ABSTRACT
The overuse of disinfection during the COVID-19 pandemic leads to an emerging "health versus environment" dilemma that humans have to face. Irresponsible and unnecessary disinfection should be avoided, while comprehensive evaluation of the health and environmental impacts of different disinfectants is urgently needed. From this discussion, we reach a tentative conclusion that hydrogen peroxide is a green disinfectant. Its on-demand production enables a circular economy model to solve the storage issues. Water, oxygen, and electrons are the only feedstock to generate H2O2. Upon completion of disinfection, H2O2 is rapidly converted back into water and oxygen. This model adopts several principles of green chemistry to ensure overall sustainability along the three stages of its whole life cycle, i.e., production, disinfection, and decomposition. Physical methods, particularly UV irradiation, also provide sustainable disinfection with minimal health and environmental impacts.
Subject(s)
COVID-19 , Disinfectants , Water Purification , Humans , Disinfection/methods , Hydrogen Peroxide/chemistry , Pandemics , Water Purification/methods , Disinfectants/chemistry , Water , OxygenABSTRACT
Acetaminophen is widely used to treat mild to moderate pain and to reduce fever. Under the worldwide COVID-19 pandemic, this over-the-counter pain reliever and fever reducer has been drastically consumed, which makes it even more abundant than ever in municipal wastewater and drinking water sources. Chlorine is the most widely used oxidant in drinking water disinfection, and chlorination generally causes the degradation of organic compounds, including acetaminophen. In this study, a new reaction pathway in the chlorination of acetaminophen, i.e., oxidative coupling reactions via acetaminophen radicals, was investigated both experimentally and computationally. Using an ultraperformance liquid chromatograph coupled to an electrospray ionization-triple quadrupole mass spectrometer, we detected over 20 polymeric products in chlorinated acetaminophen samples, some of which have structures similar to the legacy pollutants "polychlorinated biphenyls". Both C-C and C-O bonding products were found, and the corresponding bonding processes and kinetics were revealed by quantum chemical calculations. Based on the product confirmation and intrinsic reaction coordinate computations, a pathway for the formation of the polymeric products in the chlorination of acetaminophen was proposed. This study suggests that chlorination may cause not only degradation but also upgradation of a phenolic compound or contaminant.
Subject(s)
COVID-19 , Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Humans , Disinfection , Chlorine , Drinking Water/chemistry , Acetaminophen , Molecular Weight , Pandemics , Water Pollutants, Chemical/chemistry , Halogenation , Pain , Disinfectants/chemistryABSTRACT
The virucidal activity of a series of cationic surfactants differing in the length and number of hydrophobic tails (at the same hydrophilic head) and the structure of the hydrophilic head (at the same length of the hydrophobic n-alkyl tail) was compared. It was shown that an increase in the length and number of hydrophobic tails, as well as the presence of a benzene ring in the surfactant molecule, enhance the virucidal activity of the surfactant against SARS-CoV-2. This may be due to the more pronounced ability of such surfactants to penetrate and destroy the phospholipid membrane of the virus. Among the cationic surfactants studied, didodecyldimethylammonium bromide was shown to be the most efficient as a disinfectant, its 50% effective concentration (EC50) being equal to 0.016 mM. Two surfactants (didodecyldimethylammonium bromide and benzalkonium chloride) can deactivate SARS-CoV-2 in as little as 5 s.
Subject(s)
COVID-19 Drug Treatment , Disinfectants , Disinfectants/chemistry , Disinfectants/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , SARS-CoV-2 , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacologyABSTRACT
Commercial disinfectants are routinely used to decontaminate surfaces where microbes are expected and unwelcome. Several disinfectants contain quaternary ammonium salts, or "quats", all being derived from ammonium. Quaternary alkyl dimethyl benzyl ammonium chloride or bromide disinfectants are widely available. These compounds are effective in reducing or eliminating bacteria on contaminated nonporous surfaces. A unique benzyl derived boronium salt with strong detergent action has been developed. It demonstrated 4-8X greater antibacterial activity against 3 different bacteria when compared to an equal concentration of a commercial quant disinfectant solution containing alkyl dimethyl benzyl ammonium chloride and alkyl dimethyl ethylbenzyl ammonium chloride. Antibacterial effectiveness of each agent was determined by the minimum inhibitory concentration (MIC) method.
Subject(s)
Anti-Bacterial Agents/pharmacology , Bromides/pharmacology , Disinfectants/pharmacology , Quaternary Ammonium Compounds/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Bromides/chemical synthesis , Bromides/chemistry , Disinfectants/chemical synthesis , Disinfectants/chemistry , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Microbial Sensitivity Tests , Molecular Structure , Pseudomonas aeruginosa/drug effects , Quaternary Ammonium Compounds/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Staphylococcus aureus/drug effects , Structure-Activity RelationshipABSTRACT
Atomistic molecular dynamics simulations have been carried out with a view to investigating the stability of the SARS-CoV-2 exterior membrane with respect to two common disinfectants, namely, aqueous solutions of ethanol and n-propanol. We used dipalmitoylphosphatidylcholine (DPPC) as a model membrane material and did simulations on both gel and liquid crystalline phases of membrane surrounded by aqueous solutions of varying alcohol concentrations (up to 17.5 mol %). While a moderate effect of alcohol on the gel phase of membrane is observed, its liquid crystalline phase is shown to be influenced dramatically by either alcohol. Our results show that aqueous solutions of only 5 and 10 mol % alcohol already have significant weakening effects on the membrane. The effects of n-propanol are always stronger than those of ethanol. The membrane changes its structure, when exposed to disinfectant solutions; uptake of alcohol causes it to swell laterally but to shrink vertically. At the same time, the orientational order of lipid tails decreases significantly. Metadynamics and grand-canonical ensemble simulations were done to calculate the free-energy profiles for permeation of alcohol and alcohol/water solubility in the DPPC. We found that the free-energy barrier to permeation of the DPPC liquid crystalline phase by all permeants is significantly lowered by alcohol uptake. At a disinfectant concentration of 10 mol %, it becomes insignificant enough to allow almost free passage of the disinfectant to the inside of the virus to cause damage there. It should be noted that the disinfectant also causes the barrier for water permeation to drop. Furthermore, the shrinking of the membrane thickness shortens the gap needed to be crossed by penetrants from outside the virus into its core. The lateral swelling also increases the average distance between head groups, which is a secondary barrier to membrane penetration, and hence further increases the penetration by disinfectants. At alcohol concentrations in the disinfectant solution above 15 mol %, we reliably observe disintegration of the DPPC membrane in its liquid crystalline phase.
Subject(s)
1-Propanol/chemistry , Disinfectants/chemistry , Ethanol/chemistry , Lipid Bilayers/chemistry , Membrane Fluidity/drug effects , Permeability/drug effects , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Molecular Dynamics Simulation , SARS-CoV-2/chemistry , Viral Envelope/drug effectsABSTRACT
OBJECTIVE: To evaluate the microbial loading in aerosols produced after air-puff by non-contact tonometer (NCT) as well as the effect of alcohol disinfection on the inhibition of microbes and thus to provide suggestions for the prevention and control of COVID-19 in ophthalmic departments of hospitals or clinics during the great pandemics. METHODS: A cross-sectional study was carried out in this study. A NIDEK NCT was used for intraocular pressure (IOP) measurement for patients who visited Department of Ophthalmology in Qilu Hospital of Shandong University during March 18-25 2020. After ultra-violate (UV) light disinfection, the room air was sampled for 5 minutes. Before and after alcohol disinfection, the air samples and nozzle surface samples were respectively collected by plate exposure method and sterile moist cotton swab technique after predetermined times of NCT air-puff. Microbial colony counts were calculated after incubation for 48 hours. Finally, mass spectrometry was performed for the accurate identification of microbial species. RESULTS: Increased microbial colonies were detected from air samples close to NCT nozzle after air-puff compared with air samples at a distance of 1 meter from the nozzle (p = 0.001). Interestingly, none microbes were detected on the surface of NCT nozzle. Importantly, after 75% alcohol disinfection less microbes were detected in the air beside the nozzle (p = 0.003). Microbial species identification showed more than ten strains of microbes, all of which were non-pathogenic. CONCLUSION: Aerosols containing microbes were produced by NCT air-puff in the ophthalmic consultation room, which may be a possible virus transmission route in the department of ophthalmology during the COVID-19 pandemic. Alcohol disinfection for the nozzle and the surrounding air was efficient at decreasing the microbes contained in the aerosols and theoretically this prevention measure could also inhibit the virus. This will give guidance for the prevention of virus transmission and protection of hospital staff and patients.
Subject(s)
Air Microbiology , Alcohols/chemistry , Coronavirus Infections/prevention & control , Disinfectants/chemistry , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Tonometry, Ocular/methods , Aerosols/chemistry , Betacoronavirus/physiology , COVID-19 , China/epidemiology , Coronavirus Infections/epidemiology , Cross-Sectional Studies , Hospitals , Humans , Ophthalmology/methods , Pneumonia, Viral/epidemiology , SARS-CoV-2ABSTRACT
Disinfectant quaternary ammonium compounds (Quats) have diverse uses in a variety of consumer and commercial products, particularly cleaning products. With the emergence of the COVID-19 pandemic, they have become a primary tool to inactivate the SARS-CoV-2 virus on surfaces. Disinfectant Quats have very low vapor pressure, and following the use phase of the products in which they are found, disposal is typically "down-the-drain" to wastewater treatment systems. Consequently, the potential for the greatest environmental effect is to the aquatic environment, from treated effluent, and potentially to soils, which might be amended with wastewater biosolids. Among the earliest used and still common disinfectant Quats are the alkyl dimethyl benzyl ammonium chloride (ADBAC) compounds and the dialkyl dimethyl ammonium chloride (DDAC) compounds. They are cationic surfactants often found in consumer and commercial surface cleaners. Because of their biocidal properties, disinfectant Quats are heavily regulated for human and environmental safety around the world. Consequently, there is a robust database of information regarding the ecological hazards and environmental fate of ADBAC and DDAC; however, some of the data presented are from unpublished studies that have been submitted to and reviewed by regulatory agencies (i.e., EPA and European Chemicals Agency) to support antimicrobial product registration. We summarize the available environmental fate data and the acute and chronic aquatic ecotoxicity data for freshwater species, including algae, invertebrates, fish, and plants using peer-reviewed literature and unpublished data submitted to and summarized by regulatory agencies. The lower limit of the range of the ecotoxicity data for disinfectant Quats tends to be lower than that for other surface active agents, such as nonionic or anionic surfactants. However, ecotoxicity is mitigated by environmental fate characteristics, the data for which we also summarize, including high biodegradability and a strong tendency to sorb to wastewater biosolids, sediment, and soil. As a result, disinfectant Quats are largely removed during wastewater treatment, and those residues discharged in treated effluent are likely to rapidly bind to suspended solids or sediments, thus mitigating their toxicity.
Subject(s)
Disinfectants/toxicity , Quaternary Ammonium Compounds/toxicity , Water Pollutants, Chemical/toxicity , Animals , Aquatic Organisms/drug effects , Biodegradation, Environmental , COVID-19/epidemiology , COVID-19/prevention & control , Disinfectants/chemistry , Disinfectants/pharmacology , Ecotoxicology , Humans , Pandemics/prevention & control , Quaternary Ammonium Compounds/chemistry , Quaternary Ammonium Compounds/pharmacology , Risk Assessment , SARS-CoV-2/drug effects , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/pharmacology , Water Purification/methodsABSTRACT
OBJECTIVES: Hand sanitisers are urgently needed in the time of COVID-19, and as a result of shortages, some people have resorted to making their own formulations, including the repurposing of distilleries. We wish to highlight the importance of those producing hand sanitisers to avoid methylated spirits containing methanol and to follow WHO recommended formulations. METHODS: We explore and discuss reports of methanol toxicity through ingestion and transdermal absorption. We discuss the WHO formulations and explain the rationale behind the chosen ingredients. SHORT CONCLUSION: We advise those producing hand sanitisers to follow WHO recommended formulations, and advise those producing hand sanitisers using methylated spirits, to avoid formulations which contain methanol.
Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/prevention & control , Disinfectants/pharmacology , Ethanol/pharmacology , Methanol/pharmacology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/virology , Disinfectants/chemistry , Disinfectants/standards , Disinfectants/toxicity , Drug Compounding , Ethanol/chemistry , Hand Disinfection/instrumentation , Humans , Methanol/chemistry , Methanol/toxicity , Pneumonia, Viral/virology , SARS-CoV-2 , World Health OrganizationSubject(s)
Betacoronavirus/isolation & purification , Biosensing Techniques , Coronavirus Infections/prevention & control , Disinfectants/therapeutic use , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Disinfectants/chemistry , Humans , Nanotechnology/trends , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , SARS-CoV-2ABSTRACT
The surgeon needs to have an inexpensive, available, nontoxic, and practical disinfectant that is effective in sanitizing against the COVID-19 (Coronavirus Disease 2019) virus. The purpose of this article was to review the evidence for using hypochlorous acid in the office setting on a daily basis. The method used to assemble recommendations was a review of the literature including evidence for this solution when used in different locations and industries other than the oral-maxillofacial clinic facility. The results indicate that this material can be used with a high predictability for disinfecting against the COVID-19 (Coronavirus Disease 2019) virus.
Subject(s)
Coronavirus Infections/prevention & control , Disinfectants/chemistry , Hypochlorous Acid/chemistry , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Betacoronavirus , COVID-19 , Dental Offices , Humans , SARS-CoV-2 , Surgery, OralABSTRACT
Alcohol-based disinfectant shortage is a serious concern in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Acidic electrolyzed water (EW) with a high concentration of free available chlorine (FAC) shows strong antimicrobial activity against bacteria, fungi, and viruses. Here, we assessed the SARS-CoV-2-inactivating efficacy of acidic EW for use as an alternative disinfectant. The quick virucidal effect of acidic EW depended on the concentrations of contained-FAC. The effect completely disappeared in acidic EW in which FAC was lost owing to long-time storage after generation. In addition, the virucidal activity increased proportionately with the volume of acidic EW mixed with the virus solution when the FAC concentration in EW was same. These findings suggest that the virucidal activity of acidic EW against SARS-CoV-2 depends on the amount of FAC contacting the virus.
Subject(s)
Betacoronavirus/drug effects , Chlorine/pharmacology , Disinfectants/pharmacology , Disinfection/methods , Virus Inactivation/drug effects , Acids/chemistry , Acids/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Betacoronavirus/physiology , COVID-19 , Chlorine/chemistry , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Disinfectants/chemistry , Electrolysis/methods , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , SARS-CoV-2 , Water/chemistry , Water/pharmacologyABSTRACT
Pandemic coronavirus disease-2019 (COVID-19) gives ample reason to generally review coronavirus (CoV) containment. For establishing some preliminary views on decontamination and disinfection, surrogate CoVs have commonly been assessed. This review serves to examine the existing science in regard to CoV containment generically and then to translate these findings into timely applications for COVID-19. There is widespread dissemination of CoVs in the immediate patient environment, and CoVs can potentially be spread via respiratory secretions, urine, and stool. Interpretations of the spread however must consider whether studies examine for viral RNA, virus viability by culture, or both. Presymptomatic, asymptomatic, and post-14 day virus excretion from patients may complicate the epidemiology. Whereas droplet spread is accepted, there continues to be controversy over the extent of possible airborne spread and especially now for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). CoVs are stable in body secretions and sewage at reduced temperatures. In addition to temperature, dryness or relative humidity, initial viral burden, concomitant presence of bioburden, and the type of surface can all affect stability. Generalizing, CoVs can be susceptible to radiation, temperature extremes, pH extremes, peroxides, halogens, aldehydes, many solvents, and several alcohols. Whereas detergent surfactants can have some direct activity, these agents are better used as complements to a complex disinfectant solution. Disinfectants with multiple agents and adverse pH are more likely to be best active at higher water temperatures. Real-life assessments should be encouraged with working dilutions. The use of decontamination and disinfection should be balanced with considerations of patient and caregiver safety. Processes should also be balanced with considerations for other potential pathogens that must be targeted. Given some CoV differences and given that surrogate testing provides experimental correlates at best, direct assessments with SARS-CoV, Middle East respiratory syndrome-related coronavirus (MERS-CoV), and SARS-CoV-2 are required.