Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 172
Filter
3.
Viruses ; 14(2)2022 02 21.
Article in English | MEDLINE | ID: covidwho-1705877

ABSTRACT

Recombination creates mosaic genomes containing regions with mixed ancestry, and the accumulation of such events over time can complicate greatly many aspects of evolutionary inference. Here, we developed a sliding window bootstrap (SWB) method to generate genomic bootstrap (GB) barcodes to highlight the regions supporting phylogenetic relationships. The method was applied to an alignment of 56 sarbecoviruses, including SARS-CoV and SARS-CoV-2, responsible for the SARS epidemic and COVID-19 pandemic, respectively. The SWB analyses were also used to construct a consensus tree showing the most reliable relationships and better interpret hidden phylogenetic signals. Our results revealed that most relationships were supported by just a few genomic regions and confirmed that three divergent lineages could be found in bats from Yunnan: SCoVrC, which groups SARS-CoV related coronaviruses from China; SCoV2rC, which includes SARS-CoV-2 related coronaviruses from Southeast Asia and Yunnan; and YunSar, which contains a few highly divergent viruses recently described in Yunnan. The GB barcodes showed evidence for ancient recombination between SCoV2rC and YunSar genomes, as well as more recent recombination events between SCoVrC and SCoV2rC genomes. The recombination and phylogeographic patterns suggest a strong host-dependent selection of the viral RNA-dependent RNA polymerase. In addition, SARS-CoV-2 appears as a mosaic genome composed of regions sharing recent ancestry with three bat SCoV2rCs from Yunnan (RmYN02, RpYN06, and RaTG13) or related to more ancient ancestors in bats from Yunnan and Southeast Asia. Finally, our results suggest that viral circular RNAs may be key molecules for the mechanism of recombination.


Subject(s)
DNA Barcoding, Taxonomic/methods , Disease Reservoirs/veterinary , Evolution, Molecular , Genomics/methods , Recombination, Genetic , SARS Virus/genetics , SARS-CoV-2/genetics , Animals , China , Chiroptera/virology , Disease Reservoirs/virology , Genome, Viral , Phylogeography
4.
Nature ; 604(7905): 330-336, 2022 04.
Article in English | MEDLINE | ID: covidwho-1692583

ABSTRACT

The animal reservoir of SARS-CoV-2 is unknown despite reports of SARS-CoV-2-related viruses in Asian Rhinolophus bats1-4, including the closest virus from R. affinis, RaTG13 (refs. 5,6), and pangolins7-9. SARS-CoV-2 has a mosaic genome, to which different progenitors contribute. The spike sequence determines the binding affinity and accessibility of its receptor-binding domain to the cellular angiotensin-converting enzyme 2 (ACE2) receptor and is responsible for host range10-12. SARS-CoV-2 progenitor bat viruses genetically close to SARS-CoV-2 and able to enter human cells through a human ACE2 (hACE2) pathway have not yet been identified, although they would be key in understanding the origin of the epidemic. Here we show that such viruses circulate in cave bats living in the limestone karstic terrain in northern Laos, in the Indochinese peninsula. We found that the receptor-binding domains of these viruses differ from that of SARS-CoV-2 by only one or two residues at the interface with ACE2, bind more efficiently to the hACE2 protein than that of the SARS-CoV-2 strain isolated in Wuhan from early human cases, and mediate hACE2-dependent entry and replication in human cells, which is inhibited by antibodies that neutralize SARS-CoV-2. None of these bat viruses contains a furin cleavage site in the spike protein. Our findings therefore indicate that bat-borne SARS-CoV-2-like viruses that are potentially infectious for humans circulate in Rhinolophus spp. in the Indochinese peninsula.


Subject(s)
COVID-19 , Chiroptera , Angiotensin-Converting Enzyme 2 , Animals , Asia , Caves , Chiroptera/virology , Disease Reservoirs , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
6.
Cell ; 185(7): 1117-1129.e8, 2022 Mar 31.
Article in English | MEDLINE | ID: covidwho-1682965

ABSTRACT

Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Subject(s)
Animals, Wild/virology , Communicable Diseases, Emerging/virology , Disease Reservoirs , Mammals/virology , Virome , Animals , China , Phylogeny , Zoonoses
7.
Viruses ; 14(2)2022 02 07.
Article in English | MEDLINE | ID: covidwho-1674829

ABSTRACT

Coronaviruses (CoV) are divided into the genera α-CoVs, ß-CoVs, γ-CoVs and δ-CoVs. Of these, α-CoVs and ß-CoVs are solely capable of causing infections in humans, resulting in mild to severe respiratory symptoms. Bats have been identified as natural reservoir hosts for CoVs belonging to these two genera. Consequently, research on bat populations, CoV prevalence in bats and genetic characterization of bat CoVs is of special interest to investigate the potential transmission risks. We present the genome sequence of a novel α-CoV strain detected in rectal swab samples of Miniopterus fuliginosus bats from a colony in the Wavul Galge cave (Koslanda, Sri Lanka). The novel strain is highly similar to Miniopterus bat coronavirus 1, an α-CoV located in the subgenus of Minunacoviruses. Phylogenetic reconstruction revealed a high identity of the novel strain to other α-CoVs derived from Miniopterus bats, while human-pathogenic α-CoV strains like HCoV-229E and HCoV-NL63 were more distantly related. Comparison with selected bat-related and human-pathogenic strains of the ß-CoV genus showed low identities of ~40%. Analyses of the different genes on nucleotide and amino acid level revealed that the non-structural ORF1a/1b are more conserved among α-CoVs and ß-CoVs, while there are higher variations in the structural proteins known to be important for host specificity. The novel strain was named batCoV/MinFul/2018/SriLanka and had a prevalence of 50% (66/130) in rectal swab samples and 58% (61/104) in feces samples that were collected from Miniopterus bats in Wavul Galge cave. Based on the differences between strain batCoV/MinFul/2018/SriLanka and human-pathogenic α-CoVs and ß-CoVs, we conclude that there is a rather low transmission risk to humans. Further studies in the Wavul Galge cave and at other locations in Sri Lanka will give more detailed information about the prevalence of this virus.


Subject(s)
Alphacoronavirus/genetics , Alphacoronavirus/isolation & purification , Chiroptera/virology , Coronavirus Infections/veterinary , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Genome, Viral , Alphacoronavirus/classification , Animals , Caves/virology , Coronavirus Infections/virology , Evolution, Molecular , Female , Male , Phylogeny , Sequence Analysis, DNA , Sri Lanka
8.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: covidwho-1655775

ABSTRACT

Many animal species are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and could act as reservoirs; however, transmission in free-living animals has not been documented. White-tailed deer, the predominant cervid in North America, are susceptible to SARS-CoV-2 infection, and experimentally infected fawns can transmit the virus. To test the hypothesis that SARS-CoV-2 is circulating in deer, 283 retropharyngeal lymph node (RPLN) samples collected from 151 free-living and 132 captive deer in Iowa from April 2020 through January of 2021 were assayed for the presence of SARS-CoV-2 RNA. Ninety-four of the 283 (33.2%) deer samples were positive for SARS-CoV-2 RNA as assessed by RT-PCR. Notably, following the November 2020 peak of human cases in Iowa, and coinciding with the onset of winter and the peak deer hunting season, SARS-CoV-2 RNA was detected in 80 of 97 (82.5%) RPLN samples collected over a 7-wk period. Whole genome sequencing of all 94 positive RPLN samples identified 12 SARS-CoV-2 lineages, with B.1.2 (n = 51; 54.5%) and B.1.311 (n = 19; 20%) accounting for ∼75% of all samples. The geographic distribution and nesting of clusters of deer and human lineages strongly suggest multiple human-to-deer transmission events followed by subsequent deer-to-deer spread. These discoveries have important implications for the long-term persistence of the SARS-CoV-2 pandemic. Our findings highlight an urgent need for a robust and proactive "One Health" approach to obtain enhanced understanding of the ecology, molecular evolution, and dissemination of SARS-CoV-2.


Subject(s)
COVID-19/transmission , Deer/virology , SARS-CoV-2/isolation & purification , Zoonoses/virology , Animals , COVID-19/virology , Disease Reservoirs/virology , Humans , SARS-CoV-2/genetics
10.
Viruses ; 14(2)2022 01 18.
Article in English | MEDLINE | ID: covidwho-1625960

ABSTRACT

Bats have been recognized as an exceptional viral reservoir, especially for coronaviruses. At least three bat zoonotic coronaviruses (SARS-CoV, MERS-CoV and SARS-CoV-2) have been shown to cause severe diseases in humans and it is expected more will emerge. One of the major features of CoVs is that they are all highly prone to recombination. An extreme example is the insertion of the P10 gene from reoviruses in the bat CoV GCCDC1, first discovered in Rousettus leschenaultii bats in China. Here, we report the detection of GCCDC1 in four different bat species (Eonycteris spelaea, Cynopterus sphinx, Rhinolophus shameli and Rousettus sp.) in Cambodia. This finding demonstrates a much broader geographic and bat species range for this virus and indicates common cross-species transmission. Interestingly, one of the bat samples showed a co-infection with an Alpha CoV most closely related to RsYN14, a virus recently discovered in the same genus (Rhinolophus) of bat in Yunnan, China, 2020. Taken together, our latest findings highlight the need to conduct active surveillance in bats to assess the risk of emerging CoVs, especially in Southeast Asia.


Subject(s)
Chiroptera/virology , Coronaviridae Infections/veterinary , Coronaviridae/classification , Coronaviridae/genetics , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Phylogeography , Recombination, Genetic , Animals , Cambodia/epidemiology , China/epidemiology , Chiroptera/classification , Coronaviridae/isolation & purification , Coronaviridae Infections/epidemiology , Coronaviridae Infections/transmission , Evolution, Molecular , Genome, Viral , Phylogeny
11.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: covidwho-1625724

ABSTRACT

Bats are a reservoir for coronaviruses (CoVs) that periodically spill over to humans, as evidenced by severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. A collection of 174 bat samples originating from South Dakota, Minnesota, Iowa, and Nebraska submitted for rabies virus testing due to human exposure were analyzed using a pan-coronavirus PCR. A previously partially characterized CoV, Eptesicus bat CoV, was identified in 12 (6.9%) samples by nested RT-PCR. Six near-complete genomes were determined. Genetic analysis found a high similarity between all CoV-positive samples, Rocky Mountain bat CoV 65 and alphacoronavirus HCQD-2020 recently identified in South Korea. Phylogenetic analysis of genome sequences showed EbCoV is closely related to bat CoV HKU2 and swine acute diarrhea syndrome CoV; however, topological incongruences were noted for the spike gene that was more closely related to porcine epidemic diarrhea virus. Similar to some alphaCoVs, a novel gene, ORF7, was discovered downstream of the nucleocapsid, whose protein lacked similarity to known proteins. The widespread circulation of EbCoV with similarities to bat viruses that have spilled over to swine warrants further surveillance.


Subject(s)
Alphacoronavirus/classification , Alphacoronavirus/genetics , Chiroptera/virology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Phylogeny , Alphacoronavirus/isolation & purification , Animals , Genome, Viral , Iowa , Midwestern United States , Minnesota , Republic of Korea , Sequence Analysis, DNA , South Dakota , Viral Zoonoses/transmission
12.
Viruses ; 14(1)2022 01 14.
Article in English | MEDLINE | ID: covidwho-1625756

ABSTRACT

Bats are reservoirs of a large number of viruses of global public health significance, including the ancestral virus for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the causative agent of coronavirus disease 2019 (COVID-19). Although bats are natural carriers of multiple pathogenic viruses, they rarely display signs of disease. Recent insights suggest that bats have a more balanced host defense and tolerance system to viral infections that may be linked to the evolutionary adaptation to powered flight. Therefore, a deeper understanding of bat immune system may provide intervention strategies to prevent zoonotic disease transmission and to identify new therapeutic targets. Similar to other eutherian mammals, bats have both innate and adaptive immune systems that have evolved to detect and respond to invading pathogens. Bridging these two systems are innate lymphocytes, which are highly abundant within circulation and barrier tissues. These cells share the characteristics of both innate and adaptive immune cells and are poised to mount rapid effector responses. They are ideally suited as the first line of defense against early stages of viral infections. Here, we will focus on the current knowledge of innate lymphocytes in bats, their function, and their potential role in host-pathogen interactions. Moreover, given that studies into bat immune systems are often hindered by a lack of bat-specific research tools, we will discuss strategies that may aid future research in bat immunity, including the potential use of organoid models to delineate the interplay between innate lymphocytes, bat viruses, and host tolerance.


Subject(s)
Chiroptera/immunology , Host-Pathogen Interactions/immunology , Immunity, Innate/immunology , Lymphocytes/immunology , Animals , Chiroptera/virology , Disease Reservoirs/virology , Humans , Immune Tolerance , Virus Diseases/immunology , Virus Diseases/transmission , Viruses/pathogenicity
13.
Virulence ; 12(1): 2777-2786, 2021 12.
Article in English | MEDLINE | ID: covidwho-1565872

ABSTRACT

Several animal species, including ferrets, hamsters, monkeys, and raccoon dogs, have been shown to be susceptible to experimental infection by the human severe acute respiratory syndrome coronaviruses, such as SARS-CoV and SARS-CoV-2, which were responsible for the 2003 SARS outbreak and the 2019 coronavirus disease (COVID-19) pandemic, respectively. Emerging studies have shown that SARS-CoV-2 natural infection of pet dogs and cats is also possible, but its prevalence is not fully understood. Experimentally, it has been demonstrated that SARS-CoV-2 replicates more efficiently in cats than in dogs and that cats can transmit the virus through aerosols. With approximately 470 million pet dogs and 370 million pet cats cohabitating with their human owners worldwide, the finding of natural SARS-CoV-2 infection in these household pets has important implications for potential zoonotic transmission events during the COVID-19 pandemic as well as future SARS-related outbreaks. Here, we describe some of the ongoing worldwide surveillance efforts to assess the prevalence of SARS-CoV-2 exposure in companion, captive, wild, and farmed animals, as well as provide some perspectives on these efforts including the intra- and inter-species coronavirus transmissions, evolution, and their implications on the human-animal interface along with public health. Some ongoing efforts to develop and implement a new COVID-19 vaccine for animals are also discussed. Surveillance initiatives to track SARS-CoV-2 exposures in animals are necessary to accurately determine their impact on veterinary and human health, as well as define potential reservoir sources of the virus and its evolutionary and transmission dynamics.


Subject(s)
Animals, Domestic/virology , Animals, Wild/virology , Animals, Zoo/virology , COVID-19/veterinary , Pets/virology , SARS-CoV-2/isolation & purification , Animals , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Vaccines , Disease Reservoirs/statistics & numerical data , Disease Reservoirs/virology , Ferrets/virology , Humans , Prevalence , Viral Zoonoses/epidemiology , Viral Zoonoses/prevention & control , Viral Zoonoses/virology
14.
PLoS Negl Trop Dis ; 15(11): e0009842, 2021 11.
Article in English | MEDLINE | ID: covidwho-1523403

ABSTRACT

Orthohantaviruses are emerging rodent-borne pathogens that cause Hantavirus Pulmonary Syndrome in humans. They have a wide range of rodent reservoir hosts and are transmitted to humans through aerosolized viral particles generated by the excretions of infected individuals. Since the first description of HPS in Argentina, new hantaviruses have been reported throughout the country, most of which are pathogenic to humans. We present here the first HPS case infected with Alto Paraguay virus reported in Argentina. Until now, Alto Paraguay virus was considered a non-pathogenic orthohantavirus since it was identified in a rodent, Holochilus chacarius. In addition to this, with the goal of identifying potential hantavirus host species in the province of Santa Fe, we finally describe a novel orthohantavirus found in the native rodent Scapteromys aquaticus, which differed from other hantaviruses described in the country so far. Our findings implicate an epidemiological warning regarding these new orthohantaviruses circulating in Central Argentina as well as new rodent species that must be considered as hosts from now on.


Subject(s)
Disease Reservoirs/virology , Hantavirus Pulmonary Syndrome/virology , Hantavirus/isolation & purification , Sigmodontinae/virology , Adolescent , Animals , Antibodies, Viral/blood , Argentina , Female , Hantavirus/classification , Hantavirus/genetics , Humans , Male , Phylogeny , Sigmodontinae/blood
15.
PLoS Biol ; 19(4): e3001135, 2021 04.
Article in English | MEDLINE | ID: covidwho-1508487

ABSTRACT

Identifying the animal reservoirs from which zoonotic viruses will likely emerge is central to understanding the determinants of disease emergence. Accordingly, there has been an increase in studies attempting zoonotic "risk assessment." Herein, we demonstrate that the virological data on which these analyses are conducted are incomplete, biased, and rapidly changing with ongoing virus discovery. Together, these shortcomings suggest that attempts to assess zoonotic risk using available virological data are likely to be inaccurate and largely only identify those host taxa that have been studied most extensively. We suggest that virus surveillance at the human-animal interface may be more productive.


Subject(s)
Environmental Monitoring , Virus Diseases , Zoonoses/etiology , Zoonoses/prevention & control , Animals , Biodiversity , Disease Reservoirs/classification , Disease Reservoirs/statistics & numerical data , Environmental Monitoring/methods , Environmental Monitoring/standards , Host Specificity/genetics , Humans , Metagenomics/methods , Metagenomics/organization & administration , Metagenomics/standards , Phylogeny , Risk Assessment , Risk Factors , Selection Bias , Virus Diseases/epidemiology , Virus Diseases/etiology , Virus Diseases/prevention & control , Virus Diseases/transmission , Viruses/classification , Viruses/genetics , Viruses/isolation & purification , Viruses/pathogenicity , Zoonoses/epidemiology , Zoonoses/virology
16.
Elife ; 102021 09 21.
Article in English | MEDLINE | ID: covidwho-1513080

ABSTRACT

Researchers worldwide are repeatedly warning us against future zoonotic diseases resulting from humankind's insurgence into natural ecosystems. The same zoonotic pathogens that cause severe infections in a human host frequently fail to produce any disease outcome in their natural hosts. What precise features of the immune system enable natural reservoirs to carry these pathogens so efficiently? To understand these effects, we highlight the importance of tracing the evolutionary basis of pathogen tolerance in reservoir hosts, while drawing implications from their diverse physiological and life-history traits, and ecological contexts of host-pathogen interactions. Long-term co-evolution might allow reservoir hosts to modulate immunity and evolve tolerance to zoonotic pathogens, increasing their circulation and infectious period. Such processes can also create a genetically diverse pathogen pool by allowing more mutations and genetic exchanges between circulating strains, thereby harboring rare alive-on-arrival variants with extended infectivity to new hosts (i.e., spillover). Finally, we end by underscoring the indispensability of a large multidisciplinary empirical framework to explore the proposed link between evolved tolerance, pathogen prevalence, and spillover in the wild.


Subject(s)
Biological Evolution , Communicable Diseases, Emerging/transmission , Disease Reservoirs , Zoonoses/transmission , Animals , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/immunology , Host-Pathogen Interactions , Humans , Virulence , Zoonoses/epidemiology , Zoonoses/immunology
17.
Elife ; 102021 08 20.
Article in English | MEDLINE | ID: covidwho-1513067

ABSTRACT

Identifying the key vector and host species that drive the transmission of zoonotic pathogens is notoriously difficult but critical for disease control. We present a nested approach for quantifying the importance of host and vectors that integrates species' physiological competence with their ecological traits. We apply this framework to a medically important arbovirus, Ross River virus (RRV), in Brisbane, Australia. We find that vertebrate hosts with high physiological competence are not the most important for community transmission; interactions between hosts and vectors largely underpin the importance of host species. For vectors, physiological competence is highly important. Our results identify primary and secondary vectors of RRV and suggest two potential transmission cycles in Brisbane: an enzootic cycle involving birds and an urban cycle involving humans. The framework accounts for uncertainty from each fitted statistical model in estimates of species' contributions to transmission and has has direct application to other zoonotic pathogens.


Subject(s)
Alphavirus Infections/virology , Birds/virology , Culicidae/virology , Disease Reservoirs/virology , Disease Vectors , Ross River virus/pathogenicity , Viral Zoonoses , Alphavirus Infections/transmission , Animals , Host-Pathogen Interactions , Humans , Models, Biological , Queensland , Virulence
18.
Emerg Microbes Infect ; 10(1): 2199-2201, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1505680

ABSTRACT

We report pilot studies to evaluate the susceptibility of common domestic livestock (cattle, sheep, goat, alpaca, rabbit, and horse) to intranasal infection with SARS-CoV-2. None of the infected animals shed infectious virus via nasal, oral, or faecal routes, although viral RNA was detected in several animals. Further, neutralizing antibody titres were low or non-existent one month following infection. These results suggest that domestic livestock are unlikely to contribute to SARS-CoV-2 epidemiology.


Subject(s)
COVID-19/veterinary , Host Specificity , Livestock/virology , SARS-CoV-2/pathogenicity , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , Camelids, New World/virology , Cattle/virology , Chlorocebus aethiops , Disease Reservoirs/virology , Goats/virology , Horses/virology , Host Specificity/immunology , Humans , Nasal Cavity/virology , RNA, Viral/analysis , Rabbits/virology , Rectum/virology , Respiratory System/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sheep/virology , Species Specificity , Vero Cells , Virus Shedding , Viscera/virology
19.
Sci Rep ; 11(1): 21075, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1493212

ABSTRACT

Bats are potential natural reservoirs for emerging viruses, causing deadly human diseases, such as COVID-19, MERS, SARS, Nipah, Hendra, and Ebola infections. The fundamental mechanisms by which bats are considered "living bioreactors" for emerging viruses are not fully understood. Some studies suggest that tolerance to viruses is linked to suppressing antiviral immune and inflammatory responses due to DNA damage by energy generated to fly. Our study reveals that bats' gut bacteria could also be involved in the host and its microbiota's DNA damage. We performed screening of lactic acid bacteria and bacilli isolated from bats' feces for mutagenic and oxidative activity by lux-biosensors. The pro-mutagenic activity was determined when expression of recA increased with the appearance of double-strand breaks in the cell DNA, while an increase of katG expression in the presence of hydroxyl radicals indicated antioxidant activity. We identified that most of the isolated bacteria have pro-mutagenic and antioxidant properties at the same time. This study reveals new insights into bat gut microbiota's potential involvement in antiviral response and opens new frontiers in preventing emerging diseases originating from bats.


Subject(s)
Chiroptera/virology , Gastrointestinal Microbiome , Mutagens , Animals , Antioxidants/metabolism , Antiviral Agents , Bacillus , Bacterial Proteins/genetics , Biosensing Techniques , COVID-19 , DNA , DNA Damage , Disease Reservoirs/virology , Escherichia coli/metabolism , Feces , Immune System , Inflammation , Lactic Acid/metabolism , Mass Spectrometry , Mutagenesis , Oxidative Stress , Rec A Recombinases/metabolism , SARS-CoV-2 , Viruses/isolation & purification , Zoonoses/virology
20.
Virulence ; 12(1): 2777-2786, 2021 12.
Article in English | MEDLINE | ID: covidwho-1483322

ABSTRACT

Several animal species, including ferrets, hamsters, monkeys, and raccoon dogs, have been shown to be susceptible to experimental infection by the human severe acute respiratory syndrome coronaviruses, such as SARS-CoV and SARS-CoV-2, which were responsible for the 2003 SARS outbreak and the 2019 coronavirus disease (COVID-19) pandemic, respectively. Emerging studies have shown that SARS-CoV-2 natural infection of pet dogs and cats is also possible, but its prevalence is not fully understood. Experimentally, it has been demonstrated that SARS-CoV-2 replicates more efficiently in cats than in dogs and that cats can transmit the virus through aerosols. With approximately 470 million pet dogs and 370 million pet cats cohabitating with their human owners worldwide, the finding of natural SARS-CoV-2 infection in these household pets has important implications for potential zoonotic transmission events during the COVID-19 pandemic as well as future SARS-related outbreaks. Here, we describe some of the ongoing worldwide surveillance efforts to assess the prevalence of SARS-CoV-2 exposure in companion, captive, wild, and farmed animals, as well as provide some perspectives on these efforts including the intra- and inter-species coronavirus transmissions, evolution, and their implications on the human-animal interface along with public health. Some ongoing efforts to develop and implement a new COVID-19 vaccine for animals are also discussed. Surveillance initiatives to track SARS-CoV-2 exposures in animals are necessary to accurately determine their impact on veterinary and human health, as well as define potential reservoir sources of the virus and its evolutionary and transmission dynamics.


Subject(s)
Animals, Domestic/virology , Animals, Wild/virology , Animals, Zoo/virology , COVID-19/veterinary , Pets/virology , SARS-CoV-2/isolation & purification , Animals , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Vaccines , Disease Reservoirs/statistics & numerical data , Disease Reservoirs/virology , Ferrets/virology , Humans , Prevalence , Viral Zoonoses/epidemiology , Viral Zoonoses/prevention & control , Viral Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL