Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
J Vet Diagn Invest ; 34(6): 1015-1019, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2153397

ABSTRACT

Albendazole is a widely used anthelmintic drug that is labeled for the treatment of specific nematodes and flukes in ruminants. Albendazole is approved for the treatment of liver flukes in goats (10 mg/kg PO for a single dose), but is commonly used extra-label in situations in which parasite resistance is an issue. Albendazole toxicosis has been reported in pigeons, doves, alpacas, humans, dogs, and cats. Here we report an adverse event in a 6-mo-old goat associated with extra-label use of albendazole (35.7 mg/kg PO daily for 3 d). Clinicopathologic findings included severe diarrhea and death, with small intestinal crypt necrosis and dysplasia, and severe bone marrow hypoplasia. Microbial and molecular testing and transmission electron microscopy ruled out infectious organisms. The described pathologic changes are similar to those reported in other species that have experienced toxicosis associated with albendazole. To our knowledge, bone marrow and intestinal lesions associated with albendazole use in the goat have not been reported previously. Veterinarians should be aware of potential adverse events and toxicoses associated with anthelmintic drugs, especially as parasite resistance increases, and extra-label usage, and the use of such drugs without veterinary supervision, becomes more common.


Subject(s)
Anthelmintics , Dog Diseases , Goat Diseases , Animals , Dogs , Humans , Albendazole/adverse effects , Goats , Parasite Egg Count/veterinary , Bone Marrow , Goat Diseases/drug therapy , Ivermectin/therapeutic use , Feces/parasitology , Anthelmintics/adverse effects , Ruminants , Dog Diseases/drug therapy
2.
Prev Vet Med ; 209: 105792, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2086629

ABSTRACT

Canine enteric coronavirus (CCoV) is a pathogenic virus that infects dogs worldwide, causing enteric issues and causing harm to the dog industry and dogs. Although CCoV is not recognized as a highly lethal canine intestinal pathogen, it has been reported that CCoV is significantly associated with canine diarrhea in dogs. CCoV is a common health problem in dogs, attracting major concern from veterinarians and dog owners across China. In this study, we summarized the prevalence and epidemiological characteristics of CCoV in dogs in mainland China. The study revealed that the pooled prevalence of CCoV infection was 33%, and which associated with age, but not with sex, season and immunization status. In addition, the study also further suggested that CCoV-II was the predominant CCoV subtype in Chinese dogs. This study will provide valuable information for CCoV infections across China and other countries. Furthermore, this study also suggested that continuous surveillance and epidemiological studies of CCoV are necessary.


Subject(s)
Coronavirus Infections , Coronavirus , Dog Diseases , Veterinarians , Dogs , Animals , Humans , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Diarrhea/epidemiology , Diarrhea/veterinary , China/epidemiology , Dog Diseases/epidemiology
3.
BMC Vet Res ; 18(1): 370, 2022 Oct 12.
Article in English | MEDLINE | ID: covidwho-2064799

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has infected several animal species, including dogs, presumably via human-to-animal transmission. Most infected dogs reported were asymptomatic, with low viral loads. However, in this case we detected SARS-CoV-2 in a dog from the North African coastal Spanish city of Ceuta presenting hemorrhagic diarrhea, a disease also reported earlier on in an infected dog from the USA. CASE PRESENTATION: In early January 2021, a West Highland Terrier pet dog from Ceuta (Spain) presented hemorrhagic diarrhea with negative tests for candidate microbial pathogens. Since the animal was in a household whose members suffered SARS-CoV-2 in December 2020, dog feces were analyzed for SARS-CoV-2, proving positive in a two-tube RT-PCR test, with confirmation by sequencing a 399-nucleotide region of the spike (S) gene. Furthermore, next-generation sequencing (NGS) covered > 90% SARS-CoV-2 genome sequence, allowing to classify it as variant B.1.177. Remarkably, the sequence revealed the Ile402Val substitution in the spike protein (S), of potential concern because it mapped in the receptor binding domain (RBD) that mediates virus interaction with the cell. NGS reads mapping to bacterial genomes showed that the dog fecal microbiome fitted best the characteristic microbiome of dog's acute hemorrhagic diarrhea. CONCLUSION: Our findings exemplify dog infection stemming from the human SARS-CoV-2 pandemic, providing nearly complete-genome sequencing of the virus, which is recognized as belonging to the B.1.177 variant, adding knowledge on variant circulation in a geographic region and period for which there was little viral variant characterization. A single amino acid substitution found in the S protein that could have been of concern is excluded to belong to this category given its rarity and intrinsic nature. The dog's pathology suggests that SARS-CoV-2 could affect the gastrointestinal tract of the dog.


Subject(s)
COVID-19 , Dog Diseases , Animals , COVID-19/veterinary , Diarrhea/veterinary , Dog Diseases/diagnosis , Dogs , Humans , Nucleotides , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
Transbound Emerg Dis ; 69(5): e3336-e3345, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2053027

ABSTRACT

Canine babesiosis caused by Babesia canis (Piana & Galli-Valerio, 1895) is emerging in new regions in Europe since its vector Dermacentor reticulatus (Fabricius, 1794) is expanding its geographic range. In the Berlin/Brandenburg area in northeast Germany, D. reticulatus is highly abundant but in the past only one autochthonous B. canis infection was reported. Since 2015, autochthonous cases were occasionally diagnosed but numbers increased since autumn 2019. The aim of the study was to genotype autochthonous canine Babesia spp. infections from Berlin/Brandenburg. Between 04/2015 and 01/2022, 46 dogs with acute babesiosis were presented to the small animal clinic (one dog was infected twice resulting in 47 samples). There were 32 dogs that had never left Berlin/Brandenburg and 14 others that had not left the region in the 6 weeks prior to disease onset. PCRs targeting the 18S rRNA and the Bc28.1 merozoite surface antigen were positive in 47 and 42 samples, respectively. Sequencing of cloned PCR products identified all samples as B. canis with 17 18S rRNA and 12 Bc28.1 haplotypes. Based on network analysis for 18S rRNA sequences and a previously described polymorphic dinucleotide, samples were assigned to two distinct clusters. One contained 31 and the other 16 samples. Using network analysis, the Bc28.1 haplotypes could also be separated into two clusters differing by at least five polymorphisms. Analyses of sequences from multiple clones indicated the presence of up to five 18S rRNA and eight Bc28.1 haplotypes and thus high parasite variability in an individual host. The genetic diversity could suggest that the parasites in the region have multiple origins, but diversity in individual dogs and dog populations from endemic regions is unknown. The suitability of both markers for genotyping is questionable due to potential intragenomic diversity for the rRNA and high intergenomic variability for the Bc28.1 marker.


Subject(s)
Babesia , Babesiosis , Dermacentor , Dog Diseases , Animals , Antigens, Surface , Babesia/genetics , Babesiosis/epidemiology , Babesiosis/parasitology , Berlin , Dermacentor/parasitology , Disease Outbreaks/veterinary , Dog Diseases/epidemiology , Dog Diseases/parasitology , Dogs , Germany/epidemiology , Polymorphism, Genetic , RNA, Ribosomal, 18S/genetics
5.
Transbound Emerg Dis ; 69(5): e2485-e2494, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2053021

ABSTRACT

An outbreak of canine leptospirosis commenced in Sydney, Australia in 2017. The aim of this retrospective study was to determine if clusters of leptospirosis occurred during this outbreak, and if these were associated with host factors, to assist investigation of the drivers of emerging leptospirosis at this location. Within the City of Sydney local government area, 13 cases were reported during the outbreak. Administrative data on the canine population were collected and mapped. Clusters of leptospirosis cases were detected using a retrospective space-time analysis and a discrete Poisson probability statistical model. Sydney dog population registration [55.6%, 95% confidence interval (CI) 51.8-58.1%] was lower than the Australian national average (80%). The distribution of dog types, based on the United Kennel Club standards, was significantly (p < .0001) different to that of the national profile: there was a distinct preference in Sydney for companion dogs. The age distribution of dogs in Sydney did not reflect a typical right-skewed curve; instead, a relatively uniform distribution was observed between the age group of 1 to 8 years. A primary disease cluster (radius 1.1 km) in the eastern area of the Sydney City Council was identified (4 cases observed between 24 May and 9 August 2019 vs. 0.10 cases expected), p = .0450. When adjusted for the age, breed type and sex distribution of the population, similar clusters were identified; in the case of age-adjustment, the spatiotemporal cluster identified was larger and of longer duration (seven cases observed between 28 June and 11 November 2019 versus 0.34 cases expected), p = .0025. The presence of clusters of canine leptospirosis in the City of Sydney during this outbreak, which persisted after adjustment for demographics (age, sex, breed type), suggest that environmental factors - rather than host or pathogen factors - might be responsible for the emergence of leptospirosis. Environmental factors that potentially might be linked to this outbreak of canine leptospirosis and the clusters observed require investigation.


Subject(s)
Dog Diseases , Leptospira , Leptospirosis , Age Distribution , Animals , Australia , Dog Diseases/epidemiology , Dogs , Leptospirosis/epidemiology , Leptospirosis/veterinary , Retrospective Studies
6.
Vet Res Commun ; 46(4): 1363-1368, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2041311

ABSTRACT

Canine coronavirus (CCoV), canine parvovirus (CPV), and canine distemper virus (CDV) are highly contagious canine pathogens; dogs with these diseases are difficult to treat. In a previous study, we developed a recombinant adenovirus expressing canine interferon lambda 3 (Ad-caIFNλ3) in canine epithelial cells. In this study, we aimed to investigate the antiviral activity of Ad-caIFNλ3 against CCoV, CPV, and CDV in two canine cell lines, A72 and MDCK. Ad-caIFNλ3 transduction suppressed replication of these viruses without cytotoxicity. Our results suggest that Ad-caIFNλ3 may be a therapeutic candidate for canine viral diseases.


Subject(s)
Adenoviridae Infections , Coronavirus, Canine , Distemper Virus, Canine , Distemper , Dog Diseases , Parvoviridae Infections , Parvovirus, Canine , Dogs , Animals , Parvovirus, Canine/genetics , Distemper Virus, Canine/genetics , Coronavirus, Canine/genetics , Adenoviridae , Antiviral Agents , Parvoviridae Infections/veterinary , Antibodies, Viral , Adenoviridae Infections/veterinary
7.
Prev Vet Med ; 208: 105755, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2031629

ABSTRACT

It has long been known that coronaviruses cause various infectious diseases in animals. Although SARS-CoV-2 is genetically related to viruses isolated from Rhinolophus bats, the exact origin, mode of transmission, and how the human species has become the epidemiological reservoir of the virus have not yet been established with certainty. Although the main route of transmission is human-to-human, there are considerable numbers of reported cases of infection in animal species, predominantly among pet animals. The aim of this retrospective study was to assess SARS-CoV-2 seropositivity in dogs and cats during the COVID-19 pandemic in Sumadija District, Serbia. We used serology to identify household contacts of pet animals with infected pet owners and the degree of association. The study presented in this paper is also the first study of this type in Serbia. The results of a retrospective serosurvey, which was conducted in dogs and cats with different exposure risk factors, were analyzed to find the possible modes of transmission between humans and animals. The relative frequency of SARS-CoV-2 infection in dogs was 1.45% bounded with a 95% confidence interval (CI) of 0.0007-7.73%, while in cats, it was 5.56% (95% CI: 0.77-4.13%). The relative frequency of SARS-CoV-2 infection in pet owners was 11% (95% CI: 6.25-18.63%). In pets that were in close contact with COVID-19 positive owners, the seropositivity was found to be 9%. Out of a total of five stray dogs and cats tested, seropositivity was observed in two animals. Detected SARS-CoV-2 infection in pets shows that these animals are susceptible to infection and that the most common means of virus transmission to pets is through contact with diseased owners. However, the presence of infection in stray dogs and cats is not clear and needs further research.


Subject(s)
COVID-19 , Cat Diseases , Chiroptera , Dog Diseases , Cats , Dogs , Animals , Humans , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2 , Pandemics/veterinary , Retrospective Studies , Cat Diseases/epidemiology , Serbia/epidemiology , Dog Diseases/epidemiology , Pets
8.
Vaccine ; 40(37): 5494-5503, 2022 09 02.
Article in English | MEDLINE | ID: covidwho-2016161

ABSTRACT

In recent years, several advances have been observed in vaccinology especially for neglected tropical diseases (NTDs). One of the tools employed is epitope prediction by immunoinformatic approaches that reduce the time and cost to develop a vaccine. In this scenario, immunoinformatics is being more often used to develop vaccines for NTDs, in particular visceral leishmaniasis (VL) which is proven not to have an effective vaccine yet. Based on that, in a previous study, two predicted T-cell multi-epitope chimera vaccines were experimentally validated in BALB/c mice to evaluate the immunogenicity, central and effector memory and protection against VL. Considering the results obtained in the mouse model, we assessed the immune response of these chimeras inMesocricetus auratushamster, which displays, experimentally, similar pathological status to human and dog VL disease. Our findings indicate that both chimeras lead to a dominant Th1 response profile, inducing a strong cellular response by increasing the production of IFN-γ and TNF-α cytokines associated with a decrease in IL-10. Also, the chimeras reduced the spleen parasite load and the weight a correlation between protector immunological mechanisms and consistent reduction of the parasitic load was observed. Our results demonstrate that both chimeras were immunogenic and corroborate with findings in the mouse model. Therefore, we reinforce the use of the hamster as a pre-clinical model in vaccination trials for canine and human VL and the importance of immunoinformatic to identify epitopes to design vaccines for this important neglected disease.


Subject(s)
Leishmania infantum , Leishmaniasis Vaccines , Leishmaniasis, Visceral , Th1 Cells , Animals , Cricetinae , Dogs , Humans , Mice , Adjuvants, Immunologic , Antigens, Protozoan , Cytokines , Dog Diseases , Epitopes, T-Lymphocyte , Leishmaniasis, Visceral/prevention & control , Mice, Inbred BALB C , Spleen
9.
BMC Infect Dis ; 22(1): 696, 2022 Aug 17.
Article in English | MEDLINE | ID: covidwho-2002122

ABSTRACT

BACKGROUND: Capnocytophaga canimorsus, a Gram-negative rod, belongs to the Flavobacteriaceae family and colonizes the oropharynx of dogs and cats. Infections with C. canimorsus are rare and can induce a systemic infection with a severe course of the disease. So far, only five case reports of C. canimorsus infections associated with Waterhouse-Friderichsen Syndrome (WFS) have been reported with only two of the patients having a history of splenectomy. CASE PRESENTATION: Here, we report a fatal case of WFS due to C. canimorsus bacteremia and mycetal superinfection in a 61-year-old female asplenic patient. Despite extensive therapy including mechanical ventilation, antibiotic coverage with meropenem, systemic corticosteroids medication, vasopressor therapy, continuous renal replacement therapy, therapeutic plasma exchange, multiple transfusions of blood products and implantation of a veno-arterial extracorporeal membrane oxygenation the patient died 10 days after a dog bite. The autopsy showed bilateral hemorrhagic necrosis of the adrenal cortex and septic embolism to heart, kidneys, and liver. Diagnosis of C. canimorsus was prolonged due to the fastidious growth of the bacteria. CONCLUSIONS: The occurrence of a severe sepsis after dog bite should always urge the attending physician to consider C. canimorsus as the disease-causing pathogen. A therapeutic regimen covering C. canimorsus such as aminopenicillins or carbapenems should be chosen. However, despite maximum therapy, the prognosis of C. canimorsus-induced septic shock remains very poor. Asplenic or otherwise immunocompromised patients are at higher risk for a severe course of disease and should avoid exposure to dogs and cats and consider antibiotic prophylaxis after animal bite.


Subject(s)
Bites and Stings , Cat Diseases , Dog Diseases , Gram-Negative Bacterial Infections , Sepsis , Waterhouse-Friderichsen Syndrome , Animals , Bites and Stings/complications , Capnocytophaga , Cats , Dog Diseases/diagnosis , Dog Diseases/therapy , Dogs , Female , Gram-Negative Bacterial Infections/microbiology , Sepsis/diagnosis , Waterhouse-Friderichsen Syndrome/complications
10.
Vet Anaesth Analg ; 49(6): 580-588, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1984186

ABSTRACT

OBJECTIVE: To determine the effects of the COVID-19 associated restrictions on the ability of owners in Michigan (MI), USA versus Ontario (ON) and British Columbia (BC), Canada, to obtain care for their chronically painful dogs. STUDY DESIGN: Cross-sectional survey. POPULATION: A total of 90 owners met the inclusion criteria for the study. METHODS: An anonymous electronic survey was distributed to owners at four veterinary integrative medicine (IM) clinics during July and August 2020. Two clinics in MI and one each in ON and BC were recruited. Owners were asked about availability of IM care preceding and during COVID-19 restrictions and their opinions of the impact of COVID-19 on their dog's health. The survey asked where owners sought care for their dogs, types of chronic conditions treated, therapeutic modalities used, and if owners had a medical background. Comparisons were made within and between groups. Thematic analysis, Fisher's exact test, chi-square analyses, McNemar's and Wilcoxon signed-rank tests for paired comparisons were performed (p < 0.05). RESULTS: During COVID-19 restrictions, access to IM care was better for dogs in ON and BC than in MI (p < 0.001). The negative effect of the pandemic restrictions to IM care on quality of life was perceived greater by owners in MI than those in ON and BC (p < 0.001). The owners' medical backgrounds had no effect on attempts to access care during this time (p = 0.76). CONCLUSIONS AND CLINICAL RELEVANCE: The results suggest that a widespread disease in humans had an adverse impact on animal welfare. Providers of veterinary care should use this experience to establish protocols to ensure continuity of care for chronically painful animals in the event of a similar situation in the future.


Subject(s)
COVID-19 , Dog Diseases , Veterinary Medicine , Animals , Dogs , Humans , British Columbia , Cross-Sectional Studies , Dog Diseases/therapy , Michigan , Ontario , Quality of Life , Surveys and Questionnaires , Health Services Accessibility/statistics & numerical data , Veterinary Medicine/statistics & numerical data , Social Control Policies/legislation & jurisprudence , Social Control Policies/statistics & numerical data , Pain/prevention & control , Pain/veterinary
11.
J Am Vet Med Assoc ; 260(12): 1482-1488, 2022 Jun 17.
Article in English | MEDLINE | ID: covidwho-1974566

ABSTRACT

OBJECTIVE: Assess US veterinarians' perceptions regarding vaccine concerns (their own and owners') and the association between owners' vaccine concerns and COVID-19 antivaccination sentiments. SAMPLE: Members of the Veterinary Information Network. PROCEDURES: An electronic survey distributed via the Veterinary Information Network data collection portal. RESULTS: 1,341 US veterinarians completed the survey. Top veterinarian concerns for vaccinating a healthy adult dog were anaphylaxis, soreness at injection site, and lethargy; for cats, these concerns included vaccine-associated sarcoma, lethargy, and soreness at injection site. Veterinarians reported that the most common concerns mentioned by owners included that the pet does not go outside, that vaccinations are unnecessary, that vaccinations can lead to chronic or severe illness, and cost. Veterinarians reported an increased number of dog and cat owners reluctant about or resistant to the idea of rabies vaccines and core vaccines since the time that COVID-19 vaccines became widely available. There was an association between veterinarians' perceptions of local COVID-19 antivaccination sentiments and the increase in the number of vaccine-resistant or -concerned clients. CLINICAL RELEVANCE: There appears to be little overlap between veterinarians' primary concerns related to vaccinations and their perception of dog and cat owners' primary concerns. The fact that the number of resistant clients is positively associated with the presence of veterinarians' perceptions of a local COVID-19 antivaccination sentiment suggests that human antivaccination sentiments impact pet owners' views of companion animal vaccinations. A better understanding of the cognitive biases that impact owners' vaccine decisions can help veterinarians better communicate with vaccine-reluctant clients and increase vaccination compliance rates.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Veterinarians , Veterinary Medicine , Humans , Cats , Dogs , Animals , Veterinarians/psychology , COVID-19/veterinary , COVID-19 Vaccines , Lethargy/veterinary , Ownership , Dog Diseases/prevention & control , Surveys and Questionnaires , Vaccination/veterinary
12.
Sci Rep ; 12(1): 8403, 2022 05 19.
Article in English | MEDLINE | ID: covidwho-1931479

ABSTRACT

In June-September 2021, we investigated severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections in domestic dogs and cats (n = 225) in Bangkok and the vicinities, Thailand. SARS-CoV-2 was detected in a dog and a cat from COVID-19 positive households. Whole genome sequence analysis identified SARS-CoV-2 delta variant of concern (B.1.617.2). Phylogenetic analysis showed that SARS-CoV-2 isolated from dog and cat were grouped into sublineage AY.30 and AY.85, respectively. Antibodies against SARS-CoV-2 could be detected in both dog (day 9) and cat (day 14) after viral RNA detection. This study raises awareness on spill-over of variant of concern in domestic animals due to human-animal interface. Thus, surveillance of SARS-CoV-2 in domestic pets should be routinely conducted.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , COVID-19/epidemiology , COVID-19/veterinary , Cat Diseases/diagnosis , Cat Diseases/epidemiology , Cats , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Dogs , Phylogeny , SARS-CoV-2/genetics , Thailand/epidemiology
13.
BMC Vet Res ; 18(1): 246, 2022 Jun 24.
Article in English | MEDLINE | ID: covidwho-1910324

ABSTRACT

BACKGROUND: The COVID-19 pandemic is likely to have affected the welfare and health of dogs due to surges in adoptions and purchases, changes in the physical and mental health and financial status of dog owners, changes in dogs' lifestyle and routines and limited access to veterinary care. The aims of this study were to investigate whether COVID-19 restrictions were associated with differences in Labrador retrievers' lifestyle, routine care, insurance status, illness incidence or veterinary attendance with an illness, who were living in England and enrolled in Dogslife, an owner-based cohort study. Longitudinal questionnaire data from Dogslife that was relevant to the dates between the 23rd of March and the 4th of July 2020, during COVID-19 restrictions in England, were compared to data between the same dates in previous years from 2011 to 2019 using mixed regression models and adjusted chi-squared tests. RESULTS: Compared with previous years (March 23rd to July 4th, 2010 to 2019), the COVID-19 restrictions study period (March 23rd to July 4th 2020) was associated with owners reporting increases in their dogs' exercise and worming and decreases in insurance, titbit-feeding and vaccination. Odds of owners reporting that their dogs had an episode of coughing (0.20, 95% CI: 0.04-0.92) and that they took their dogs to a veterinarian with an episode of any illness (0.58, 95% CI: 0.45-0.76) were lower during the COVID-19 restrictions compared to before. During the restrictions period, owners were less likely to report that they took their dogs to a veterinarian with certain other illnesses, compared to before this period. CONCLUSIONS: Dogslife provided a unique opportunity to study prospective questionnaire data from owners already enrolled on a longitudinal cohort study. This approach minimised bias associated with recalling events prior to the pandemic and allowed a wider population of dogs to be studied than is available from primary care data. Distinctive insights into owners' decision making about their dogs' healthcare were offered. There are clear implications of the COVID-19 pandemic and associated restrictions for the lifestyle, care and health of dogs.


Subject(s)
COVID-19 , Dog Diseases , Physical Conditioning, Animal , Animals , COVID-19/epidemiology , COVID-19/veterinary , Cohort Studies , Dog Diseases/epidemiology , Dogs , England/epidemiology , Humans , Longitudinal Studies , Pandemics , Prospective Studies
14.
J Microbiol Methods ; 199: 106528, 2022 08.
Article in English | MEDLINE | ID: covidwho-1907587

ABSTRACT

Infectious respiratory disease is one of the most common diseases in dogs worldwide. Several bacterial and viral pathogens can serve as causative agents of canine infectious respiratory disease (CIRD), including Mycoplasma cynos, Mycoplasma canis, Bordetella bronchiseptica, canine adenovirus type 2 (CAdV-2), canine herpesvirus 1 (CHV-1), canine parainfluenza virus (CPIV), canine distemper virus (CDV), canine influenza virus (CIA) and canine respiratory coronavirus (CRCoV). Since these organisms cause similar clinical symptoms, disease diagnosis based on symptoms alone can be difficult. Therefore, a quick and accurate test is necessary to rapidly identify the presence and relative concentrations of causative CIRD agents. In this study, a multiplex real-time PCR panel assay was developed and composed of three subpanels for detection of the aforementioned pathogens. Correlation coefficients (R2) were >0.993 for all singleplex and multiplex real-time PCR assays with the exception of one that was 0.988; PCR amplification efficiencies (E) were between 92.1% and 107.8% for plasmid DNA, and 90.6-103.9% for RNA templates. In comparing singular and multiplex PCR assays, the three multiplex reactions generated similar R2 and E values to those by corresponding singular reactions, suggesting that multiplexing did not interfere with the detection sensitivities. The limit of detection (LOD) of the multiplex real-time PCR for DNA templates was 5, 2, 3, 1, 1, 1, 4, 24 and 10 copies per microliter for M. cynos, M. canis, B. brochiseptica, CAdV-2, CHV-1, CPIV, CDV, CIA and CRCoV, respectively; and 3, 2, 6, 17, 4 and 8 copies per microliter for CAdV-2, CHV-1, CPIV, CDV, CIA and CRCoV, respectively, when RNA templates were used for the four RNA viruses. No cross-detection was observed among the nine pathogens. For the 740 clinical samples tested, the newly designed PCR assay showed higher diagnostic sensitivity compared to an older panel assay; pathogen identities from selected samples positive by the new assay but undetected by the older assay were confirmed by Sanger sequencing. Our data showed that the new assay has higher diagnostic sensitivity while maintaining the assay's specificity, as compared to the older version of the panel assay.


Subject(s)
Dog Diseases , Respiratory Tract Infections , Animals , DNA , Dog Diseases/diagnosis , Dog Diseases/microbiology , Dogs , Multiplex Polymerase Chain Reaction , RNA , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/veterinary , Sensitivity and Specificity
15.
Arch Virol ; 167(9): 1831-1840, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1899185

ABSTRACT

Viral enteritis is a significant threat to domestic dogs. The two primary pathogens that cause viral enteritis in dogs are canine coronavirus (CCoV) and canine parvovirus (CPV). In this study, we investigated the occurrence of CPV-2, CCoV, and canine circovirus coinfection by characterizing circulating subtypes of CPV-2 in faecal samples from symptomatic dogs admitted to veterinary clinics located in Ankara, Elazig, Kayseri, and Kocaeli provinces of Turkey, between 2019 and 2022. Virus detection by PCR and RT-PCR revealed that CPV-2 was present in 48 (77.4%) samples, and no other agents were detected. Based on the occurrence of the codon GAT at positions 1276 to 1278 (coding for aspartate at residue 426) of VP2, all CPV-2 isolates were confirmed to be of the CPV-2b subtype. The complete genome sequences of two CPV-2b isolates showed a high degree of similarity to and phylogenetic clustering with Australian and East Asian strains/isolates. The predominant CPV strain circulating in the three different regions of Turkey was found to be a CPV-2b strain containing the amino acid substitutions at Y324I and T440A, which commonly contribute to immune escape. This is the first report of complete genomic analysis of CPV-2 isolates circulating in symptomatic domestic dogs in Turkey. The evolution of CPV-2 has raised questions about the efficacy of current vaccination regimes and highlights the importance of monitoring the emergence and spread of new CPV-2 variants.


Subject(s)
Coronavirus, Canine , Dog Diseases , Enteritis , Parvoviridae Infections , Parvovirus, Canine , Animals , Australia , Dog Diseases/epidemiology , Dogs , Genomics , Parvoviridae Infections/epidemiology , Parvoviridae Infections/veterinary , Phylogeny , Turkey/epidemiology
16.
Emerg Infect Dis ; 28(6): 1154-1162, 2022 06.
Article in English | MEDLINE | ID: covidwho-1892584

ABSTRACT

We tested swab specimens from pets in households in Ontario, Canada, with human COVID-19 cases by quantitative PCR for SARS-CoV-2 and surveyed pet owners for risk factors associated with infection and seropositivity. We tested serum samples for spike protein IgG and IgM in household pets and also in animals from shelters and low-cost neuter clinics. Among household pets, 2% (1/49) of swab specimens from dogs and 7.7% (5/65) from cats were PCR positive, but 41% of dog serum samples and 52% of cat serum samples were positive for SARS-CoV-2 IgG or IgM. The likelihood of SARS-CoV-2 seropositivity in pet samples was higher for cats but not dogs that slept on owners' beds and for dogs and cats that contracted a new illness. Seropositivity in neuter-clinic samples was 16% (35/221); in shelter samples, 9.3% (7/75). Our findings indicate a high likelihood for pets in households of humans with COVID-19 to seroconvert and become ill.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , COVID-19/epidemiology , COVID-19/veterinary , Cat Diseases/epidemiology , Cats , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Dogs , Immunoglobulin G , Immunoglobulin M , Ontario/epidemiology , Pets , Risk Factors , SARS-CoV-2
17.
J Med Entomol ; 59(4): 1479-1483, 2022 07 13.
Article in English | MEDLINE | ID: covidwho-1873941

ABSTRACT

Flies and other arthropods mechanically transmit multiple pathogens and a recent experimental study demonstrated house flies, Musca domestica L. (Diptera: Muscidae), can mechanically transmit SARS-CoV-2. The purpose of this study was to explore the possibility of mechanical transmission of SARS-CoV-2 by domestic insects and their potential as a xenosurveillance tool for detection of the virus. Flies were trapped in homes where at least one confirmed human COVID-19 case(s) resided using sticky and liquid-baited fly traps placed inside and outside the home in the Texas counties of Brazos, Bell, and Montgomery, from June to September 2020. Flies from sticky traps were identified, pooled by taxa, homogenized, and tested for the presence of SARS-CoV-2 RNA using quantitative reverse transcription PCR (RT-qPCR). Liquid traps were drained, and the collected fluid similarly tested after RNA concentration. We processed the contents of 133 insect traps from 40 homes, which contained over 1,345 individual insects of 11 different Diptera families and Blattodea. These individuals were grouped into 243 pools, and all tested negative for SARS-CoV-2 RNA. Fourteen traps in seven homes were deployed on the day that cat or dog samples tested positive for SARS-CoV-2 RNA by nasal, oral, body, or rectal samples. This study presents evidence that biting and nonbiting flies and cockroaches (Blattodea) are not likely to contribute to mechanical transmission of SARS-CoV-2 or be useful in xenosurveillance for SARS-CoV-2.


Subject(s)
COVID-19 , Cockroaches , Dog Diseases , Houseflies , Muscidae , Animals , Dogs , Humans , Insect Control , RNA, Viral , SARS-CoV-2
18.
Viruses ; 14(6)2022 05 28.
Article in English | MEDLINE | ID: covidwho-1869823

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), responsible for COVID-19 in people, has been detected in companion animals on rare occasions. A limited number of large-scale studies have investigated the exposure of companion animals to SARS-CoV-2. The objective of this prospective study was to estimate seroprevalence in privately owned dogs and cats presented in veterinary clinics in different French regions and to test the hypothesis that the occurrence of an episode of COVID-19 in the household and close contact with the owner would increase the chances of the animals being seropositive. One hundred and sixty-five dogs and 143 cats were blood-sampled between March 2020 and December 2021. Neutralizing SARS-CoV-2 antibodies were detected in 8.4% of cats (12/143) and 5.4% of dogs (9/165). Seven animals (three dogs and four cats) were seropositive in the absence of an episode of COVID-19 in the household. Despite not being statistically significant (chi-square test, p-value = 0.55), our data may suggest that the occurrence of an episode of COVID-19 in the household could increase the risk of animal seropositivity (odds ratio = 1.38; 95% confidence interval = 0.55-3.77). This survey indirectly shows that SARS-CoV-2 circulates in canine and feline populations, but its circulation appears to be too low for pets to act as a significant viral reservoir.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , COVID-19/epidemiology , COVID-19/veterinary , Cat Diseases/epidemiology , Cats , Dog Diseases/epidemiology , Dogs , Factor Analysis, Statistical , Humans , Prospective Studies , SARS-CoV-2 , Seroepidemiologic Studies
19.
Int J Infect Dis ; 122: 295-299, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1867235

ABSTRACT

OBJECTIVES: Several cases of reverse transmission of SARS-CoV-2 from human to pets were reported during the first year of the COVID-19 pandemic. Accordingly, the World Organization for Animal Health has recommended to improve SARS-CoV-2 surveillance on household animals to assess the risk of transmission between species. After such recommendation, we studied the potential SARS-CoV-2 infection in household dogs and cats in the city of Guayaquil, the most populated city in Ecuador. METHODS: Oral and nasal swab samples were collected from dogs and cats within 10 days of a positive SARS-CoV-2 test result of their owners. Total ribonucleic acid was extracted and detection of viral gene targets N and ORF1ab was performed by quantitative reverse transcription polymerase chain reaction. RESULTS: From the 50 cats and dogs tested, 12 were SARS-CoV-2 positive, giving a total positivity rate of 24%. A total of 1 of 8 cats tested positive, whereas 11 of 42 dogs were positive, yielding a positivity rate of 12.5% and 26.2%, respectively. SARS-CoV-2 was confirmed by whole genome sequencing. In addition, we also found a statistically significant association between SARS-CoV-2 pet positivity and food sharing with infected owners. CONCLUSION: This study is the second active surveillance of SARS-CoV-2 in household dogs and cats in Latin America. Moreover, it is the first study to address the risk factors associated with potential anthropogenic SARS-CoV-2 transmission to domestic cats and dogs. Given the high presence of free-roaming dogs and cats in rural and urban areas in Latin American countries and the high capacity shown by coronaviruses for interspecies transmission, our findings support the view that SARS-CoV-2 surveillance in pets is necessary to better understand the role that pet-human interaction plays in the COVID-19 spread.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Animals , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/veterinary , Cat Diseases/diagnosis , Cat Diseases/epidemiology , Cats , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Dogs , Humans , Pandemics , Pets , SARS-CoV-2/genetics
20.
Zoonoses Public Health ; 69(7): 816-825, 2022 11.
Article in English | MEDLINE | ID: covidwho-1864196

ABSTRACT

Since its first emergence in December 2019, the world has witnessed the eruption of mutations in the SARS-CoV-2 genome that have led to increased viral transmissibility and pathogenicity due to sustained local viral transmission. Zooanthroponotic and zoonotic transmissions have further raised concerns as they could result in the emergence of viral variants with a novel antigenicity and transmissibility that could jeopardize the vaccine efficacy. To understand the viral evolution during such transmissions, 1016 whole-genome sequences (deposited in GISAID as of March 7, 2022) (from 18 countries) corresponding to mink, cat, deer, dog, hyena, tiger, lion, gorilla, Syrian hamster, leopard cat, fishing cat, bear cat, coati, ferret, snow leopard and green monkey have been analysed here. Intriguingly, phyloproteome analysis indicate that Nsp2:R218C, Nsp2:D268-(deletion), Spike:D614G, Nsp12:P323L, Nsp2:A192V, ORF3a protein:Q57H, N protein:R203K and N protein:G204R/L, Spike:A222V, ORF10 protein:V30L and N protein:A220V are moderate or high recurring and clade decisive mutations, leading to 6 primary clades during the early stage of pandemic. Most interestingly, the human evolved delta variant having a combination of 26 (clade decisive) mutations defines the seventh clade and transmits to non-human hosts across the globe without exhibiting any country-specific mutation(s). Nonetheless, Spike:D614G and Nsp12:P323L together with (i)N protein:R203K,N protein:G204R/L,Spike:V70-, Spike:H69-, Nsp12:T739I, and Nsp1:M85-, (ii)Nsp2:A192V, Nsp3:D178Y, (iii)Nsp2:T85I, N protein:P67S and ORF3a protein:Q57H and (iv)Spike:A222V, ORF10 protein:V30L, N protein:A220V and Spike:F486I are specific to Denmark, Netherlands, USA and Latvia respectively and, (v)Nsp2:D268- and Nsp13:R292C that are devoid of Spike:D614G and Nsp12:P323L is specific to Netherlands. SARS-CoV-2 variants consisting of these mutations are also seen in the human SARS-CoV-2 sequences from the same country. Independent country-specific SARS-CoV-2 variant evolution further indicates distinct epidemiological dynamics during zooanthroponotic and zoonotic transmissions. Thus, the results presented here indicate the need for the surveillance of viral evolution in non-human hosts also during the future pandemic.


Subject(s)
COVID-19 , Deer , Dog Diseases , Amino Acids/genetics , Animals , COVID-19/veterinary , Chlorocebus aethiops , Dogs , Ferrets , Humans , Mutation , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL