Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add filters

Document Type
Year range
1.
Biosci Rep ; 41(10)2021 10 29.
Article in English | MEDLINE | ID: covidwho-1510636

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has become a global health emergency. Although new vaccines have been generated and being implicated, discovery and application of novel preventive and control measures are warranted. We aimed to identify compounds that may possess the potential to either block the entry of virus to host cells or attenuate its replication upon infection. Using host cell surface receptor expression (angiotensin-converting enzyme 2 (ACE2) and Transmembrane protease serine 2 (TMPRSS2)) analysis as an assay, we earlier screened several synthetic and natural compounds and identified candidates that showed ability to down-regulate their expression. Here, we report experimental and computational analyses of two small molecules, Mortaparib and MortaparibPlus that were initially identified as dual novel inhibitors of mortalin and PARP-1, for their activity against SARS-CoV-2. In silico analyses showed that MortaparibPlus, but not Mortaparib, stably binds into the catalytic pocket of TMPRSS2. In vitro analysis of control and treated cells revealed that MortaparibPlus caused down-regulation of ACE2 and TMPRSS2; Mortaparib did not show any effect. Furthermore, computational analysis on SARS-CoV-2 main protease (Mpro) that also predicted the inhibitory activity of MortaparibPlus. However, cell-based antiviral drug screening assay showed 30-60% viral inhibition in cells treated with non-toxic doses of either MortaparibPlus or Mortaparib. The data suggest that these two closely related compounds possess multimodal anti-COVID-19 activities. Whereas MortaparibPlus works through direct interactions/effects on the host cell surface receptors (ACE2 and TMPRSS2) and the virus protein (Mpro), Mortaparib involves independent mechanisms, elucidation of which warrants further studies.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Computational Biology/methods , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/immunology , COVID-19/immunology , Cell Line, Tumor , Drug Evaluation, Preclinical/methods , HSP70 Heat-Shock Proteins/antagonists & inhibitors , Humans , Mitochondrial Proteins/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , SARS-CoV-2/immunology , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
2.
Molecules ; 26(21)2021 Oct 30.
Article in English | MEDLINE | ID: covidwho-1488678

ABSTRACT

Papain-like protease is an essential enzyme in the proteolytic processing required for the replication of SARS-CoV-2. Accordingly, such an enzyme is an important target for the development of anti-SARS-CoV-2 agents which may reduce the mortality associated with outbreaks of SARS-CoV-2. A set of 69 semi-synthesized molecules that exhibited the structural features of SARS-CoV-2 papain-like protease inhibitors (PLPI) were docked against the coronavirus papain-like protease (PLpro) enzyme (PDB ID: (4OW0). Docking studies showed that derivatives 34 and 58 were better than the co-crystallized ligand while derivatives 17, 28, 31, 40, 41, 43, 47, 54, and 65 exhibited good binding modes and binding free energies. The pharmacokinetic profiling study was conducted according to the four principles of the Lipinski rules and excluded derivative 31. Furthermore, ADMET and toxicity studies showed that derivatives 28, 34, and 47 have the potential to be drugs and have been demonstrated as safe when assessed via seven toxicity models. Finally, comparing the molecular orbital energies and the molecular electrostatic potential maps of 28, 34, and 47 against the co-crystallized ligand in a DFT study indicated that 28 is the most promising candidate to interact with the target receptor (PLpro).


Subject(s)
Coronavirus Papain-Like Proteases/metabolism , SARS-CoV-2/drug effects , Virus Replication/drug effects , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/metabolism , Computer Simulation , Coronavirus Papain-Like Proteases/drug effects , Drug Evaluation, Preclinical/methods , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Papain/metabolism , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity
3.
Sci Rep ; 11(1): 20295, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1467129

ABSTRACT

Novel SARS-CoV-2, an etiological factor of Coronavirus disease 2019 (COVID-19), poses a great challenge to the public health care system. Among other druggable targets of SARS-Cov-2, the main protease (Mpro) is regarded as a prominent enzyme target for drug developments owing to its crucial role in virus replication and transcription. We pursued a computational investigation to identify Mpro inhibitors from a compiled library of natural compounds with proven antiviral activities using a hierarchical workflow of molecular docking, ADMET assessment, dynamic simulations and binding free-energy calculations. Five natural compounds, Withanosides V and VI, Racemosides A and B, and Shatavarin IX, obtained better binding affinity and attained stable interactions with Mpro key pocket residues. These intermolecular key interactions were also retained profoundly in the simulation trajectory of 100 ns time scale indicating tight receptor binding. Free energy calculations prioritized Withanosides V and VI as the top candidates that can act as effective SARS-CoV-2 Mpro inhibitors.


Subject(s)
COVID-19/drug therapy , Coronavirus 3C Proteases/metabolism , Phytochemicals/pharmacology , Antiviral Agents/pharmacology , Computational Biology/methods , Coronavirus 3C Proteases/drug effects , Coronavirus 3C Proteases/ultrastructure , Drug Evaluation, Preclinical/methods , Humans , Molecular Docking Simulation/methods , Molecular Dynamics Simulation , Peptide Hydrolases/drug effects , Phytochemicals/metabolism , Protease Inhibitors/pharmacology , Protein Binding/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
4.
PLoS One ; 16(9): e0257784, 2021.
Article in English | MEDLINE | ID: covidwho-1440991

ABSTRACT

Drug repurposing has the potential to bring existing de-risked drugs for effective intervention in an ongoing pandemic-COVID-19 that has infected over 131 million, with 2.8 million people succumbing to the illness globally (as of April 04, 2021). We have used a novel `gene signature'-based drug repositioning strategy by applying widely accepted gene ranking algorithms to prioritize the FDA approved or under trial drugs. We mined publically available RNA sequencing (RNA-Seq) data using CLC Genomics Workbench 20 (QIAGEN) and identified 283 differentially expressed genes (FDR<0.05, log2FC>1) after a meta-analysis of three independent studies which were based on severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infection in primary human airway epithelial cells. Ingenuity Pathway Analysis (IPA) revealed that SARS-CoV-2 activated key canonical pathways and gene networks that intricately regulate general anti-viral as well as specific inflammatory pathways. Drug database, extracted from the Metacore and IPA, identified 15 drug targets (with information on COVID-19 pathogenesis) with 46 existing drugs as potential-novel candidates for repurposing for COVID-19 treatment. We found 35 novel drugs that inhibit targets (ALPL, CXCL8, and IL6) already in clinical trials for COVID-19. Also, we found 6 existing drugs against 4 potential anti-COVID-19 targets (CCL20, CSF3, CXCL1, CXCL10) that might have novel anti-COVID-19 indications. Finally, these drug targets were computationally prioritized based on gene ranking algorithms, which revealed CXCL10 as the common and strongest candidate with 2 existing drugs. Furthermore, the list of 283 SARS-CoV-2-associated proteins could be valuable not only as anti-COVID-19 targets but also useful for COVID-19 biomarker development.


Subject(s)
COVID-19/drug therapy , Drug Repositioning/methods , SARS-CoV-2/genetics , Antiviral Agents/therapeutic use , Drug Evaluation, Preclinical/methods , Epithelial Cells/drug effects , Epithelium/drug effects , Humans , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Respiratory Mucosa/virology , Respiratory System/drug effects , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
5.
Sci Rep ; 11(1): 18985, 2021 09 23.
Article in English | MEDLINE | ID: covidwho-1437690

ABSTRACT

The COVID-19 pandemic is raging. It revealed the importance of rapid scientific advancement towards understanding and treating new diseases. To address this challenge, we adapt an explainable artificial intelligence algorithm for data fusion and utilize it on new omics data on viral-host interactions, human protein interactions, and drugs to better understand SARS-CoV-2 infection mechanisms and predict new drug-target interactions for COVID-19. We discover that in the human interactome, the human proteins targeted by SARS-CoV-2 proteins and the genes that are differentially expressed after the infection have common neighbors central in the interactome that may be key to the disease mechanisms. We uncover 185 new drug-target interactions targeting 49 of these key genes and suggest re-purposing of 149 FDA-approved drugs, including drugs targeting VEGF and nitric oxide signaling, whose pathways coincide with the observed COVID-19 symptoms. Our integrative methodology is universal and can enable insight into this and other serious diseases.


Subject(s)
COVID-19/drug therapy , Drug Evaluation, Preclinical/methods , SARS-CoV-2/genetics , Antiviral Agents/therapeutic use , Artificial Intelligence , COVID-19/genetics , COVID-19/metabolism , Drug Repositioning/methods , Gene Regulatory Networks/genetics , Humans , Models, Theoretical , Pandemics , Pharmaceutical Preparations , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Signal Transduction/genetics
6.
Int J Mol Sci ; 22(3)2021 Jan 26.
Article in English | MEDLINE | ID: covidwho-1389389

ABSTRACT

A high-throughput drug screen identifies potentially promising therapeutics for clinical trials. However, limitations that persist in current disease modeling with limited physiological relevancy of human patients skew drug responses, hamper translation of clinical efficacy, and contribute to high clinical attritions. The emergence of induced pluripotent stem cell (iPSC) technology revolutionizes the paradigm of drug discovery. In particular, iPSC-based three-dimensional (3D) tissue engineering that appears as a promising vehicle of in vitro disease modeling provides more sophisticated tissue architectures and micro-environmental cues than a traditional two-dimensional (2D) culture. Here we discuss 3D based organoids/spheroids that construct the advanced modeling with evolved structural complexity, which propels drug discovery by exhibiting more human specific and diverse pathologies that are not perceived in 2D or animal models. We will then focus on various central nerve system (CNS) disease modeling using human iPSCs, leading to uncovering disease pathogenesis that guides the development of therapeutic strategies. Finally, we will address new opportunities of iPSC-assisted drug discovery with multi-disciplinary approaches from bioengineering to Omics technology. Despite technological challenges, iPSC-derived cytoarchitectures through interactions of diverse cell types mimic patients' CNS and serve as a platform for therapeutic development and personalized precision medicine.


Subject(s)
Central Nervous System Diseases/drug therapy , Drug Discovery/methods , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Tissue Engineering/methods , Animals , COVID-19/drug therapy , COVID-19/pathology , Central Nervous System Diseases/pathology , Drug Discovery/instrumentation , Drug Evaluation, Preclinical/instrumentation , Drug Evaluation, Preclinical/methods , Humans , Induced Pluripotent Stem Cells/pathology , Lab-On-A-Chip Devices , Organoids/cytology , Organoids/drug effects , Organoids/pathology , Tissue Engineering/instrumentation , Zika Virus Infection/drug therapy , Zika Virus Infection/pathology
7.
PLoS One ; 16(3): e0248348, 2021.
Article in English | MEDLINE | ID: covidwho-1388906

ABSTRACT

Pseudoviruses are useful surrogates for highly pathogenic viruses because of their safety, genetic stability, and scalability for screening assays. Many different pseudovirus platforms exist, each with different advantages and limitations. Here we report our efforts to optimize and characterize an HIV-based lentiviral pseudovirus assay for screening neutralizing antibodies for SARS-CoV-2 using a stable 293T cell line expressing human angiotensin converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). We assessed different target cells, established conditions that generate readouts over at least a two-log range, and confirmed consistent neutralization titers over a range of pseudovirus input. Using reference sera and plasma panels, we evaluated assay precision and showed that our neutralization titers correlate well with results reported in other assays. Overall, our lentiviral assay is relatively simple, scalable, and suitable for a variety of SARS-CoV-2 entry and neutralization screening assays.


Subject(s)
COVID-19/metabolism , Lentivirus/metabolism , Neutralization Tests/methods , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Drug Evaluation, Preclinical/methods , HEK293 Cells , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
8.
Commun Biol ; 4(1): 926, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1387497

ABSTRACT

Patients with cardiovascular comorbidities are more susceptible to severe infection with SARS-CoV-2, known to directly cause pathological damage to cardiovascular tissue. We outline a screening platform using human embryonic stem cell-derived cardiomyocytes, confirmed to express the protein machinery critical for SARS-CoV-2 infection, and a SARS-CoV-2 spike-pseudotyped virus system. The method has allowed us to identify benztropine and DX600 as novel inhibitors of SARS-CoV-2 infection in a clinically relevant stem cell-derived cardiomyocyte line. Discovery of new medicines will be critical for protecting the heart in patients with SARS-CoV-2, and for individuals where vaccination is contraindicated.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical/methods , Human Embryonic Stem Cells/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/virology , SARS-CoV-2/physiology , Benztropine/pharmacology , Humans , Myocytes, Cardiac/cytology , Peptides/pharmacology
9.
IEEE/ACM Trans Comput Biol Bioinform ; 18(4): 1290-1298, 2021.
Article in English | MEDLINE | ID: covidwho-1349906

ABSTRACT

An outbreak of COVID-19 that began in late 2019 was caused by a novel coronavirus(SARS-CoV-2). It has become a global pandemic. As of June 9, 2020, it has infected nearly 7 million people and killed more than 400,000, but there is no specific drug. Therefore, there is an urgent need to find or develop more drugs to suppress the virus. Here, we propose a new nonlinear end-to-end model called LUNAR. It uses graph convolutional neural networks to automatically learn the neighborhood information of complex heterogeneous relational networks and combines the attention mechanism to reflect the importance of the sum of different types of neighborhood information to obtain the representation characteristics of each node. Finally, through the topology reconstruction process, the feature representations of drugs and targets are forcibly extracted to match the observed network as much as possible. Through this reconstruction process, we obtain the strength of the relationship between different nodes and predict drug candidates that may affect the treatment of COVID-19 based on the known targets of COVID-19. These selected candidate drugs can be used as a reference for experimental scientists and accelerate the speed of drug development. LUNAR can well integrate various topological structure information in heterogeneous networks, and skillfully combine attention mechanisms to reflect the importance of neighborhood information of different types of nodes, improving the interpretability of the model. The area under the curve(AUC) of the model is 0.949 and the accurate recall curve (AUPR) is 0.866 using 10-fold cross-validation. These two performance indexes show that the model has superior predictive performance. Besides, some of the drugs screened out by our model have appeared in some clinical studies to further illustrate the effectiveness of the model.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/virology , Drug Evaluation, Preclinical/methods , Neural Networks, Computer , SARS-CoV-2/drug effects , COVID-19/epidemiology , Computational Biology , Databases, Pharmaceutical/statistics & numerical data , Drug Development/methods , Drug Development/statistics & numerical data , Drug Evaluation, Preclinical/statistics & numerical data , Drug Repositioning/methods , Drug Repositioning/statistics & numerical data , Host Microbial Interactions/drug effects , Humans , Nonlinear Dynamics , Pandemics
10.
Life Sci Alliance ; 4(10)2021 10.
Article in English | MEDLINE | ID: covidwho-1346863

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the new coronavirus (SARS-CoV-2) is currently responsible for more than 3 million deaths in 219 countries across the world and with more than 140 million cases. The absence of FDA-approved drugs against SARS-CoV-2 has highlighted an urgent need to design new drugs. We developed an integrated model of the human cell and SARS-CoV-2 to provide insight into the virus' pathogenic mechanism and support current therapeutic strategies. We show the biochemical reactions required for the growth and general maintenance of the human cell, first, in its healthy state. We then demonstrate how the entry of SARS-CoV-2 into the human cell causes biochemical and structural changes, leading to a change of cell functions or cell death. A new computational method that predicts 20 unique reactions as drug targets from our models and provides a platform for future studies on viral entry inhibition, immune regulation, and drug optimisation strategies. The model is available in BioModels (https://www.ebi.ac.uk/biomodels/MODEL2007210001) and the software tool, findCPcli, that implements the computational method is available at https://github.com/findCP/findCPcli.


Subject(s)
COVID-19/drug therapy , COVID-19/metabolism , Drug Development/methods , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , COVID-19/epidemiology , Computational Biology/methods , Drug Evaluation, Preclinical/methods , Humans , Models, Biological , Pandemics
11.
BMC Biol ; 19(1): 156, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1337514

ABSTRACT

BACKGROUND: The emergence and continued global spread of the current COVID-19 pandemic has highlighted the need for methods to identify novel or repurposed therapeutic drugs in a fast and effective way. Despite the availability of methods for the discovery of antiviral drugs, the majority tend to focus on the effects of such drugs on a given virus, its constituent proteins, or enzymatic activity, often neglecting the consequences on host cells. This may lead to partial assessment of the efficacy of the tested anti-viral compounds, as potential toxicity impacting the overall physiology of host cells may mask the effects of both viral infection and drug candidates. Here we present a method able to assess the general health of host cells based on morphological profiling, for untargeted phenotypic drug screening against viral infections. RESULTS: We combine Cell Painting with antibody-based detection of viral infection in a single assay. We designed an image analysis pipeline for segmentation and classification of virus-infected and non-infected cells, followed by extraction of morphological properties. We show that this methodology can successfully capture virus-induced phenotypic signatures of MRC-5 human lung fibroblasts infected with human coronavirus 229E (CoV-229E). Moreover, we demonstrate that our method can be used in phenotypic drug screening using a panel of nine host- and virus-targeting antivirals. Treatment with effective antiviral compounds reversed the morphological profile of the host cells towards a non-infected state. CONCLUSIONS: The phenomics approach presented here, which makes use of a modified Cell Painting protocol by incorporating an anti-virus antibody stain, can be used for the unbiased morphological profiling of virus infection on host cells. The method can identify antiviral reference compounds, as well as novel antivirals, demonstrating its suitability to be implemented as a strategy for antiviral drug repurposing and drug discovery.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery/methods , Phenomics/methods , SARS-CoV-2/drug effects , Cell Line , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Humans , SARS-CoV-2/physiology
12.
Mol Syst Biol ; 17(8): e10239, 2021 08.
Article in English | MEDLINE | ID: covidwho-1335457

ABSTRACT

Understanding the mechanism of SARS-CoV-2 infection and identifying potential therapeutics are global imperatives. Using a quantitative systems pharmacology approach, we identified a set of repurposable and investigational drugs as potential therapeutics against COVID-19. These were deduced from the gene expression signature of SARS-CoV-2-infected A549 cells screened against Connectivity Map and prioritized by network proximity analysis with respect to disease modules in the viral-host interactome. We also identified immuno-modulating compounds aiming at suppressing hyperinflammatory responses in severe COVID-19 patients, based on the transcriptome of ACE2-overexpressing A549 cells. Experiments with Vero-E6 cells infected by SARS-CoV-2, as well as independent syncytia formation assays for probing ACE2/SARS-CoV-2 spike protein-mediated cell fusion using HEK293T and Calu-3 cells, showed that several predicted compounds had inhibitory activities. Among them, salmeterol, rottlerin, and mTOR inhibitors exhibited antiviral activities in Vero-E6 cells; imipramine, linsitinib, hexylresorcinol, ezetimibe, and brompheniramine impaired viral entry. These novel findings provide new paths for broadening the repertoire of compounds pursued as therapeutics against COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Drug Evaluation, Preclinical/methods , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , COVID-19/genetics , COVID-19/virology , Chlorocebus aethiops , Drug Repositioning , HEK293 Cells , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/physiology , Humans , Imidazoles/pharmacology , Pyrazines/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Salmeterol Xinafoate/pharmacology , Vero Cells
13.
Int J Mol Sci ; 22(14)2021 Jul 19.
Article in English | MEDLINE | ID: covidwho-1323269

ABSTRACT

In the last year, the COVID-19 pandemic has highly affected the lifestyle of the world population, encouraging the scientific community towards a great effort on studying the infection molecular mechanisms. Several vaccine formulations are nowadays available and helping to reach immunity. Nevertheless, there is a growing interest towards the development of novel anti-covid drugs. In this scenario, the main protease (Mpro) represents an appealing target, being the enzyme responsible for the cleavage of polypeptides during the viral genome transcription. With the aim of sharing new insights for the design of novel Mpro inhibitors, our research group developed a machine learning approach using the support vector machine (SVM) classification. Starting from a dataset of two million commercially available compounds, the model was able to classify two hundred novel chemo-types as potentially active against the viral protease. The compounds labelled as actives by SVM were next evaluated through consensus docking studies on two PDB structures and their binding mode was compared to well-known protease inhibitors. The best five compounds selected by consensus docking were then submitted to molecular dynamics to deepen binding interactions stability. Of note, the compounds selected via SVM retrieved all the most important interactions known in the literature.


Subject(s)
COVID-19/drug therapy , Coronavirus Protease Inhibitors/pharmacology , Drug Evaluation, Preclinical/methods , SARS-CoV-2/drug effects , Support Vector Machine , Antiviral Agents/pharmacology , COVID-19/virology , Coronavirus Protease Inhibitors/metabolism , Databases, Pharmaceutical , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , SARS-CoV-2/enzymology , Small Molecule Libraries , Supervised Machine Learning , Viral Nonstructural Proteins/metabolism , Viral Proteases/metabolism
14.
Int J Mol Sci ; 22(14)2021 Jul 17.
Article in English | MEDLINE | ID: covidwho-1323268

ABSTRACT

Organoids represent one of the most important advancements in the field of stem cells during the past decade. They are three-dimensional in vitro culturing models that originate from self-organizing stem cells and can mimic the in vivo structural and functional specificities of body organs. Organoids have been established from multiple adult tissues as well as pluripotent stem cells and have recently become a powerful tool for studying development and diseases in vitro, drug screening, and host-microbe interaction. The use of stem cells-that have self-renewal capacity to proliferate and differentiate into specialized cell types-for organoids culturing represents a major advancement in biomedical research. Indeed, this new technology has a great potential to be used in a multitude of fields, including cancer research, hereditary and infectious diseases. Nevertheless, organoid culturing is still rife with many challenges, not limited to being costly and time consuming, having variable rates of efficiency in generation and maintenance, genetic stability, and clinical applications. In this review, we aim to provide a synopsis of pluripotent stem cell-derived organoids and their use for disease modeling and other clinical applications.


Subject(s)
Drug Evaluation, Preclinical/methods , Organ Culture Techniques/methods , Organoids/cytology , Pluripotent Stem Cells/cytology , Animals , Humans , Models, Biological , Organoids/drug effects , Organoids/metabolism , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/metabolism
15.
Antiviral Res ; 192: 105122, 2021 08.
Article in English | MEDLINE | ID: covidwho-1283915

ABSTRACT

There are, besides remdesivir, no approved antivirals for the treatment of SARS-CoV-2 infections. To aid in the search for antivirals against this virus, we explored the use of human tracheal airway epithelial cells (HtAEC) and human small airway epithelial cells (HsAEC) grown at the air-liquid interface (ALI). These cultures were infected at the apical side with one of two different SARS-CoV-2 isolates. Each virus was shown to replicate to high titers for extended periods of time (at least 8 days) and, in particular an isolate with the D614G in the spike (S) protein did so more efficiently at 35 °C than 37 °C. The effect of a selected panel of reference drugs that were added to the culture medium at the basolateral side of the system was explored. Remdesivir, GS-441524 (the parent nucleoside of remdesivir), EIDD-1931 (the parent nucleoside of molnupiravir) and IFN (ß1 and λ1) all resulted in dose-dependent inhibition of viral RNA and infectious virus titers collected at the apical side. However, AT-511 (the free base form of AT-527 currently in clinical testing) failed to inhibit viral replication in these in vitro primary cell models. Together, these results provide a reference for further studies aimed at selecting SARS-CoV-2 inhibitors for further preclinical and clinical development.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , Cell Line , Chlorocebus aethiops , Drug Evaluation, Preclinical/methods , Epithelial Cells/virology , Humans , RNA, Viral , SARS-CoV-2/isolation & purification , Vero Cells
16.
J Mol Recognit ; 34(10): e2918, 2021 10.
Article in English | MEDLINE | ID: covidwho-1270481

ABSTRACT

The novel coronavirus Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) or COVID-19 has caused a worldwide pandemic. The fatal virus has affected the health of human beings as well as the socio-economic situation all over the world. To date, no concrete medicinal solution has been proposed to combat the viral infection, calling for an urgent, strategic, and cost-effective drug development approach that may be achievable by applying targeted computational and virtual screening protocols. Immunity is the body's natural defense against disease-causing pathogens, which can be boosted by consuming plant-based or natural food products. Active constituents derived from natural sources also scavenge the free radicals and have anti-inflammatory activities. Herbs and spices have been used for various medicinal purposes. In this study, 2,96 365 natural and synthetic derivatives (ligands) belonging to 102 classes of compounds were obtained from PubChem and assessed on Lipinski's parameters for their potential bioavailability. Out of all the derivatives, 3254 obeyed Lipinski's rule and were virtually screened. The 115 top derivatives were docked against SARS-CoV-2, SARS-CoV, MERS-CoV, and HCoV-HKV1 main proteases (Mpro s) as receptors using AutoDock Vina, AutoDock, and iGEMDOCK 2.1. The lowest binding energy was exhibited by ligands 2 and 6 against all the four Mpro s. The molecular dynamic simulation was also performed with ligand 6 using the GROMACS package. Good bioactivity scores, absorption, distribution, metabolism, excretion, and toxicity profile and drug-like pharmacokinetic parameters were also obtained. Hydroxychloroquine was used as the control drug.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical/methods , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Biological Availability , Blood-Brain Barrier/drug effects , Computer Simulation , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation
18.
Virol J ; 18(1): 123, 2021 06 09.
Article in English | MEDLINE | ID: covidwho-1262510

ABSTRACT

BACKGROUND: The international SARS-CoV-2 pandemic has resulted in an urgent need to identify new anti-viral drugs for treatment of COVID-19. The initial step to identifying potential candidates usually involves in vitro screening that includes standard cytotoxicity controls. Under-appreciated is that viable, but stressed or otherwise compromised cells, can also have a reduced capacity to replicate virus. A refinement proposed herein for in vitro drug screening thus includes a simple growth assay to identify drug concentrations that cause cellular stress or "cytomorbidity", as distinct from cytotoxicity or loss of viability. METHODS: A simple rapid bioassay is presented for antiviral drug screening using Vero E6 cells and inhibition of SARS-CoV-2 induced cytopathic effects (CPE) measured using crystal violet staining. We use high cell density for cytotoxicity assays, and low cell density for cytomorbidity assays. RESULTS: The assay clearly illustrated the anti-viral activity of remdesivir, a drug known to inhibit SARS-CoV-2 replication. In contrast, nitazoxanide, oleuropein, cyclosporine A and ribavirin all showed no ability to inhibit SARS-CoV-2 CPE. Hydroxychloroquine, cyclohexamide, didemnin B, γ-mangostin and linoleic acid were all able to inhibit viral CPE at concentrations that did not induce cytotoxicity. However, these drugs inhibited CPE at concentrations that induced cytomorbidity, indicating non-specific anti-viral activity. CONCLUSIONS: We describe the methodology for a simple in vitro drug screening assay that identifies potential anti-viral drugs via their ability to inhibit SARS-CoV-2-induced CPE. The additional growth assay illustrated how several drugs display anti-viral activity at concentrations that induce cytomorbidity. For instance, hydroxychloroquine showed anti-viral activity at concentrations that slow cell growth, arguing that its purported in vitro anti-viral activity arises from non-specific impairment of cellular activities. The cytomorbidity assay can therefore rapidly exclude potential false positives.


Subject(s)
Antiviral Agents/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Biological Assay , Chlorocebus aethiops , Cytopathogenic Effect, Viral/drug effects , Drug Evaluation, Preclinical/methods , Inhibitory Concentration 50 , Vero Cells , Virus Replication/drug effects
19.
AAPS PharmSciTech ; 22(5): 172, 2021 Jun 07.
Article in English | MEDLINE | ID: covidwho-1261286

ABSTRACT

Vaccination development and production was an essential question for the prevention and global control of COVID-19. The strong support from governing authorities such as Operation Warp Speed and robust funding has led to the development and authorization of the tozinameran (BNT162b2) vaccine. The BNT162b2 vaccine is a lipid nanoparticle-encapsulated mRNA that encodes for SARS-CoV-2 spike protein, the main site for neutralizing antibodies. Once it binds with the host cells, the lipid nanoparticles enable the transfer of the RNA, causing S antigens' expression of the SARS-CoV-2, conferring immunity. The vaccine is administered as a 2-dose regime 21 days apart for individuals 16 years and older. Pfizer-BioNTech's BNT162b2 vaccine was the first candidate to receive FDA-Emergency Use Authorization (EUA) on December 11, 2020. During phase 2/3 clinical trials, 95% efficacy was reported among 37,706 participants over the age of 16 who received the BNT162b2 vaccination; additionally, 52% efficacy was noted 12 days following the administration of the first dose of BNT162b2, reflecting early protection of COVID-19. The BNT162b2 vaccine has exhibited 100% efficacy in clinical trials of adolescents between the ages of 12 and 15. Clinical trials in pregnant women and children under the age of 12 are expected to also exhibit promising results. This review article encompasses tozinameran (BNT162b2) vaccine journey, summarizing the BNT162b1 and BNT162b2 vaccines from preclinical studies, clinical trial phases, dosages, immune response, adverse effects, and FDA-EUA.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Clinical Trials as Topic/methods , Drug Approval/methods , SARS-CoV-2/drug effects , Animals , Antibodies, Neutralizing/drug effects , Antibodies, Neutralizing/metabolism , COVID-19/epidemiology , COVID-19/metabolism , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/metabolism , Clinical Trials as Topic/legislation & jurisprudence , Drug Approval/legislation & jurisprudence , Drug Evaluation, Preclinical/methods , Exanthema/chemically induced , Female , Humans , Male , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Vaccination/legislation & jurisprudence , Vaccination/methods
20.
Nat Commun ; 12(1): 3309, 2021 06 03.
Article in English | MEDLINE | ID: covidwho-1260940

ABSTRACT

The ongoing pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), necessitates strategies to identify prophylactic and therapeutic drug candidates for rapid clinical deployment. Here, we describe a screening pipeline for the discovery of efficacious SARS-CoV-2 inhibitors. We screen a best-in-class drug repurposing library, ReFRAME, against two high-throughput, high-content imaging infection assays: one using HeLa cells expressing SARS-CoV-2 receptor ACE2 and the other using lung epithelial Calu-3 cells. From nearly 12,000 compounds, we identify 49 (in HeLa-ACE2) and 41 (in Calu-3) compounds capable of selectively inhibiting SARS-CoV-2 replication. Notably, most screen hits are cell-line specific, likely due to different virus entry mechanisms or host cell-specific sensitivities to modulators. Among these promising hits, the antivirals nelfinavir and the parent of prodrug MK-4482 possess desirable in vitro activity, pharmacokinetic and human safety profiles, and both reduce SARS-CoV-2 replication in an orthogonal human differentiated primary cell model. Furthermore, MK-4482 effectively blocks SARS-CoV-2 infection in a hamster model. Overall, we identify direct-acting antivirals as the most promising compounds for drug repurposing, additional compounds that may have value in combination therapies, and tool compounds for identification of viral host cell targets.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Drug Repositioning/methods , Pandemics , SARS-CoV-2 , Animals , COVID-19/prevention & control , COVID-19/virology , Cell Line , Cytidine/administration & dosage , Cytidine/analogs & derivatives , Cytidine/pharmacology , Databases, Pharmaceutical , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , HeLa Cells , High-Throughput Screening Assays/methods , Humans , Hydroxylamines/administration & dosage , Hydroxylamines/pharmacology , Mesocricetus , Nelfinavir/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...