Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Molecules ; 26(24)2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1572568

ABSTRACT

The encapsulation mode of dexamethasone (Dex) into the cavity of ß-cyclodextrin (ß-CD), as well as its potential as an inhibitor of the COVID-19 main protease, were investigated using density functional theory with the recent dispersion corrections D4 and molecular docking calculations. Independent gradient model and natural bond orbital approaches allowed for the characterization of the host-guest interactions in the studied systems. Structural and energetic computation results revealed that hydrogen bonds and van der Waals interactions played significant roles in the stabilization of the formed Dex@ß-CD complex. The complexation energy significantly decreased from -179.50 kJ/mol in the gas phase to -74.14 kJ/mol in the aqueous phase. A molecular docking study was performed to investigate the inhibitory activity of dexamethasone against the COVID-19 target protein (PDB ID: 6LU7). The dexamethasone showed potential therapeutic activity as a SARS CoV-2 main protease inhibitor due to its strong binding to the active sites of the protein target, with predicted free energy of binding values of -29.97 and -32.19 kJ/mol as calculated from AutoDock4 and AutoDock Vina, respectively. This study was intended to explore the potential use of the Dex@ß-CD complex in drug delivery to enhance dexamethasone dissolution, thus improving its bioavailability and reducing its side effects.


Subject(s)
COVID-19/drug therapy , Dexamethasone/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , beta-Cyclodextrins/pharmacology , Antiviral Agents/pharmacology , Drug Carriers/pharmacology , Humans , Molecular Docking Simulation
2.
Acta Pharmacol Sin ; 42(11): 1913-1920, 2021 11.
Article in English | MEDLINE | ID: covidwho-1437673

ABSTRACT

Sepsis is a dysregulated immune response to infection and potentially leads to life-threatening organ dysfunction, which is often seen in serious Covid-19 patients. Disulfiram (DSF), an old drug that has been used to treat alcohol addiction for decades, has recently been identified as a potent inhibitor of the gasdermin D (GSDMD)-induced pore formation that causes pyroptosis and inflammatory cytokine release. Therefore, DSF represents a promising therapeutic for the treatment of inflammatory disorders. Lactoferrin (LF) is a multifunctional glycoprotein with potent antibacterial and anti-inflammatory activities that acts by neutralizing circulating endotoxins and activating cellular responses. In addition, LF has been well exploited as a drug nanocarrier and targeting ligands. In this study, we developed a DSF-LF nanoparticulate system (DSF-LF NP) for combining the immunosuppressive activities of both DSF and LF. DSF-LF NPs could effectively block pyroptosis and inflammatory cytokine release from macrophages. Treatment with DSF-LF NPs showed remarkable therapeutic effects on lipopolysaccharide (LPS)-induced sepsis. In addition, this therapeutic strategy was also applied to treat ulcerative colitis (UC), and substantial treatment efficacy was achieved in a murine colitis model. The underlying mode of action of these DSF-LF-NPs may contribute to efficiently suppressing macrophage-mediated inflammatory responses and ameliorating the complications caused by sepsis and UC. As macrophage pyroptosis plays a pivotal role in inflammation, this safe and effective biomimetic nanomedicine may offer a versatile therapeutic strategy for treating various inflammatory diseases by repurposing DSF.


Subject(s)
COVID-19 , Colitis, Ulcerative , Disulfiram/pharmacokinetics , Lactoferrin , Systemic Inflammatory Response Syndrome , Acetaldehyde Dehydrogenase Inhibitors/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Biomimetic Materials/pharmacology , COVID-19/drug therapy , COVID-19/immunology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Disease Models, Animal , Disulfiram/pharmacology , Drug Carriers/pharmacology , Humans , Immunosuppressive Agents/pharmacology , Lactoferrin/metabolism , Lactoferrin/pharmacology , Lipopolysaccharides/immunology , Macrophages/drug effects , Macrophages/immunology , Mice , Mice, Inbred C57BL , Nanoparticles/therapeutic use , Pyroptosis/drug effects , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/drug therapy , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/metabolism , Treatment Outcome
3.
Mol Pharm ; 18(6): 2233-2241, 2021 06 07.
Article in English | MEDLINE | ID: covidwho-1233685

ABSTRACT

Eliciting a robust immune response at mucosal sites is critical in preventing the entry of mucosal pathogens such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This task is challenging to achieve without the inclusion of a strong and safe mucosal adjuvant. Previously, inulin acetate (InAc), a plant-based polymer, is shown to activate toll-like receptor-4 (TLR4) and elicit a robust systemic immune response as a vaccine adjuvant. This study investigates the potential of nanoparticles prepared with InAc (InAc-NPs) as an intranasal vaccine delivery system to generate both mucosal and systemic immune responses. InAc-NPs (∼250 nm in diameter) activated wild-type (WT) macrophages but failed to activate macrophages from TLR4 knockout mice or WT macrophages when pretreated with a TLR4 antagonist (lipopolysaccharide-RS (LPS-RS)), which indicates the selective nature of a InAc-based nanodelivery system as a TLR4 agonist. Intranasal immunization using antigen-loaded InAc-NPs generated ∼65-fold and 19-fold higher serum IgG1 and IgG2a titers against the antigen, respectively, as compared to PLGA-NPs as a delivery system. InAc-NPs have also stimulated the secretion of sIgA at various mucosal sites, including nasal-associated lymphoid tissues (NALTs), lungs, and intestine, and produced a strong memory response indicative of both humoral and cellular immune activation. Overall, by stimulating both systemic and mucosal immunity, InAc-NPs laid a basis for a potential intranasal delivery system for mucosal vaccination.


Subject(s)
Adjuvants, Immunologic/pharmacology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Drug Carriers/pharmacology , Inulin/pharmacology , Adjuvants, Immunologic/chemistry , Administration, Intranasal , Animals , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Cells, Cultured , Drug Carriers/chemistry , Drug Evaluation, Preclinical , Humans , Immunity, Mucosal/drug effects , Immunity, Mucosal/immunology , Immunogenicity, Vaccine , Inulin/chemistry , Inulin/immunology , Macrophages/drug effects , Macrophages/immunology , Male , Mice , Mice, Knockout , Nanoparticles/chemistry , Primary Cell Culture , SARS-CoV-2/immunology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/genetics
4.
Int J Biol Macromol ; 182: 743-749, 2021 Jul 01.
Article in English | MEDLINE | ID: covidwho-1163841

ABSTRACT

The development of high-end targeted drugs and vaccines against modern pandemic infections, such as COVID-19, can take a too long time that lets the epidemic spin up and harms society. However, the countermeasures must be applied against the infection in this period until the targeted drugs became available. In this regard, the non-specific, broad-spectrum anti-viral means could be considered as a compromise allowing overcoming the period of trial. One way to enhance the ability to resist the infection is to activate the nonspecific immunity using a suitable driving-up agent, such as plant polysaccharides, particularly our drug Panavir isolated from the potato shoots. Earlier, we have shown the noticeable anti-viral and anti-bacterial activity of Panavir. Here we demonstrate the pro-inflammation activity of Panavir, which four-to-eight times intensified the ATP and MIF secretion by HL-60 cells. This effect was mediated by the active phagocytosis of the Panavir particles by the cells. We hypothesized the physiological basis of the Panavir proinflammatory activity is mediated by the indol-containing compounds (auxins) present in Panavir and acting as a plant analog of serotonin.


Subject(s)
Antiviral Agents , COVID-19/drug therapy , Drug Carriers , Nanoparticles , Plants/chemistry , Polysaccharides , Probucol , Adolescent , Adult , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , HL-60 Cells , Humans , Male , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Phagocytosis/drug effects , Polysaccharides/chemistry , Polysaccharides/pharmacology , Probucol/chemistry , Probucol/pharmacokinetics , Probucol/pharmacology
5.
Int J Pharm ; 588: 119689, 2020 Oct 15.
Article in English | MEDLINE | ID: covidwho-670401

ABSTRACT

A handful of singular structures and laws can be observed in nature. They are not always evident but, once discovered, it seems obvious how to take advantage of them. In chemistry, the discovery of reproducible patterns stimulates the imagination to develop new functional materials and technological or medical applications. Two clear examples are helical structures at different levels in biological polymers as well as ring and spherical structures of different size and composition. Rings are intuitively observed as holes able to thread elongated structures. A large number of real and fictional stories have rings as inanimate protagonists. The design, development or just discovering of a special ring has often been taken as a symbol of power or success. Several examples are the Piscatory Ring wore by the Pope of the Catholic Church, the NBA Championship ring and the One Ring created by the Dark Lord Sauron in the epic story The Lord of the Rings. In this work, we reveal the power of another extremely powerful kind of rings to fight against the pandemic which is currently affecting the whole world. These rings are as small as ~1 nm of diameter and so versatile that they are able to participate in the attack of viruses, and specifically SARS-CoV-2, in a large range of different ways. This includes the encapsulation and transport of specific drugs, as adjuvants to stabilize proteins, vaccines or other molecules involved in the infection, as cholesterol trappers to destabilize the virus envelope, as carriers for RNA therapies, as direct antiviral drugs and even to rescue blood coagulation upon heparin treatment. "One ring to rule them all. One ring to find them. One ring to bring them all and in the darkness bind them." J. R. R. Tolkien.


Subject(s)
Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Cyclodextrins/chemistry , Cyclodextrins/pharmacology , Nanostructures , Pneumonia, Viral/drug therapy , Betacoronavirus/metabolism , Blood Coagulation/drug effects , COVID-19 , Coronavirus Infections/prevention & control , Drug Carriers/chemistry , Drug Carriers/pharmacology , Drug Stability , Excipients/chemistry , Excipients/pharmacology , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Viral Vaccines/chemistry , Viral Vaccines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL