Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Viruses ; 14(2)2022 02 21.
Article in English | MEDLINE | ID: covidwho-1705877

ABSTRACT

Recombination creates mosaic genomes containing regions with mixed ancestry, and the accumulation of such events over time can complicate greatly many aspects of evolutionary inference. Here, we developed a sliding window bootstrap (SWB) method to generate genomic bootstrap (GB) barcodes to highlight the regions supporting phylogenetic relationships. The method was applied to an alignment of 56 sarbecoviruses, including SARS-CoV and SARS-CoV-2, responsible for the SARS epidemic and COVID-19 pandemic, respectively. The SWB analyses were also used to construct a consensus tree showing the most reliable relationships and better interpret hidden phylogenetic signals. Our results revealed that most relationships were supported by just a few genomic regions and confirmed that three divergent lineages could be found in bats from Yunnan: SCoVrC, which groups SARS-CoV related coronaviruses from China; SCoV2rC, which includes SARS-CoV-2 related coronaviruses from Southeast Asia and Yunnan; and YunSar, which contains a few highly divergent viruses recently described in Yunnan. The GB barcodes showed evidence for ancient recombination between SCoV2rC and YunSar genomes, as well as more recent recombination events between SCoVrC and SCoV2rC genomes. The recombination and phylogeographic patterns suggest a strong host-dependent selection of the viral RNA-dependent RNA polymerase. In addition, SARS-CoV-2 appears as a mosaic genome composed of regions sharing recent ancestry with three bat SCoV2rCs from Yunnan (RmYN02, RpYN06, and RaTG13) or related to more ancient ancestors in bats from Yunnan and Southeast Asia. Finally, our results suggest that viral circular RNAs may be key molecules for the mechanism of recombination.


Subject(s)
DNA Barcoding, Taxonomic/methods , Disease Reservoirs/veterinary , Evolution, Molecular , Genomics/methods , Recombination, Genetic , SARS Virus/genetics , SARS-CoV-2/genetics , Animals , China , Chiroptera/virology , Disease Reservoirs/virology , Genome, Viral , Phylogeography
2.
Viruses ; 14(2)2022 02 07.
Article in English | MEDLINE | ID: covidwho-1674829

ABSTRACT

Coronaviruses (CoV) are divided into the genera α-CoVs, ß-CoVs, γ-CoVs and δ-CoVs. Of these, α-CoVs and ß-CoVs are solely capable of causing infections in humans, resulting in mild to severe respiratory symptoms. Bats have been identified as natural reservoir hosts for CoVs belonging to these two genera. Consequently, research on bat populations, CoV prevalence in bats and genetic characterization of bat CoVs is of special interest to investigate the potential transmission risks. We present the genome sequence of a novel α-CoV strain detected in rectal swab samples of Miniopterus fuliginosus bats from a colony in the Wavul Galge cave (Koslanda, Sri Lanka). The novel strain is highly similar to Miniopterus bat coronavirus 1, an α-CoV located in the subgenus of Minunacoviruses. Phylogenetic reconstruction revealed a high identity of the novel strain to other α-CoVs derived from Miniopterus bats, while human-pathogenic α-CoV strains like HCoV-229E and HCoV-NL63 were more distantly related. Comparison with selected bat-related and human-pathogenic strains of the ß-CoV genus showed low identities of ~40%. Analyses of the different genes on nucleotide and amino acid level revealed that the non-structural ORF1a/1b are more conserved among α-CoVs and ß-CoVs, while there are higher variations in the structural proteins known to be important for host specificity. The novel strain was named batCoV/MinFul/2018/SriLanka and had a prevalence of 50% (66/130) in rectal swab samples and 58% (61/104) in feces samples that were collected from Miniopterus bats in Wavul Galge cave. Based on the differences between strain batCoV/MinFul/2018/SriLanka and human-pathogenic α-CoVs and ß-CoVs, we conclude that there is a rather low transmission risk to humans. Further studies in the Wavul Galge cave and at other locations in Sri Lanka will give more detailed information about the prevalence of this virus.


Subject(s)
Alphacoronavirus/genetics , Alphacoronavirus/isolation & purification , Chiroptera/virology , Coronavirus Infections/veterinary , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Genome, Viral , Alphacoronavirus/classification , Animals , Caves/virology , Coronavirus Infections/virology , Evolution, Molecular , Female , Male , Phylogeny , Sequence Analysis, DNA , Sri Lanka
3.
Viruses ; 14(2)2022 01 18.
Article in English | MEDLINE | ID: covidwho-1625960

ABSTRACT

Bats have been recognized as an exceptional viral reservoir, especially for coronaviruses. At least three bat zoonotic coronaviruses (SARS-CoV, MERS-CoV and SARS-CoV-2) have been shown to cause severe diseases in humans and it is expected more will emerge. One of the major features of CoVs is that they are all highly prone to recombination. An extreme example is the insertion of the P10 gene from reoviruses in the bat CoV GCCDC1, first discovered in Rousettus leschenaultii bats in China. Here, we report the detection of GCCDC1 in four different bat species (Eonycteris spelaea, Cynopterus sphinx, Rhinolophus shameli and Rousettus sp.) in Cambodia. This finding demonstrates a much broader geographic and bat species range for this virus and indicates common cross-species transmission. Interestingly, one of the bat samples showed a co-infection with an Alpha CoV most closely related to RsYN14, a virus recently discovered in the same genus (Rhinolophus) of bat in Yunnan, China, 2020. Taken together, our latest findings highlight the need to conduct active surveillance in bats to assess the risk of emerging CoVs, especially in Southeast Asia.


Subject(s)
Chiroptera/virology , Coronaviridae Infections/veterinary , Coronaviridae/classification , Coronaviridae/genetics , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Phylogeography , Recombination, Genetic , Animals , Cambodia/epidemiology , China/epidemiology , Chiroptera/classification , Coronaviridae/isolation & purification , Coronaviridae Infections/epidemiology , Coronaviridae Infections/transmission , Evolution, Molecular , Genome, Viral , Phylogeny
4.
Viruses ; 14(2)2022 01 19.
Article in English | MEDLINE | ID: covidwho-1625724

ABSTRACT

Bats are a reservoir for coronaviruses (CoVs) that periodically spill over to humans, as evidenced by severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. A collection of 174 bat samples originating from South Dakota, Minnesota, Iowa, and Nebraska submitted for rabies virus testing due to human exposure were analyzed using a pan-coronavirus PCR. A previously partially characterized CoV, Eptesicus bat CoV, was identified in 12 (6.9%) samples by nested RT-PCR. Six near-complete genomes were determined. Genetic analysis found a high similarity between all CoV-positive samples, Rocky Mountain bat CoV 65 and alphacoronavirus HCQD-2020 recently identified in South Korea. Phylogenetic analysis of genome sequences showed EbCoV is closely related to bat CoV HKU2 and swine acute diarrhea syndrome CoV; however, topological incongruences were noted for the spike gene that was more closely related to porcine epidemic diarrhea virus. Similar to some alphaCoVs, a novel gene, ORF7, was discovered downstream of the nucleocapsid, whose protein lacked similarity to known proteins. The widespread circulation of EbCoV with similarities to bat viruses that have spilled over to swine warrants further surveillance.


Subject(s)
Alphacoronavirus/classification , Alphacoronavirus/genetics , Chiroptera/virology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Phylogeny , Alphacoronavirus/isolation & purification , Animals , Genome, Viral , Iowa , Midwestern United States , Minnesota , Republic of Korea , Sequence Analysis, DNA , South Dakota , Viral Zoonoses/transmission
5.
Viruses ; 13(10)2021 10 04.
Article in English | MEDLINE | ID: covidwho-1463828

ABSTRACT

SARS-CoV-2 is the etiological agent responsible for the ongoing COVID-19 pandemic, which continues to spread with devastating effects on global health and socioeconomics. The susceptibility of domestic and wild animal species to infection is a critical facet of SARS-CoV-2 ecology, since reverse zoonotic spillover events resulting in SARS-CoV-2 outbreaks in animal populations could result in the establishment of new virus reservoirs. Adaptive mutations in the virus to new animal species could also complicate ongoing mitigation strategies to combat SARS-CoV-2. In addition, animal species susceptible to SARS-CoV-2 infection are essential as standardized preclinical models for the development and efficacy testing of vaccines and therapeutics. In this review, we summarize the current findings regarding the susceptibility of different domestic and wild animal species to experimental SARS-CoV-2 infection and provide detailed descriptions of the clinical disease and transmissibility in these animals. In addition, we outline the documented natural infections in animals that have occurred at the human-animal interface. A comprehensive understanding of animal susceptibility to SARS-CoV-2 is crucial to inform public health, veterinary, and agricultural systems, and to guide environmental policies.


Subject(s)
Animals, Domestic/virology , Animals, Wild/virology , COVID-19/veterinary , SARS-CoV-2/genetics , Animals , COVID-19/pathology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Host Specificity/genetics , Host Specificity/physiology , Zoonoses
6.
Cell Host Microbe ; 29(2): 160-164, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1385266

ABSTRACT

The emergence of alternate variants of SARS-CoV-2 due to ongoing adaptations in humans and following human-to-animal transmission has raised concern over the efficacy of vaccines against new variants. We describe human-to-animal transmission (zooanthroponosis) of SARS-CoV-2 and its implications for faunal virus persistence and vaccine-mediated immunity.


Subject(s)
COVID-19/veterinary , Communicable Diseases, Emerging/veterinary , SARS-CoV-2/pathogenicity , Zoonoses/transmission , Zoonoses/virology , Animals , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Humans , Immunity , Viral Vaccines/immunology
7.
Vet Q ; 41(1): 228-231, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1328885

ABSTRACT

Current evidence indicates that cats play a limited role in COVID-19 epidemiology, and pets are probably dead-end hosts of SARS-CoV-2 and pose negligible risks of transmission to humans. Still, one health concept is to be adopted widely as a component of mitigation strategies to tackle the ongoing pandemic. Therefore, in terms of the magnitude of infection and potential to transmit SARS-CoV-2 to humans, our surveillance efforts should mainly focus on mustelids (especially minks, ferrets, and others) for early detection and control of infection. This will ensure that SARS-CoV-2 will not get established in the wild animal population of these susceptible species. We agree with Dr. Passarella Teixeira on the possibility of domestic and feral cats acting as an urban reservoir, subsequently transmitting the virus to human beings. However, it is less likely that such a phenomenon will be reported even if it has occurred due to the efficient and extensive human-to-human transmission of SARS-CoV-2.


Subject(s)
COVID-19/veterinary , Cat Diseases/virology , SARS-CoV-2 , Animals , Animals, Domestic , Animals, Wild , COVID-19/transmission , COVID-19/virology , Cat Diseases/transmission , Cats , Disease Reservoirs/veterinary
8.
Curr Biol ; 31(16): 3671-3677.e3, 2021 08 23.
Article in English | MEDLINE | ID: covidwho-1300741

ABSTRACT

Most new infectious diseases emerge when pathogens transfer from animals to humans.1,2 The suspected origin of the COVID pandemic in a wildlife wet market has resurfaced debates on the role of wildlife trade as a potential source of emerging zoonotic diseases.3-5 Yet there are no studies quantitatively assessing zoonotic disease risk associated with wildlife trade. Combining data on mammal species hosting zoonotic viruses and mammals known to be in current and future wildlife trade,6 we found that one-quarter (26.5%) of the mammals in wildlife trade harbor 75% of known zoonotic viruses, a level much higher than domesticated and non-traded mammals. The traded mammals also harbor distinct compositions of zoonotic viruses and different host reservoirs from non-traded and domesticated mammals. Furthermore, we highlight that primates, ungulates, carnivores, and bats represent significant zoonotic disease risks as they host 132 (58%) of 226 known zoonotic viruses in present wildlife trade, whereas species of bats, rodents, and marsupials represent significant zoonotic disease risks in future wildlife trade. Thus, the risk of carrying zoonotic diseases is not equal for all mammal species in wildlife trade. Overall, our findings strengthen the evidence that wildlife trade and zoonotic disease risks are strongly associated, and that mitigation measures should prioritize species with the highest risk of carrying zoonotic viruses. Curbing the sales of wildlife products and developing principles that support the sustainable and healthy trade of wildlife could be cost-effective investments given the potential risk and consequences of zoonotic outbreaks.


Subject(s)
Animals, Wild/virology , Commerce , Mammals/virology , Pandemics/prevention & control , Zoonoses/transmission , Animals , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Humans , Sustainable Development , Zoonoses/epidemiology , Zoonoses/prevention & control , Zoonoses/virology
9.
PLoS Pathog ; 17(5): e1009229, 2021 05.
Article in English | MEDLINE | ID: covidwho-1239922

ABSTRACT

While MERS-CoV (Middle East respiratory syndrome Coronavirus) provokes a lethal disease in humans, camelids, the main virus reservoir, are asymptomatic carriers, suggesting a crucial role for innate immune responses in controlling the infection. Experimentally infected camelids clear infectious virus within one week and mount an effective adaptive immune response. Here, transcription of immune response genes was monitored in the respiratory tract of MERS-CoV infected alpacas. Concomitant to the peak of infection, occurring at 2 days post inoculation (dpi), type I and III interferons (IFNs) were maximally transcribed only in the nasal mucosa of alpacas, while interferon stimulated genes (ISGs) were induced along the whole respiratory tract. Simultaneous to mild focal infiltration of leukocytes in nasal mucosa and submucosa, upregulation of the anti-inflammatory cytokine IL10 and dampened transcription of pro-inflammatory genes under NF-κB control were observed. In the lung, early (1 dpi) transcription of chemokines (CCL2 and CCL3) correlated with a transient accumulation of mainly mononuclear leukocytes. A tight regulation of IFNs in lungs with expression of ISGs and controlled inflammatory responses, might contribute to virus clearance without causing tissue damage. Thus, the nasal mucosa, the main target of MERS-CoV in camelids, seems central in driving an efficient innate immune response based on triggering ISGs as well as the dual anti-inflammatory effects of type III IFNs and IL10.


Subject(s)
Camelids, New World , Coronavirus Infections/immunology , Interferon Type I/metabolism , Interferons/metabolism , Middle East Respiratory Syndrome Coronavirus/immunology , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Camelids, New World/immunology , Camelids, New World/metabolism , Camelids, New World/virology , Chlorocebus aethiops , Coronavirus Infections/metabolism , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Disease Reservoirs/veterinary , Disease Resistance/drug effects , Disease Resistance/genetics , Disease Resistance/immunology , Gene Expression Regulation , Immunity, Innate/physiology , Inflammation/immunology , Inflammation/metabolism , Inflammation/veterinary , Inflammation/virology , Interferon Type I/genetics , Interferon Type I/pharmacology , Interferons/genetics , Interferons/pharmacology , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/physiology , Nasal Mucosa/drug effects , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Respiratory System/drug effects , Respiratory System/immunology , Respiratory System/metabolism , Respiratory System/virology , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects
10.
Vet Q ; 41(1): 181-201, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1202174

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously 2019-nCoV) is suspected of having originated in 2019 in China from a coronavirus infected bat of the genus Rhinolophus. Following the initial emergence, possibly facilitated by a mammalian bridge host, SARS-CoV-2 is currently transmitted across the globe via efficient human-to-human transmission. Results obtained from experimental studies indicate that animal species such as cats, ferrets, raccoon dogs, cynomolgus macaques, rhesus macaques, white-tailed deer, rabbits, Egyptian fruit bats, and Syrian hamsters are susceptible to SARS-CoV-2 infection, and that cat-to-cat and ferret-to-ferret transmission can take place via contact and air. However, natural infections of SARS-CoV-2 have been reported only in pet dogs and cats, tigers, lions, snow leopards, pumas, and gorillas at zoos, and farmed mink and ferrets. Even though human-to-animal spillover has been reported at several instances, SARS-CoV-2 transmission from animals-to-humans has only been reported from mink-to-humans in mink farms. Following the rapid transmission of SARS-CoV-2 within the mink population, a new mink-associated SARS-CoV-2 variant emerged that was identified in both humans and mink. The increasing reports of SARS-CoV-2 in carnivores indicate the higher susceptibility of animal species belonging to this order. The sporadic reports of SARS-CoV-2 infection in domestic and wild animal species require further investigation to determine if SARS-CoV-2 or related Betacoronaviruses can get established in kept, feral or wild animal populations, which may eventually act as viral reservoirs. This review analyzes the current evidence of SARS-CoV-2 natural infection in domestic and wild animal species and their possible implications on public health.


Subject(s)
Animals, Domestic , Animals, Wild , COVID-19/veterinary , Disease Reservoirs/veterinary , Public Health , SARS-CoV-2 , Animals , Animals, Zoo , COVID-19/epidemiology , COVID-19/transmission , Humans
11.
Adv Virus Res ; 110: 59-102, 2021.
Article in English | MEDLINE | ID: covidwho-1172111

ABSTRACT

Within only one year after the first detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), nearly 100 million infections were reported in the human population globally, with more than two million fatal cases. While SARS-CoV-2 most likely originated from a natural wildlife reservoir, neither the immediate viral precursor nor the reservoir or intermediate hosts have been identified conclusively. Due to its zoonotic origin, SARS-CoV-2 may also be relevant to animals. Thus, to evaluate the host range of the virus and to assess the risk to act as potential animal reservoir, a large number of different animal species were experimentally infected with SARS-CoV-2 or monitored in the field in the last months. In this review, we provide an update on studies describing permissive and resistant animal species. Using a scoring system based on viral genome detection subsequent to SARS-CoV-2 inoculation, seroconversion, the development of clinical signs and transmission to conspecifics or humans, the susceptibility of diverse animal species was classified on a semi-quantitative scale. While major livestock species such as pigs, cattle and poultry are mostly resistant, companion animals appear moderately susceptible, while several model animal species used in research, including several Cricetidae species and non-human primates, are highly susceptible to SARS-CoV-2 infection. By natural infections, it became obvious that American minks (Neovison vison) in fur farms, e.g., in the Netherlands and Denmark are highly susceptible resulting in local epidemics in these animals.


Subject(s)
COVID-19/veterinary , SARS-CoV-2/physiology , Animals , Animals, Wild/virology , COVID-19/diagnosis , COVID-19/transmission , COVID-19/virology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Disease Susceptibility/diagnosis , Disease Susceptibility/veterinary , Disease Susceptibility/virology , Host Specificity , Livestock/virology , Models, Animal , Pets/virology , SARS-CoV-2/isolation & purification
12.
Trends Microbiol ; 29(7): 593-605, 2021 07.
Article in English | MEDLINE | ID: covidwho-1157752

ABSTRACT

Ecological and evolutionary processes govern the fitness, propagation, and interactions of organisms through space and time, and viruses are no exception. While coronavirus disease 2019 (COVID-19) research has primarily emphasized virological, clinical, and epidemiological perspectives, crucial aspects of the pandemic are fundamentally ecological or evolutionary. Here, we highlight five conceptual domains of ecology and evolution - invasion, consumer-resource interactions, spatial ecology, diversity, and adaptation - that illuminate (sometimes unexpectedly) the emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We describe the applications of these concepts across levels of biological organization and spatial scales, including within individual hosts, host populations, and multispecies communities. Together, these perspectives illustrate the integrative power of ecological and evolutionary ideas and highlight the benefits of interdisciplinary thinking for understanding emerging viruses.


Subject(s)
COVID-19/virology , Disease Reservoirs/veterinary , Ecology , Evolution, Molecular , SARS-CoV-2/genetics , Animals , COVID-19/epidemiology , Chiroptera/virology , Disease Reservoirs/virology , Humans , Zoonoses/virology
13.
Emerg Infect Dis ; 27(4): 1015-1022, 2021 04.
Article in English | MEDLINE | ID: covidwho-1150678

ABSTRACT

The ongoing global pandemic caused by coronavirus disease has once again demonstrated the role of the family Coronaviridae in causing human disease outbreaks. Because severe acute respiratory syndrome coronavirus 2 was first detected in December 2019, information on its tropism, host range, and clinical manifestations in animals is limited. Given the limited information, data from other coronaviruses might be useful for informing scientific inquiry, risk assessment, and decision-making. We reviewed endemic and emerging infections of alphacoronaviruses and betacoronaviruses in wildlife, livestock, and companion animals and provide information on the receptor use, known hosts, and clinical signs associated with each host for 15 coronaviruses detected in humans and animals. This information can be used to guide implementation of a One Health approach that involves human health, animal health, environmental, and other relevant partners in developing strategies for preparedness, response, and control to current and future coronavirus disease threats.


Subject(s)
Coronaviridae/isolation & purification , Coronavirus Infections/veterinary , Disease Reservoirs/veterinary , Zoonoses/virology , Alphacoronavirus/isolation & purification , Animals , Animals, Wild , Betacoronavirus/isolation & purification , COVID-19/virology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Disease Outbreaks , Disease Reservoirs/virology , Host Specificity , Humans , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Pandemics , SARS-CoV-2 , Zoonoses/epidemiology
14.
Gene ; 784: 145596, 2021 Jun 05.
Article in English | MEDLINE | ID: covidwho-1144613

ABSTRACT

The SARS-CoV-2 Variant of Concern 202012/01 (VOC-202012/01) is rapidly spreading worldwide owing to its substantial transmission advantage. The variant has changes in critical sites of the spike protein with potential biological significance. Moreover, VOC-202012/01 has a mutation that inactivates the ORF8 protein, whose absence can change the clinical features of the infection. Why VOC-202012/01 is more transmissible remains unclear, but spike mutations and ORF8 inactivation stand out by their known phenotypic effects. Here I show that variants combining relevant spike mutations and the absence of ORF8 occurred in SARS-CoV-2 and related viruses circulating in other host species. A truncated ORF8 (Q23stop) occurred in a SARS-CoV-2-related virus from a pangolin seized in China in 2017, also with several mutations in critical spike sites. Strikingly, I found that variants without ORF8 (E19stop) and with the N501T spike mutation circulated in farmed mink and humans from Denmark. Although with differences to VOC-202012/01, the identification of these variants highlights the danger of having reservoirs of SARS-CoV-2 and related viruses where more transmissible variants may occur and spill over to humans.


Subject(s)
COVID-19/veterinary , Mink/virology , Pangolins/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/genetics , Animals , COVID-19/transmission , COVID-19/virology , China , Codon, Nonsense , Denmark , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Host Specificity , Humans , SARS-CoV-2/isolation & purification , Viral Proteins/metabolism
15.
Euro Surveill ; 26(5)2021 02.
Article in English | MEDLINE | ID: covidwho-1067624

ABSTRACT

In June-November 2020, SARS-CoV-2-infected mink were detected in 290 of 1,147 Danish mink farms. In North Denmark Region, 30% (324/1,092) of people found connected to mink farms tested SARS-CoV-2-PCR-positive and approximately 27% (95% confidence interval (CI): 25-30) of SARS-CoV-2-strains from humans in the community were mink-associated. Measures proved insufficient to mitigate spread. On 4 November, the government ordered culling of all Danish mink. Farmed mink constitute a potential virus reservoir challenging pandemic control.


Subject(s)
Animals, Wild/virology , COVID-19/epidemiology , COVID-19/veterinary , Disease Outbreaks/veterinary , Disease Reservoirs/veterinary , Disease Transmission, Infectious/veterinary , Mink/virology , Pandemics/veterinary , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Zoonoses/transmission , Animals , COVID-19/transmission , COVID-19/virology , COVID-19 Nucleic Acid Testing , Denmark/epidemiology , Disease Outbreaks/statistics & numerical data , Disease Reservoirs/virology , Farms , Genes, Viral , Humans , Incidence , Polymerase Chain Reaction , Public Health , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/classification , Viral Zoonoses/virology , Whole Genome Sequencing , Zoonoses/transmission , Zoonoses/virology
16.
Cell Host Microbe ; 29(2): 160-164, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1064929

ABSTRACT

The emergence of alternate variants of SARS-CoV-2 due to ongoing adaptations in humans and following human-to-animal transmission has raised concern over the efficacy of vaccines against new variants. We describe human-to-animal transmission (zooanthroponosis) of SARS-CoV-2 and its implications for faunal virus persistence and vaccine-mediated immunity.


Subject(s)
COVID-19/veterinary , Communicable Diseases, Emerging/veterinary , SARS-CoV-2/pathogenicity , Zoonoses/transmission , Zoonoses/virology , Animals , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Humans , Immunity , Viral Vaccines/immunology
17.
Nature ; 589(7842): 363-370, 2021 01.
Article in English | MEDLINE | ID: covidwho-1039649

ABSTRACT

There have been several major outbreaks of emerging viral diseases, including Hendra, Nipah, Marburg and Ebola virus diseases, severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS)-as well as the current pandemic of coronavirus disease 2019 (COVID-19). Notably, all of these outbreaks have been linked to suspected zoonotic transmission of bat-borne viruses. Bats-the only flying mammal-display several additional features that are unique among mammals, such as a long lifespan relative to body size, a low rate of tumorigenesis and an exceptional ability to host viruses without presenting clinical disease. Here we discuss the mechanisms that underpin the host defence system and immune tolerance of bats, and their ramifications for human health and disease. Recent studies suggest that 64 million years of adaptive evolution have shaped the host defence system of bats to balance defence and tolerance, which has resulted in a unique ability to act as an ideal reservoir host for viruses. Lessons from the effective host defence of bats would help us to better understand viral evolution and to better predict, prevent and control future viral spillovers. Studying the mechanisms of immune tolerance in bats could lead to new approaches to improving human health. We strongly believe that it is time to focus on bats in research for the benefit of both bats and humankind.


Subject(s)
Chiroptera/immunology , Chiroptera/virology , Disease Reservoirs/veterinary , Viral Zoonoses/immunology , Viral Zoonoses/transmission , Animals , Asymptomatic Diseases , Disease Reservoirs/virology , Evolution, Molecular , Humans , Immune Tolerance , Viral Zoonoses/virology
18.
PLoS Biol ; 18(11): e3000947, 2020 11.
Article in English | MEDLINE | ID: covidwho-1005852

ABSTRACT

Human perturbation of natural systems is accelerating the emergence of infectious diseases, mandating integration of disease and ecological research. Bats have been associated with recent zoonoses, but our bibliometric analysis of coauthor relationships identified a separation of bat ecologists and infectious disease researchers with few cross-disciplinary relationships. Of 5,645 papers, true interdisciplinary collaborations occurred primarily in research focused on White Nose Syndrome (WNS). This finding is important because it illustrates how research with outcomes favoring both bat conservation and disease mitigation promotes domain integration and network connectivity. We advocate for increased engagement between ecology and infectious researchers to address such common causes and suggest that efforts focus on leveraging existing activities, building interdisciplinary projects, and networking individuals and networks to integrate domains and coordinate resources. We provide specific opportunities for pursuing these strategies through the Bat One Health Research Network (BOHRN).


Subject(s)
Chiroptera/virology , Communicable Diseases, Emerging/veterinary , Animals , COVID-19/transmission , COVID-19/virology , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Conservation of Natural Resources , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Disease Vectors , Ecosystem , Humans , Interdisciplinary Research , Pandemics , SARS-CoV-2 , Viral Zoonoses/transmission , Viral Zoonoses/virology
19.
Med Sci (Paris) ; 36(6-7): 642-646, 2020.
Article in French | MEDLINE | ID: covidwho-851322

ABSTRACT

TITLE: Épidémies: Leçons d'Histoire. ABSTRACT: Jusqu'au milieu du XVIIIe siècle, l'espérance de vie était de 25 ans dans les pays d'Europe, proche alors de celle de la préhistoire. À cette époque, nos ancêtres succombaient, pour la plupart, à une infection bactérienne ou virale, quand la mort n'était pas le résultat d'un épisode critique, comme la guerre ou la famine. Un seul microbe suffisait à terrasser de nombreuses victimes. L'épidémie de SARS-CoV-2 est là pour nous rappeler que ce risque est désormais à nouveau d'actualité. Si son origine zoonotique par la chauve-souris est probable, la contamination interhumaine montre son adaptation rapide à l'homme et permet d'évoquer ainsi la transmission des épidémies, qu'elle soit ou non liée à des vecteurs, ces derniers pouvant représenter dans d'autres occasions un des maillons de la chaîne.


Subject(s)
Bacterial Infections/epidemiology , Epidemics/history , Virus Diseases/epidemiology , Adult , Animals , Bacterial Infections/history , Betacoronavirus/physiology , COVID-19 , Cattle , Chiroptera/virology , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/history , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/virology , Coronavirus Infections/epidemiology , Disease Reservoirs/microbiology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Dogs , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , History, Ancient , Humans , Life Expectancy/history , Life Expectancy/trends , Longevity/physiology , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2 , Sheep/microbiology , Sheep/virology , Swine/microbiology , Swine/virology , Virus Diseases/history , Zoonoses/epidemiology , Zoonoses/virology
20.
Viruses ; 12(8)2020 08 14.
Article in English | MEDLINE | ID: covidwho-831474

ABSTRACT

To date, the microbiome, as well as the virome of the Croatian populations of bats, was unknown. Here, we present the results of the first viral metagenomic analysis of guano, feces and saliva (oral swabs) of seven bat species (Myotis myotis, Miniopterus schreibersii, Rhinolophus ferrumequinum, Eptesicus serotinus, Myotis blythii, Myotis nattereri and Myotis emarginatus) conducted in Mediterranean and continental Croatia. Viral nucleic acids were extracted from sample pools, and analyzed using Illumina sequencing. The presence of 63 different viral families representing all seven Baltimore groups were confirmed, most commonly insect viruses likely reflecting the diet of insectivorous bats. Virome compositions of our samples were largely impacted by the sample type: invertebrate-infecting viruses were most frequently found in feces, bacterial viruses in guano, whereas vertebrate-infecting viruses were most common in swabs. Most vertebrate-infecting virus sequences were assigned to retroviruses, parvoviruses, iridoviruses, and poxviruses. We further report the complete genome sequence of a novel adeno-associated virus, densovirus and a near complete length genome sequence of a novel iflavirus. Additionally, one of the most interesting findings in this study was the difference in viromes between two contrasting habitats, the continental and Mediterranean Croatia.


Subject(s)
Chiroptera/virology , Disease Reservoirs/veterinary , Ecosystem , Metagenome , Virome/genetics , Virus Diseases/veterinary , Animals , Croatia , Disease Reservoirs/virology , Feces/virology , High-Throughput Nucleotide Sequencing , Insect Viruses/classification , Metagenomics , Phylogeny , Saliva/virology , Sequence Analysis, DNA , Viruses/classification , Viruses/isolation & purification , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL