Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Vet Res Commun ; 46(3): 837-852, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1888963

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the current pandemic disease denominated as Coronavirus Disease 2019 (COVID-19). Several studies suggest that the original source of this virus was a spillover from an animal reservoir and its subsequent adaptation to humans. Of all the different animals affected, cats are one of the most susceptible species. Moreover, several cases of natural infection in domestic and stray cats have been reported in the last few months. Although experimental infection assays have demonstrated that cats are successfully infected and can transmit the virus to other cats by aerosol, the conditions used for these experiments have not been specified in terms of ventilation. We have, therefore, evaluated the susceptibility of cats using routes of infection similar to those expected under natural conditions (exposure to a sneeze, cough, or contaminated environment) by aerosol and oral infection. We have also evaluated the transmission capacity among infected and naïve cats using different air exchange levels. Despite being infected using natural routes and shed virus for a long period, the cats did not transmit the virus to contact cats when air renovation features were employed. The infected animals also developed gross and histological lesions in several organs. These outcomes confirm that cats are at risk of infection when exposed to infected people, but do not transmit the virus to other cats with high rates of air renovation.


Subject(s)
COVID-19 , Cat Diseases , Animals , COVID-19/veterinary , Cats , Disease Susceptibility/veterinary , Humans , Pandemics/veterinary , SARS-CoV-2
2.
Res Vet Sci ; 147: 74-82, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1873256

ABSTRACT

In and around poultry farms, high concentrations of endotoxins are found that have a negative impact on the health of farmers and local residents. However, little is known about the effects of chronic exposure to endotoxins on the health of poultry. The aim of this study was to identify effects of chronic exposure to airborne endotoxins (E. coli LPS) on the immune system, respiratory tract, disease susceptibility and welfare of broilers. Effects of high (HE) and low endotoxin (LE) concentrations on natural antibody titers (NAb), performance and behavior of broilers were determined. After treatment with a respiratory virus infection, infectious bronchitis virus (IBV), mRNA expression of cytokines and Toll-like receptor (TLR) 4 in the lung, tracheal ciliary activity and lesions in the respiratory tract were determined. Endotoxin affected the immune system and respiratory tract, where HE broilers tended to have lower IgM NAb binding Phosphorylcholine-conjugated to Bovine Serum Albumin, and higher interferon (IFN)-α mRNA expression and more lesions in the nasal tissue compared to LE broilers. Furthermore, HE broilers had higher TLR4 mRNA expression compared to LE broilers. However, endotoxin did not affect NAb levels binding Keyhole Limpet Hemocyanin, IFN-ß and interleukin-10 mRNA expression, IBV replication or lesions in the lung and trachea. HE and LE broilers further had similar body weight, but HE broilers showed numerically more passive behavior compared to LE broilers. In conclusion, chronic exposure to high airborne endotoxin concentrations affects components of the immune system and respiratory tract in broilers and could therefore influence disease susceptibility.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Chickens , Coronavirus Infections/veterinary , Disease Susceptibility/veterinary , Endotoxins/toxicity , Escherichia coli , Lung , RNA, Messenger/genetics
3.
Transbound Emerg Dis ; 68(4): 1721-1725, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1319349

ABSTRACT

Conventional piglets were inoculated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through different routes, including intranasal, intratracheal, intramuscular and intravenous ones. Although piglets were not susceptible to SARS-CoV-2 and lacked lesions or viral RNA in tissues/swabs, seroconversion was observed in pigs inoculated parenterally (intramuscularly or intravenously).


Subject(s)
COVID-19 , Swine Diseases , Animals , COVID-19/veterinary , Disease Models, Animal , Disease Susceptibility/veterinary , RNA, Viral , SARS-CoV-2 , Swine , Swine Diseases/virology
4.
J Med Virol ; 93(3): 1351-1360, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196508

ABSTRACT

While the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to wreak havoc, there is little known about the susceptibility of the livestock and companion animals relative to humans. Here, we explore the susceptibility of companion and agricultural animals, in light of the existing information on natural infections, experimental infections, serosurveillance, and in vitro protein-homology binding interaction studies of the SARS-CoV-2 with the proposed receptor angiotensin-converting enzyme 2 from diverse animal species.


Subject(s)
COVID-19/veterinary , Livestock/virology , Pets/virology , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Disease Models, Animal , Disease Susceptibility/veterinary , Host Specificity , Humans , Protein Binding , Receptors, Coronavirus/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
5.
Adv Virus Res ; 110: 59-102, 2021.
Article in English | MEDLINE | ID: covidwho-1172111

ABSTRACT

Within only one year after the first detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), nearly 100 million infections were reported in the human population globally, with more than two million fatal cases. While SARS-CoV-2 most likely originated from a natural wildlife reservoir, neither the immediate viral precursor nor the reservoir or intermediate hosts have been identified conclusively. Due to its zoonotic origin, SARS-CoV-2 may also be relevant to animals. Thus, to evaluate the host range of the virus and to assess the risk to act as potential animal reservoir, a large number of different animal species were experimentally infected with SARS-CoV-2 or monitored in the field in the last months. In this review, we provide an update on studies describing permissive and resistant animal species. Using a scoring system based on viral genome detection subsequent to SARS-CoV-2 inoculation, seroconversion, the development of clinical signs and transmission to conspecifics or humans, the susceptibility of diverse animal species was classified on a semi-quantitative scale. While major livestock species such as pigs, cattle and poultry are mostly resistant, companion animals appear moderately susceptible, while several model animal species used in research, including several Cricetidae species and non-human primates, are highly susceptible to SARS-CoV-2 infection. By natural infections, it became obvious that American minks (Neovison vison) in fur farms, e.g., in the Netherlands and Denmark are highly susceptible resulting in local epidemics in these animals.


Subject(s)
COVID-19/veterinary , SARS-CoV-2/physiology , Animals , Animals, Wild/virology , COVID-19/diagnosis , COVID-19/transmission , COVID-19/virology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Disease Susceptibility/diagnosis , Disease Susceptibility/veterinary , Disease Susceptibility/virology , Host Specificity , Livestock/virology , Models, Animal , Pets/virology , SARS-CoV-2/isolation & purification
6.
Emerg Infect Dis ; 27(1): 104-112, 2021 01.
Article in English | MEDLINE | ID: covidwho-993258

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent that causes coronavirus disease, has been shown to infect several species. The role of domestic livestock and associated risks for humans in close contact with food production animals remains unknown for many species. Determining the susceptibility of pigs to SARS-CoV-2 is critical to a One Health approach to manage potential risk for zoonotic transmission. We found that pigs are susceptible to SARS-CoV-2 after oronasal inoculation. Among 16 animals, we detected viral RNA in group oral fluids and in nasal wash from 2 pigs, but live virus was isolated from only 1 pig. Antibodies also were detected in only 2 animals at 11 and 13 days postinoculation but were detected in oral fluid samples at 6 days postinoculation, indicating antibody secretion. These data highlight the need for additional livestock assessment to determine the potential role of domestic animals in the SARS-CoV-2 pandemic.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/veterinary , Coronavirus Infections/virology , RNA, Viral/blood , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/blood , Disease Susceptibility/veterinary , Female , Lymph Nodes/virology , Male , Mouth/virology , Nasal Cavity/virology , Rectum/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Swine , Virus Shedding
7.
Emerg Microbes Infect ; 10(1): 1-7, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-990475

ABSTRACT

Transmission of severe acute respiratory coronavirus-2 (SARS-CoV-2) between livestock and humans is a potential public health concern. We demonstrate the susceptibility of rabbits to SARS-CoV-2, which excrete infectious virus from the nose and throat upon experimental inoculation. Therefore, investigations on the presence of SARS-CoV-2 in farmed rabbits should be considered.


Subject(s)
COVID-19/transmission , Rabbits/virology , SARS-CoV-2/isolation & purification , Angiotensin-Converting Enzyme 2/physiology , Animals , COVID-19/etiology , COVID-19/veterinary , Disease Susceptibility/veterinary , Female , HEK293 Cells , Humans , Virus Shedding
8.
Emerg Infect Dis ; 26(12): 3074-3076, 2020 12.
Article in English | MEDLINE | ID: covidwho-940168

ABSTRACT

We challenged chickens, turkeys, ducks, quail, and geese with severe acute respiratory syndrome coronavirus 2 or Middle East respiratory syndrome coronavirus. We observed no disease and detected no virus replication and no serum antibodies. We concluded that poultry are unlikely to serve a role in maintenance of either virus.


Subject(s)
Anseriformes , Coronavirus Infections/veterinary , Galliformes , Middle East Respiratory Syndrome Coronavirus , Poultry Diseases/virology , SARS-CoV-2 , Animals , Antibodies, Viral , COVID-19/veterinary , COVID-19/virology , Coronavirus Infections/virology , Disease Susceptibility/veterinary , Disease Susceptibility/virology , Ducks , Geese , Virus Replication
9.
Rev Med Virol ; 31(4): e2196, 2021 07.
Article in English | MEDLINE | ID: covidwho-932481

ABSTRACT

The current severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak has been rapidly spreading worldwide, causing serious global concern. The role that animal hosts play in disease transmission is still understudied and researchers wish to find suitable animal models for fundamental research and drug discovery. In this systematic review, we aimed to compile and discuss all articles that describe experimental or natural infections with SARS-CoV-2, from the initial discovery of the virus in December 2019 through to October 2020. We systematically searched four databases (Scopus, PubMed, Science Direct and Web of Science). The following data were extracted from the included studies: type of infection (natural or experimental), age, sample numbers, dose, route of inoculation, viral replication, detection method, clinical symptoms and transmission. Fifty-four studies were included, of which 34 were conducted on animal reservoirs (naturally or experimentally infected), and 20 involved models for testing vaccines and therapeutics. Our search revealed that Rousettus aegyptiacus (fruit bats), pangolins, felines, mink, ferrets and rabbits were all susceptible to SARS-CoV-2, while dogs were weakly susceptible and pigs, poultry, and tree shrews were not. In addition, virus replication in mice, mink, hamsters and ferrets resembled subclinical human infection, so these animals might serve as useful models for future studies to evaluate vaccines or antiviral agents and to study host-pathogen interactions. Our review comprehensively summarized current evidence on SARS-CoV-2 infection in animals and their usefulness as models for studying vaccines and antiviral drugs. Our findings may direct future studies for vaccine development, antiviral drugs and therapeutic agents to manage SARS-CoV-2-caused diseases.


Subject(s)
Animals, Domestic/virology , Animals, Wild/virology , COVID-19/virology , Disease Models, Animal , Disease Reservoirs/virology , Severe acute respiratory syndrome-related coronavirus/physiology , Animals , COVID-19/transmission , Disease Susceptibility/veterinary , Disease Susceptibility/virology
10.
Sci Rep ; 10(1): 16007, 2020 09 29.
Article in English | MEDLINE | ID: covidwho-809120

ABSTRACT

Since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a pandemic event in the world, it has not only caused huge economic losses, but also a serious threat to global public health. Many scientific questions about SARS-CoV-2 and Coronavirus disease (COVID-19) were raised and urgently need to be answered, including the susceptibility of animals to SARS-CoV-2 infection. Here we tested whether tree shrew, an emerging experimental animal domesticated from wild animal, is susceptible to SARS-CoV-2 infection. No clinical signs were observed in SARS-CoV-2 inoculated tree shrews during this experiment except the increasing body temperature particularly in female animals. Low levels of virus shedding and replication in tissues occurred in all three age groups. Notably, young tree shrews (6 months to 12 months) showed virus shedding at the earlier stage of infection than adult (2 years to 4 years) and old (5 years to 7 years) animals that had longer duration of virus shedding comparatively. Histopathological examine revealed that pulmonary abnormalities were the main changes but mild although slight lesions were also observed in other tissues. In summary, tree shrew is less susceptible to SARS-CoV-2 infection compared with the reported animal models and may not be a suitable animal for COVID-19 related researches. However, tree shrew may be a potential intermediate host of SARS-CoV-2 as an asymptomatic carrier.


Subject(s)
Coronavirus Infections/veterinary , Host Specificity/physiology , Pandemics/veterinary , Pneumonia, Viral/veterinary , Tupaiidae/virology , Animals , Betacoronavirus , COVID-19 , Coronavirus Infections/pathology , Disease Susceptibility/veterinary , Disease Susceptibility/virology , Female , Male , Pneumonia, Viral/pathology , SARS-CoV-2 , Viral Load , Virus Shedding/physiology
11.
Transbound Emerg Dis ; 68(3): 1075-1079, 2021 May.
Article in English | MEDLINE | ID: covidwho-781034

ABSTRACT

The SARS-CoV-2 pandemic has caused a yet unresolved global crisis. Effective medical intervention by vaccination or therapy seems to be the only possibility to control the pandemic. In this context, animal models are an indispensable tool for basic and applied research to combat SARS-CoV-2 infection. Here, we established a SARS-CoV-2 infection model in Chinese hamsters suitable for studying pathogenesis of the disease as well as pre-clinical testing of vaccines and therapies. This species of hamster is susceptible to SARS-CoV-2 infection as demonstrated by robust virus replication in the upper and lower respiratory tract accompanied by bronchitis and pneumonia as well as significant body weight loss following infection. The Chinese hamster features advantages compared to the Syrian hamster model, including more pronounced clinical symptoms, its small size, well-characterized genome, transcriptome and translatome data and availability of molecular tools.


Subject(s)
COVID-19/veterinary , Disease Models, Animal , SARS-CoV-2 , Animals , COVID-19/pathology , Cricetinae , Cricetulus , Disease Susceptibility/pathology , Disease Susceptibility/veterinary , Humans , Lung/pathology , Lung/virology , Virus Replication
12.
Poult Sci ; 99(6): 2937-2943, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-739974

ABSTRACT

Infectious bronchitis virus (IBV) infection is highly infectious respiratory disease in poultry industry with significant economic importance. The prevalence of IBV in quail industry in Malaysia was not well documented; therefore, its actual role in the epidemiology of the disease is relatively unknown. This study was to determine the susceptibility of Japanese quail, as one of the species in commercial poultry industry, toward IBV. In addition, it will also give a potential impact on the overall health management in the quail industry even though it had been established that quail are resistant to diseases affecting poultry. Moreover, to the best of our knowledge, it is the first experimental study on IBV inoculation in quail. In this experimental study, 20 quails were divided into 4 groups (n = 5 for group A, B, and C, n = 5 for control group). The quails in group A, B, and C were infected via intraocular and intranasal routes with 0.2 mL of 10 × 5 EID50 of the virus. Clinical signs, gross lesions, positive detection of virus, and trachea histopathological scoring were used to assess the susceptibility of these Japanese quails. The results have indicated mild ruffled feathers and watery feces in these inoculated birds. Trachea, lung, and kidney were subjected to one-step reverse transcription polymerase chain reaction for virus detection. The virus was found from trachea and lung samples, whereas it was absent from all kidney samples. Only 3 quails were found with gross lesions. There was a significant difference of tracheal lesion by 0.009 ± 0.845 (P < 0.05) within the treatment groups. In summary, Japanese quails might be susceptible to IBV.


Subject(s)
Coronavirus Infections/veterinary , Coturnix , Disease Susceptibility/veterinary , Infectious bronchitis virus/physiology , Infectious bronchitis virus/pathogenicity , Poultry Diseases/epidemiology , Animals , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Disease Susceptibility/epidemiology , Disease Susceptibility/virology , Malaysia/epidemiology , Poultry Diseases/virology , Prevalence , Virulence
13.
Open Vet J ; 10(2): 164-177, 2020 08.
Article in English | MEDLINE | ID: covidwho-724486

ABSTRACT

Viruses are having great time as they seem to have bogged humans down. Severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and novel coronavirus (COVID-19) are the three major coronaviruses of present-day global human and animal health concern. COVID-19 caused by SARS-CoV-2 is identified as the newest disease, presumably of bat origin. Different theories on the evolution of viruses are in circulation, yet there is no denying the fact that the animal source is the skeleton. The whole world is witnessing the terror of the COVID-19 pandemic that is following the same path of SARS and MERS, and seems to be more severe. In addition to humans, several species of animals are reported to have been infected with these life-threatening viruses. The possible routes of transmission and their zoonotic potentialities are the subjects of intense research. This review article aims to overview the link of all these three deadly coronaviruses among animals along with their phylogenic evolution and cross-species transmission. This is essential since animals as pets or food are said to pose some risk, and their better understanding is a must in order to prepare a possible plan for future havoc in both human and animal health. Although COVID-19 is causing a human health hazard globally, its reporting in animals are limited compared to SARS and MERS. Non-human primates and carnivores are most susceptible to SARS-coronavirus and SARS-CoV-2, respectively, whereas the dromedary camel is susceptible to MERS-coronavirus. Phylogenetically, the trio viruses are reported to have originated from bats and have special capacity to undergo mutation and genomic recombination in order to infect humans through its reservoir or replication host. However, it is difficult to analyze how the genomic pattern of coronaviruses occurs. Thus, increased possibility of new virus-variants infecting humans and animals in the upcoming days seems to be the biggest challenge for the future of the world. One health approach is portrayed as our best way ahead, and understanding the animal dimension will go a long way in formulating such preparedness plans.


Subject(s)
Betacoronavirus/classification , Coronavirus Infections/veterinary , Middle East Respiratory Syndrome Coronavirus/classification , Pandemics/veterinary , Pneumonia, Viral/veterinary , Severe Acute Respiratory Syndrome/veterinary , Severe acute respiratory syndrome-related coronavirus/classification , Animals , Animals, Wild , Betacoronavirus/genetics , COVID-19 , Camelids, New World/virology , Camelus/virology , Cats , Chiroptera/virology , Coronavirus Infections/immunology , Coronavirus Infections/transmission , Disease Susceptibility/veterinary , Dogs , Eutheria/virology , Ferrets/virology , Humans , Lions/virology , Middle East Respiratory Syndrome Coronavirus/genetics , Phylogeny , Pneumonia, Viral/immunology , Pneumonia, Viral/transmission , Primates/virology , Raccoon Dogs/virology , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Severe Acute Respiratory Syndrome/transmission , Snakes/virology , Tigers/virology , Viverridae/virology
SELECTION OF CITATIONS
SEARCH DETAIL