Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Int J Mol Sci ; 22(8)2021 Apr 20.
Article in English | MEDLINE | ID: covidwho-1299445


Antithrombin (AT) is a natural anticoagulant that interacts with activated proteases of the coagulation system and with heparan sulfate proteoglycans (HSPG) on the surface of cells. The protein, which is synthesized in the liver, is also essential to confer the effects of therapeutic heparin. However, AT levels drop in systemic inflammatory diseases. The reason for this decline is consumption by the coagulation system but also by immunological processes. Aside from the primarily known anticoagulant effects, AT elicits distinct anti-inflammatory signaling responses. It binds to structures of the glycocalyx (syndecan-4) and further modulates the inflammatory response of endothelial cells and leukocytes by interacting with surface receptors. Additionally, AT exerts direct antimicrobial effects: depending on AT glycosylation it can bind to and perforate bacterial cell walls. Peptide fragments derived from proteolytic degradation of AT exert antibacterial properties. Despite these promising characteristics, therapeutic supplementation in inflammatory conditions has not proven to be effective in randomized control trials. Nevertheless, new insights provided by subgroup analyses and retrospective trials suggest that a recommendation be made to identify the patient population that would benefit most from AT substitution. Recent experiment findings place the role of various AT isoforms in the spotlight. This review provides an overview of new insights into a supposedly well-known molecule.

Antithrombins/pharmacology , Disease Resistance/drug effects , Disease Susceptibility , Host-Pathogen Interactions , Inflammation/etiology , Inflammation/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antithrombins/therapeutic use , Biomarkers , Disease Management , Host-Pathogen Interactions/drug effects , Humans , Immunomodulation/drug effects , Inflammation/drug therapy , Inflammation/pathology , Organ Specificity , Signal Transduction/drug effects
PLoS Pathog ; 17(5): e1009229, 2021 05.
Article in English | MEDLINE | ID: covidwho-1239922


While MERS-CoV (Middle East respiratory syndrome Coronavirus) provokes a lethal disease in humans, camelids, the main virus reservoir, are asymptomatic carriers, suggesting a crucial role for innate immune responses in controlling the infection. Experimentally infected camelids clear infectious virus within one week and mount an effective adaptive immune response. Here, transcription of immune response genes was monitored in the respiratory tract of MERS-CoV infected alpacas. Concomitant to the peak of infection, occurring at 2 days post inoculation (dpi), type I and III interferons (IFNs) were maximally transcribed only in the nasal mucosa of alpacas, while interferon stimulated genes (ISGs) were induced along the whole respiratory tract. Simultaneous to mild focal infiltration of leukocytes in nasal mucosa and submucosa, upregulation of the anti-inflammatory cytokine IL10 and dampened transcription of pro-inflammatory genes under NF-κB control were observed. In the lung, early (1 dpi) transcription of chemokines (CCL2 and CCL3) correlated with a transient accumulation of mainly mononuclear leukocytes. A tight regulation of IFNs in lungs with expression of ISGs and controlled inflammatory responses, might contribute to virus clearance without causing tissue damage. Thus, the nasal mucosa, the main target of MERS-CoV in camelids, seems central in driving an efficient innate immune response based on triggering ISGs as well as the dual anti-inflammatory effects of type III IFNs and IL10.

Camelids, New World , Coronavirus Infections/immunology , Interferon Type I/metabolism , Interferons/metabolism , Middle East Respiratory Syndrome Coronavirus/immunology , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Camelids, New World/immunology , Camelids, New World/metabolism , Camelids, New World/virology , Chlorocebus aethiops , Coronavirus Infections/metabolism , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Disease Reservoirs/veterinary , Disease Resistance/drug effects , Disease Resistance/genetics , Disease Resistance/immunology , Gene Expression Regulation , Immunity, Innate/physiology , Inflammation/immunology , Inflammation/metabolism , Inflammation/veterinary , Inflammation/virology , Interferon Type I/genetics , Interferon Type I/pharmacology , Interferons/genetics , Interferons/pharmacology , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/physiology , Nasal Mucosa/drug effects , Nasal Mucosa/immunology , Nasal Mucosa/metabolism , Nasal Mucosa/virology , Respiratory System/drug effects , Respiratory System/immunology , Respiratory System/metabolism , Respiratory System/virology , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects
Tohoku J Exp Med ; 251(3): 175-181, 2020 07.
Article in English | MEDLINE | ID: covidwho-635225


The novel coronavirus disease 2019 (COVID-19) is now officially declared as a pandemic by the World Health Organization (WHO), and most parts of the world are taking drastic measures to restrict human movements to contain the infection. Millions around the world are wondering, if there is anything that could be done, other than maintaining high personal hygiene, and be vigilant of the symptoms, to reduce the spread of the disease and chances of getting infected, or at least to lessen the burden of the disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The National and International health agencies, including the National Institutes of Health (NIH), the Centers for Disease Control and Prevention (CDC), and the WHO have provided clear guidelines for both preventive and treatment suggestions. In this article, I will briefly discuss, why keeping adequate zinc balance might enhance the host response and be protective of viral infections.

Betacoronavirus , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Zinc/physiology , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/therapeutic use , Age Factors , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Betacoronavirus/drug effects , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Dietary Supplements , Disease Resistance/drug effects , Dose-Response Relationship, Drug , Humans , Immune System/drug effects , Micronutrients/physiology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , SARS-CoV-2 , Virus Replication/drug effects , Zinc/administration & dosage , Zinc/deficiency , Zinc/pharmacology