins/isolation & purification , Plant Lectins/pharmacology
10.
Pan Afr Med J ; 40: 1, 2021.
Article in English | MEDLINE | ID: covidwho-1538842

ABSTRACT

The world confronts today a disease which was unknown as recently as early 2019. Now that there is a safe and effective vaccine against COVID-19, lessons can usefully be drawn from previous well documented vaccination efforts. Of these, the best documented and most successful is the Smallpox Eradication Program (SEP). A review was made of publications by major players in smallpox eradication, respecting the important differences between the disease, this review revealed several points of connection. Cultural factors loomed large both in the eradication of smallpox and progress, to date, in the control of COVID-19. Other points of similarity included political commitment, the set-up of strong surveillance mechanisms, and assurance of uniformly high quality vaccines tested and approved by the World Health Organization. The future of COVID-19 control depends, in part, on lessons learned from previous vaccination efforts. A review of those efforts will avoid repetition of past errors and permit adoption of best practices from the past. Such analyses must, of course, respect the important differences between COVID-19 and smallpox.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Smallpox Vaccine/administration & dosage , Smallpox/prevention & control , Disease Eradication/methods , Global Health , Humans , Vaccination/methods , Vaccination Refusal
11.
MMWR Morb Mortal Wkly Rep ; 70(45): 1563-1569, 2021 Nov 12.
Article in English | MEDLINE | ID: covidwho-1513269

ABSTRACT

In 2012, the World Health Assembly endorsed the Global Vaccine Action Plan,* with the objective of eliminating measles† in five of the six World Health Organization (WHO) regions by 2020 (1). The Immunization Agenda 2021-2030 (IA2030)§ uses measles incidence as an indicator of the strength of immunization systems. The Measles-Rubella Strategic Framework 2021-2030¶ and the Measles Outbreaks Strategic Response Plan 2021-2023** are aligned with the IA2030 and highlight robust measles surveillance systems to document immunity gaps, identify root causes of undervaccination, and develop locally tailored solutions to ensure administration of 2 doses of measles-containing vaccine (MCV) to all children. This report describes progress toward World Health Assembly milestones and measles elimination objectives during 2000-2020 and updates a previous report (2). During 2000-2010, estimated MCV first dose (MCV1) coverage increased globally from 72% to 84%, peaked at 86% in 2019, but declined to 84% in 2020 during the COVID-19 pandemic. All countries conducted measles surveillance, although fewer than one third achieved the sensitivity indicator target of ≥2 discarded†† cases per 100,000 population in 2020. Annual reported measles incidence decreased 88% during 2000-2016, from 145 to 18 cases per 1 million population, rebounded to 120 in 2019, before falling to 22 in 2020. During 2000-2020, the annual number of estimated measles deaths decreased 94%, from 1,072,800 to 60,700, averting an estimated 31.7 million measles deaths. To achieve regional measles elimination targets, enhanced efforts are needed to reach all children with 2 MCV doses, implement robust surveillance, and identify and close immunity gaps.


Subject(s)
Disease Eradication , Global Health/statistics & numerical data , Measles/prevention & control , Child , Humans , Immunization Programs , Incidence , Infant , Measles/epidemiology , Measles Vaccine/administration & dosage , World Health Organization
12.
Nat Commun ; 12(1): 6223, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1510592

ABSTRACT

In 2016 the World Health Organization set the goal of eliminating hepatitis B globally by 2030. Horizontal transmission has been greatly reduced in most countries by scaling up coverage of the infant HBV vaccine series, and vertical transmission is therefore becoming increasingly dominant. Here we show that scaling up timely hepatitis B birth dose vaccination to 90% of new-borns in 110 low- and middle-income countries by 2030 could prevent 710,000 (580,000 to 890,000) deaths in the 2020 to 2030 birth cohorts compared to status quo, with the greatest benefits in Africa. Maintaining this could lead to elimination by 2030 in the Americas, but not before 2059 in Africa. Drops in coverage due to disruptions in 2020 may lead to 15,000 additional deaths, mostly in South-East Asia and the Western Pacific. Delays in planned scale-up could lead to an additional 580,000 deaths globally in the 2020 to 2030 birth cohorts.


Subject(s)
Hepatitis B Vaccines/administration & dosage , Hepatitis B/prevention & control , Africa/epidemiology , Americas/epidemiology , Asia, Southeastern/epidemiology , Disease Eradication/statistics & numerical data , Female , Hepatitis B/epidemiology , Hepatitis B/mortality , Hepatitis B/virology , Hepatitis Viruses/genetics , Hepatitis Viruses/immunology , Humans , Infant , Infant, Newborn , Male , Vaccination , World Health Organization
14.
MMWR Morb Mortal Wkly Rep ; 70(44): 1527-1533, 2021 Nov 05.
Article in English | MEDLINE | ID: covidwho-1502900

ABSTRACT

Dracunculiasis (Guinea worm disease), caused by the parasite Dracunculus medinensis, is traditionally acquired by drinking water containing copepods (water fleas) infected with D. medinensis larvae, but in recent years also appears increasingly to be transmitted by eating fish or other aquatic animals. The worm typically emerges through the skin on a lower limb of the host 1 year after infection, causing pain and disability (1). There is no vaccine or medicine to prevent or medicine to treat dracunculiasis; eradication relies on case containment* to prevent water contamination and other interventions to prevent infection: health education, water filtration, treatment of unsafe water with temephos (an organophosphate larvicide), and provision of safe drinking water (1,2). The eradication campaign began in 1980 at CDC (1). In 1986, with an estimated 3.5 million cases† occurring annually in 20 African and Asian countries§ (3), the World Health Assembly called for dracunculiasis elimination (4). The Guinea Worm Eradication Program (GWEP), led by The Carter Center and supported by the World Health Organization (WHO), UNICEF, CDC, and other partners, began assisting ministries of health in countries with endemic disease. With 27 cases in humans reported in 2020, five during January-June 2021, and only six countries currently affected by dracunculiasis (Angola, Chad, Ethiopia, Mali, South Sudan, and importations into Cameroon), achievement of eradication appears to be close. However, dracunculiasis eradication is challenged by civil unrest, insecurity, and epidemiologic and zoologic concerns. Guinea worm infections in dogs were first reported in Chad in 2012. Animal infections have now overtaken human cases, with 1,601 reported animal infections in 2020 and 443 during January-June 2021. Currently, all national GWEPs remain fully operational, with precautions taken to ensure safety of program staff and community members in response to the COVID-19 pandemic. Because of COVID-19, The Carter Center convened the 2020 and 2021 annual GWEP Program Managers meetings virtually, and WHO's International Commission for the Certification of Dracunculiasis Eradication met virtually in October 2020. Since 1986, WHO has certified 199 countries, areas, and territories dracunculiasis-free. Six countries are still affected: five with endemic disease and importations into Cameroon. Seven countries (five with endemic dracunculiasis, Democratic Republic of the Congo, and Sudan) still lack certification (4). The existence of infected dogs, especially in Chad, and impeded access because of civil unrest and insecurity in Mali and South Sudan are now the greatest challenges to interrupting transmission. This report describes progress during January 2020-June 2021 and updates previous reports (2,4,5).


Subject(s)
Disease Eradication , Dracunculiasis/prevention & control , Global Health/statistics & numerical data , Dracunculiasis/epidemiology , Humans
15.
PLoS One ; 16(10): e0258961, 2021.
Article in English | MEDLINE | ID: covidwho-1484862

ABSTRACT

INTRODUCTION: In 2011, member states of the World Health Organization (WHO) Africa Regional Office (AFRO) resolved to eliminate Measles by 2020. Our study aims to assess The Gambia's progress towards the set AFRO measles elimination target and highlight surveillance and immunisation gaps to better inform future measles prevention strategies. MATERIAL AND METHODS: A retrospective review of measles surveillance data for the period 2011-2019, was extracted from The Gambia case-based measles surveillance database. WHO-UNICEF national coverage estimates were used for estimating national level MCV coverage. Measles post campaign coverage survey coverage estimates were used to estimate national measles campaign coverage. RESULTS: One hundred and twenty-five of the 863 reported suspected cases were laboratory confirmed as measles cases. More than half (53.6%) of the confirmed cases have unknown vaccination status, 24% of cases were vaccinated, 52.8% of cases occurred among males, and 72.8% cases were among urban residents. The incidence of measles cases per million population was lowest (0) in 2011-2012 and highest in 2015 and 2016 (31 and 23 respectively). The indicator for surveillance sensitivity was met in all years except in 2016 and 2019. Children aged 5-9 years (Incidence Rate Ratio-IRR = 0.6) and residents of Central River region (IRR = 0.21) had lower measles risk whilst unvaccinated (Adjusted IRR = 5.95) and those with unknown vaccination status (IRR 2.21) had higher measles risk. Vaccine effectiveness was 89.5%. CONCLUSION: The Gambia's quest to attain measles elimination status by 2020 has registered significant success but it is unlikely that all target indicators will be met. Vaccination has been very effective in preventing cases. There is variation in measles risk by health region, and it will be important to take it into account when designing prevention and control strategies. The quality of case investigations should be improved to enhance the quality of surveillance for decision making.


Subject(s)
Immunization Programs , Measles Vaccine/therapeutic use , Measles/epidemiology , Vaccination Coverage , Adolescent , Adult , Child , Child, Preschool , Disease Eradication , Female , Gambia/epidemiology , Humans , Incidence , Infant , Infant, Newborn , Male , Measles/prevention & control , Population Surveillance , Retrospective Studies
17.
PLoS Med ; 18(10): e1003831, 2021 10.
Article in English | MEDLINE | ID: covidwho-1477511

ABSTRACT

BACKGROUND: UNAIDS has established new program targets for 2025 to achieve the goal of eliminating AIDS as a public health threat by 2030. This study reports on efforts to use mathematical models to estimate the impact of achieving those targets. METHODS AND FINDINGS: We simulated the impact of achieving the targets at country level using the Goals model, a mathematical simulation model of HIV epidemic dynamics that includes the impact of prevention and treatment interventions. For 77 high-burden countries, we fit the model to surveillance and survey data for 1970 to 2020 and then projected the impact of achieving the targets for the period 2019 to 2030. Results from these 77 countries were extrapolated to produce estimates for 96 others. Goals model results were checked by comparing against projections done with the Optima HIV model and the AIDS Epidemic Model (AEM) for selected countries. We included estimates of the impact of societal enablers (access to justice and law reform, stigma and discrimination elimination, and gender equality) and the impact of Coronavirus Disease 2019 (COVID-19). Results show that achieving the 2025 targets would reduce new annual infections by 83% (71% to 86% across regions) and AIDS-related deaths by 78% (67% to 81% across regions) by 2025 compared to 2010. Lack of progress on societal enablers could endanger these achievements and result in as many as 2.6 million (44%) cumulative additional new HIV infections and 440,000 (54%) more AIDS-related deaths between 2020 and 2030 compared to full achievement of all targets. COVID-19-related disruptions could increase new HIV infections and AIDS-related deaths by 10% in the next 2 years, but targets could still be achieved by 2025. Study limitations include the reliance on self-reports for most data on behaviors, the use of intervention effect sizes from published studies that may overstate intervention impacts outside of controlled study settings, and the use of proxy countries to estimate the impact in countries with fewer than 4,000 annual HIV infections. CONCLUSIONS: The new targets for 2025 build on the progress made since 2010 and represent ambitious short-term goals. Achieving these targets would bring us close to the goals of reducing new HIV infections and AIDS-related deaths by 90% between 2010 and 2030. By 2025, global new infections and AIDS deaths would drop to 4.4 and 3.9 per 100,000 population, and the number of people living with HIV (PLHIV) would be declining. There would be 32 million people on treatment, and they would need continuing support for their lifetime. Incidence for the total global population would be below 0.15% everywhere. The number of PLHIV would start declining by 2023.


Subject(s)
Disease Eradication , Global Health , Goals , HIV Infections/prevention & control , Models, Biological , Models, Theoretical , Public Health , Acquired Immunodeficiency Syndrome/epidemiology , Acquired Immunodeficiency Syndrome/prevention & control , Acquired Immunodeficiency Syndrome/therapy , Adolescent , Adult , COVID-19 , Cause of Death , Epidemics , Female , HIV Infections/epidemiology , HIV Infections/therapy , Humans , Incidence , Male , SARS-CoV-2 , Social Determinants of Health , United Nations , Young Adult
18.
Glob Health Sci Pract ; 9(3): 682-689, 2021 Sep 30.
Article in English | MEDLINE | ID: covidwho-1449261

ABSTRACT

Lessons learned from one global health program can inform responses to challenges faced by other programs. One way to disseminate these lessons is through courses. However, such courses are often delivered by and taught to people based in high-income countries and thus may not present a truly global perspective. The Synthesis and Translation of Research and Innovations from Polio Eradication (STRIPE) is a consortium of 8 institutions in Afghanistan, Bangladesh, the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, and the United States that seeks to carry out such a transfer of the lessons learned in polio eradication. This short report describes the collaborative process of developing content and curriculum for an international course, the learnings that emerged, the barriers we faced, and recommendations for future similar efforts. Various parts of our course were developed by teams of researchers from countries across South Asia and sub-Saharan Africa. We held a series of regional in-person team meetings hosted in different countries to improve rapport and provide a chance to work together in person. The course content reflects the diversity of team members' knowledge in a variety of contexts. Challenges to this effort included team coordination (e.g., scheduling across time zones); hierarchies across and between countries; and the coronavirus disease (COVID-19) pandemic. We recommend planning for these hierarchies ahead of time and ensuring significant in-person meeting time to make the most of international collaboration.


Subject(s)
Curriculum , Disease Eradication/methods , Global Health/education , Immunization Programs/methods , Internationality , Poliomyelitis/prevention & control , Afghanistan , Bangladesh , Democratic Republic of the Congo , Ethiopia , Humans , India , Indonesia , Nigeria , Poliomyelitis/drug therapy , United States
20.
MMWR Morb Mortal Wkly Rep ; 70(39): 1359-1364, 2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1444552

ABSTRACT

When the Global Polio Eradication Initiative began in 1988, wild poliovirus (WPV) transmission was occurring in 125 countries; currently, only WPV type 1 (WPV1) transmission continues, and as of August 2021, WPV1 transmission persists in only two countries (1,2). This report describes Pakistan's progress toward polio eradication during January 2020-July 2021 and updates previous reports (3,4). In 2020, Pakistan reported 84 WPV1 cases, a 43% reduction from 2019; as of August 25, 2021, Pakistan has reported one WPV1 case in 2021. Circulating vaccine-derived poliovirus (cVDPV) emerges as a result of attenuated oral poliovirus vaccine (OPV) virus regaining neurovirulence after prolonged circulation in underimmunized populations and can lead to paralysis. In 2019, 22 cases of cVDPV type 2 (cVDPV2) were reported in Pakistan, 135 cases were reported in 2020, and eight cases have been reported as of August 25, 2021. Because of the COVID-19 pandemic, planned supplementary immunization activities (SIAs)* were suspended during mid-March-June 2020 (3,5). Seven SIAs were implemented during July 2020-July 2021 without substantial decreases in SIA quality. Improving the quality of polio SIAs, vaccinating immigrants from Afghanistan, and implementing changes to enhance program accountability and performance would help the Pakistan polio program achieve its goal of interrupting WPV1 transmission by the end of 2022.


Subject(s)
Disease Eradication , Poliomyelitis/prevention & control , Population Surveillance , Adolescent , Child , Child, Preschool , Humans , Immunization Programs , Immunization Schedule , Infant , Pakistan/epidemiology , Poliomyelitis/epidemiology , Poliovirus/isolation & purification , Poliovirus Vaccine, Oral/administration & dosage , Vaccination/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL