Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 564
Filter
1.
Bioorg Med Chem ; 70: 116939, 2022 09 15.
Article in English | MEDLINE | ID: covidwho-2176835
2.
Mol Oncol ; 16(21): 3757-3760, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2103452
3.
Mol Oncol ; 16(21): 3761-3777, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2093220

ABSTRACT

Fragment-based drug discovery (FBDD) is now established as a complementary approach to high-throughput screening (HTS). Contrary to HTS, where large libraries of drug-like molecules are screened, FBDD screens involve smaller and less complex molecules which, despite a low affinity to protein targets, display more 'atom-efficient' binding interactions than larger molecules. Fragment hits can, therefore, serve as a more efficient start point for subsequent optimisation, particularly for hard-to-drug targets. Since the number of possible molecules increases exponentially with molecular size, small fragment libraries allow for a proportionately greater coverage of their respective 'chemical space' compared with larger HTS libraries comprising larger molecules. However, good library design is essential to ensure optimal chemical and pharmacophore diversity, molecular complexity, and physicochemical characteristics. In this review, we describe our views on fragment library design, and on what constitutes a good fragment from a medicinal and computational chemistry perspective. We highlight emerging chemical and computational technologies in FBDD and discuss strategies for optimising fragment hits. The impact of novel FBDD approaches is already being felt, with the recent approval of the covalent KRASG12C inhibitor sotorasib highlighting the utility of FBDD against targets that were long considered undruggable.


Subject(s)
Drug Discovery , High-Throughput Screening Assays , Humans , Drug Design
4.
Nat Biotechnol ; 40(9): 1328-1329, 2022 09.
Article in English | MEDLINE | ID: covidwho-2050418
6.
Front Cell Infect Microbiol ; 12: 933824, 2022.
Article in English | MEDLINE | ID: covidwho-2022656

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic has killed huge populations throughout the world and acts as a high-risk factor for elderly and young immune-suppressed patients. There is a critical need to build up secure, reliable, and efficient drugs against to the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Bioactive compounds of Ashwagandha [Withania somnifera (L.) Dunal] may implicate as herbal medicine for the management and treatment of patients infected by SARS-CoV-2 infection. The aim of the current work is to update the knowledge of SARS-CoV-2 infection and information about the implication of various compounds of medicinal plant Withania somnifera with minimum side effects on the patients' organs. The herbal medicine Withania somnifera has an excellent antiviral activity that could be implicated in the management and treatment of flu and flu-like diseases connected with SARS-CoV-2. The analysis was performed by systematically re-evaluating the published articles related to the infection of SARS-CoV-2 and the herbal medicine Withania somnifera. In the current review, we have provided the important information and data of various bioactive compounds of Withania somnifera such as Withanoside V, Withanone, Somniferine, and some other compounds, which can possibly help in the management and treatment of SARS-CoV-2 infection. Withania somnifera has proved its potential for maintaining immune homeostasis of the body, inflammation regulation, pro-inflammatory cytokines suppression, protection of multiple organs, anti-viral, anti-stress, and anti-hypertensive properties. Withanoside V has the potential to inhibit the main proteases (Mpro) of SARS-CoV-2. At present, synthetic adjuvant vaccines are used against COVID-19. Available information showed the antiviral activity in Withanoside V of Withania somnifera, which may explore as herbal medicine against to SARS-CoV-2 infection after standardization of parameters of drug development and formulation in near future.


Subject(s)
COVID-19 , Withania , Aged , Antiviral Agents/therapeutic use , COVID-19/drug therapy , Drug Discovery , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , SARS-CoV-2
7.
Sci Rep ; 12(1): 13237, 2022 08 02.
Article in English | MEDLINE | ID: covidwho-2016819

ABSTRACT

The identification of novel drug-target interactions (DTI) is critical to drug discovery and drug repurposing to address contemporary medical and public health challenges presented by emergent diseases. Historically, computational methods have framed DTI prediction as a binary classification problem (indicating whether or not a drug physically interacts with a given protein target); however, framing the problem instead as a regression-based prediction of the physiochemical binding affinity is more meaningful. With growing databases of experimentally derived drug-target interactions (e.g. Davis, Binding-DB, and Kiba), deep learning-based DTI predictors can be effectively leveraged to achieve state-of-the-art (SOTA) performance. In this work, we formulated a DTI competition as part of the coursework for a senior undergraduate machine learning course and challenged students to generate component DTI models that might surpass SOTA models and effectively combine these component models as part of a meta-model using the Reciprocal Perspective (RP) multi-view learning framework. Following 6 weeks of concerted effort, 28 student-produced component deep-learning DTI models were leveraged in this work to produce a new SOTA RP-DTI model, denoted the Meta Undergraduate Student DTI (MUSDTI) model. Through a series of experiments we demonstrate that (1) RP can considerably improve SOTA DTI prediction, (2) our new double-cold experimental design is more appropriate for emergent DTI challenges, (3) that our novel MUSDTI meta-model outperforms SOTA models, (4) that RP can improve upon individual models as an ensembling method, and finally, (5) RP can be utilized for low computation transfer learning. This work introduces a number of important revelations for the field of DTI prediction and sequence-based, pairwise prediction in general.


Subject(s)
Drug Development , Drug Discovery , Computer Simulation , Drug Discovery/methods , Drug Interactions , Humans , Machine Learning
8.
FEBS Open Bio ; 12(10): 1886-1895, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2013287

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been spreading globally for over 2 years, causing serious contagious disease and incalculable damage. The introduction of vaccines has slowed the spread of SARS-CoV-2 to some extent, but there remains a need for specific and effective treatment. The high chemical diversity and safety profiles of natural products make them a potential source of effective anti-SARS-CoV-2 drugs. Cotton plant is one of the most important economic and medical crops and is the source of a large number of antiviral phytochemicals. In this work, we used SARS-CoV-2 main protein (Mpro ) as the target to identify potential anti-SARS-CoV-2 natural products in cotton. An in vitro assay showed that of all cotton tissues examined, cotton flower extracts (CFs) exhibited optimal inhibitory effects against Mpro . We proceeded to use the CF metabolite database to screen natural Mpro inhibitors by combining virtual screening and biochemical assays. We identified that several CF natural products, including astragalin, myricitrin, and astilbin, significantly inhibited Mpro with half-maximal inhibitory concentrations (IC50s) of 0.13, 10.73, and 7.92 µm, respectively. These findings may serve as a basis for further studies into the suitability of cotton as a source of potential therapeutics for SARS-CoV-2.


Subject(s)
Biological Products , COVID-19 , Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases , Cysteine Endopeptidases/metabolism , Drug Discovery , Flowers , Gossypium/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2 , Viral Nonstructural Proteins/metabolism
9.
Nat Med ; 28(8): 1523-1526, 2022 08.
Article in English | MEDLINE | ID: covidwho-2008299
10.
Nat Rev Drug Discov ; 21(1): 60-78, 2022 01.
Article in English | MEDLINE | ID: covidwho-2008294

ABSTRACT

Integrins are cell adhesion and signalling proteins crucial to a wide range of biological functions. Effective marketed treatments have successfully targeted integrins αIIbß3, α4ß7/α4ß1 and αLß2 for cardiovascular diseases, inflammatory bowel disease/multiple sclerosis and dry eye disease, respectively. Yet, clinical development of others, notably within the RGD-binding subfamily of αv integrins, including αvß3, have faced significant challenges in the fields of cancer, ophthalmology and osteoporosis. New inhibitors of the related integrins αvß6 and αvß1 have recently come to the fore and are being investigated clinically for the treatment of fibrotic diseases, including idiopathic pulmonary fibrosis and nonalcoholic steatohepatitis. The design of integrin drugs may now be at a turning point, with opportunities to learn from previous clinical trials, to explore new modalities and to incorporate new findings in pharmacological and structural biology. This Review intertwines research from biological, clinical and medicinal chemistry disciplines to discuss historical and current RGD-binding integrin drug discovery, with an emphasis on small-molecule inhibitors of the αv integrins.


Subject(s)
Integrins/antagonists & inhibitors , Integrins/metabolism , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Animals , Drug Discovery/methods , Humans , Protein Binding/drug effects
11.
Chem Biol Drug Des ; 100(5): 699-721, 2022 11.
Article in English | MEDLINE | ID: covidwho-2001616

ABSTRACT

Application of materials capable of energy harvesting to increase the efficiency and environmental adaptability is sometimes reflected in the ability of discovery of some traces in an environment-either experimentally or computationally-to enlarge practical application window. The emergence of computational methods, particularly computer-aided drug discovery (CADD), provides ample opportunities for the rapid discovery and development of unprecedented drugs. The expensive and time-consuming process of traditional drug discovery is no longer feasible, for nowadays the identification of potential drug candidates is much easier for therapeutic targets through elaborate in silico approaches, allowing the prediction of the toxicity of drugs, such as drug repositioning (DR) and chemical genomics (chemogenomics). Coronaviruses (CoVs) are cross-species viruses that are able to spread expeditiously from the into new host species, which in turn cause epidemic diseases. In this sense, this review furnishes an outline of computational strategies and their applications in drug discovery. A special focus is placed on chemogenomics and DR as unique and emerging system-based disciplines on CoV drug and target discovery to model protein networks against a library of compounds. Furthermore, to demonstrate the special advantages of CADD methods in rapidly finding a drug for this deadly virus, numerous examples of the recent achievements grounded on molecular docking, chemogenomics, and DR are reported, analyzed, and interpreted in detail. It is believed that the outcome of this review assists developers of energy harvesting materials and systems for detection of future unexpected kinds of CoVs or other variants.


Subject(s)
COVID-19 , Drug Repositioning , COVID-19/drug therapy , Computers , Drug Design , Drug Discovery/methods , Humans , Molecular Docking Simulation
13.
Eur J Med Chem ; 238: 114508, 2022 Aug 05.
Article in English | MEDLINE | ID: covidwho-1982957

ABSTRACT

The COVID-19 posed a serious threat to human life and health, and SARS-CoV-2 Mpro has been considered as an attractive drug target for the treatment of COVID-19. Herein, we report 2-(furan-2-ylmethylene)hydrazine-1-carbothioamide derivatives as novel inhibitors of SARS-CoV-2 Mpro developed by in-house library screening and biological evaluation. Similarity search led to the identification of compound F8-S43 with the enzymatic IC50 value of 10.76 µM. Further structure-based drug design and synthetic optimization uncovered compounds F8-B6 and F8-B22 as novel non-peptidomimetic inhibitors of Mpro with IC50 values of 1.57 µM and 1.55 µM, respectively. Moreover, enzymatic kinetic assay and mass spectrometry demonstrated that F8-B6 was a reversible covalent inhibitor of Mpro. Besides, F8-B6 showed low cytotoxicity with CC50 values of more than 100 µM in Vero and MDCK cells. Overall, these novel SARS-CoV-2 Mpro non-peptidomimetic inhibitors provide a useful starting point for further structural optimization.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Furans , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Drug Discovery/methods , Furans/chemistry , Furans/pharmacology , Humans , Hydrazines/pharmacology , Molecular Docking Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
15.
Pharmacol Rev ; 74(1): 141-206, 2022 01.
Article in English | MEDLINE | ID: covidwho-1978532

ABSTRACT

The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.


Subject(s)
Drug Discovery , Drug-Related Side Effects and Adverse Reactions , Drug Development , Drug Evaluation, Preclinical , Humans , Multicenter Studies as Topic
16.
Am J Chin Med ; 50(4): 927-959, 2022.
Article in English | MEDLINE | ID: covidwho-1973869

ABSTRACT

Coronavirus disease 2019 (COVID-19) is currently a worldwide pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, there are no drugs that can specifically combat SARS-CoV-2. Besides, multiple SARS-CoV-2 variants are circulating globally. These variants may lead to immune escape or drug resistance. Natural products may be appropriate for this need due to their cost efficiency, fewer side effects, and antiviral activities. Considering these circumstances, there is a need to develop or discover more compounds that have potential to target SARS-CoV-2. Therefore, we searched for articles on natural products describing anti-SARS-CoV-2 activities by targeting the SARS-CoV-2 life cycle and the cytokine storm in COVID-19 from academic databases. We reviewed anti-SARS-CoV-2 activities of natural products, especially those that target the SARS-CoV-2 life cycle (angiotensin-converting enzyme 2, transmembrane serine protease 2, cathepsin L, 3CL protease, PL protease, RNA-dependent RNA polymerase, and helicase) and cytokine storm in COVID-19. This review may provide a repurposed approach for the discovery of specific medications using natural products to treat COVID-19 through targeting the SARS-CoV-2 life cycle and the cytokine storm in COVID-19.


Subject(s)
Biological Products , COVID-19 , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Products/pharmacology , Biological Products/therapeutic use , COVID-19/drug therapy , Cytokine Release Syndrome/drug therapy , Drug Discovery , Humans , Life Cycle Stages , SARS-CoV-2
17.
Curr Med Chem ; 29(12): 2013-2050, 2022.
Article in English | MEDLINE | ID: covidwho-1968939

ABSTRACT

BACKGROUND: Multicomponent reactions are one-pot processes for the synthesis of highly functionalized hetero-cyclic and hetero-acyclic compounds, often endowed with biological activity. OBJECTIVE: Multicomponent reactions are considered green processes with a high atom economy. In addition, they present advantages compared to the classic synthetic methods, such as high efficiency and low waste production. METHODS: In these reactions, two or more reagents are combined together in the same flask to yield a product containing almost all the atoms of the starting materials. RESULTS: The scope of this review is to present an overview of the application of multicomponent reactions in the synthesis of compounds endowed with antiviral activity. The syntheses are classified depending on the viral target. CONCLUSION: Multicomponent reactions can be applied to all the stages of the drug discovery and development process, making them very useful in the search for new agents active against emerging (viral) pathogens.


Subject(s)
Antiviral Agents , Drug Discovery , Antiviral Agents/pharmacology , Humans
19.
Arch Pharm (Weinheim) ; 355(11): e2200214, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1940703

ABSTRACT

The prevalence of tuberculosis (TB) remains the leading cause of death from a single infectious agent, ranking it above all other contagious diseases. The problem to tackle this disease seems to become even worse due to the outbreak of SARS-CoV-2. Further, the complications related to drug-resistant TB, prolonged treatment regimens, and synergy between TB and HIV are significant drawbacks. There are several drugs to treat TB, but there is still no rapid and accurate treatment available. Intensive research is, therefore, necessary to discover newer molecular analogs that can probably eliminate this disease within a short span. An increase in efficacy can be achieved through re-engineering old TB-drug families and repurposing known drugs. These two approaches have led to the production of newer classes of compounds with novel mechanisms to treat multidrug-resistant strains. With respect to this context, we discuss structural aspects of developing new anti-TB drugs as well as examine advances in TB drug discovery. It was found that the fluoroquinolone, oxazolidinone, and nitroimidazole classes of compounds have greater potential to be further explored for TB drug development. Most of the TB drug candidates in the clinical phase are modified versions of these classes of compounds. Therefore, here we anticipate that modification or repurposing of these classes of compounds has a higher probability to reach the clinical phase of drug development. The information provided will pave the way for researchers to design and identify newer molecular analogs for TB drug development and also broaden the scope of exploring future-generation potent, yet safer anti-TB drugs.


Subject(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis , Humans , Drug Repositioning , SARS-CoV-2 , Structure-Activity Relationship , Tuberculosis/drug therapy , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Drug Discovery
20.
Viruses ; 14(7)2022 07 16.
Article in English | MEDLINE | ID: covidwho-1939022

ABSTRACT

In this review, we explore recombination in two very different virus families that have become major threats to human health. The Herpesviridae are a large family of pathogenic double-stranded DNA viruses involved in a range of diseases affecting both people and animals. Coronaviridae are positive-strand RNA viruses (CoVs) that have also become major threats to global health and economic stability, especially in the last two decades. Despite many differences, such as the make-up of their genetic material (DNA vs. RNA) and overall mechanisms of genome replication, both human herpes viruses (HHVs) and CoVs have evolved to rely heavily on recombination for viral genome replication, adaptation to new hosts and evasion of host immune regulation. In this review, we will focus on the roles of three viral exonucleases: two HHV exonucleases (alkaline nuclease and PolExo) and one CoV exonuclease (ExoN). We will review the roles of these three nucleases in their respective life cycles and discuss the state of drug discovery efforts against these targets.


Subject(s)
Coronavirus Infections , Coronavirus , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus/genetics , Drug Discovery , Exonucleases , Humans , Mutation , Recombination, Genetic , Simplexvirus , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL