Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Antimicrob Resist Infect Control ; 11(1): 58, 2022 Apr 11.
Article in English | MEDLINE | ID: covidwho-1785172

ABSTRACT

Antimicrobial resistance (AMR) is a critical worldwide health issue that jeopardizes our ability to fight illnesses. However, despite being a natural phenomenon, AMR is exacerbated in the world by inappropriate administration of an antimicrobial medication such as under-use or overuse by the general population, farmers, and various health professionals. The onset of the COVID-19 pandemic has put the world in a shocking state. The pandemic exacerbated the problem of antimicrobial resistance, which was largely caused by irrational off-label use of antivirals, anthelmintics, antimalarials, and, most notably, macrolide antibiotics. As a result, monitoring the AMR progression during the pandemic has been critical. The One Health Approach is progressively becoming the most widely utilized and recommended approach in the ongoing fight against AMR. The aim of this article is to address the lack of teachings in AMR and the One Health Approach in health student training curricula, as well as to provide recommendations that can be implemented as we progress beyond the COVID-19 era.


Subject(s)
Anti-Infective Agents , COVID-19 , One Health , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Humans , Pandemics/prevention & control , Students
2.
Front Public Health ; 10: 794513, 2022.
Article in English | MEDLINE | ID: covidwho-1775996

ABSTRACT

Aquatic environments, under frequent anthropogenic pressure, could serve as reservoirs that provide an ideal condition for the acquisition and dissemination of antibiotic resistance genetic determinants. We investigated the prevalence and diversity of antibiotic-resistant Escherichia coli by focusing on their genetic diversity, virulence, and resistance genes in anthropogenic-impacted Larut River. The abundance of E. coli ranged from (estimated count) Est 1 to 4.7 × 105 (colony-forming units per 100 ml) CFU 100 ml-1 to Est 1 to 4.1 × 105 CFU 100 ml-1 with phylogenetic group B1 (46.72%), and A (34.39%) being the most predominant. The prevalence of multiple antibiotic resistance phenotypes of E. coli, with the presence of tet and sul resistance genes, was higher in wastewater effluents than in the river waters. These findings suggested that E. coli could be an important carrier of the resistance genes in freshwater river environments. The phylogenetic composition of E. coli and resistance genes was associated with physicochemical properties and antibiotic residues. These findings indicated that the anthropogenic inputs exerted an effect on the E. coli phylogroup composition, diversification of multiple antibiotic resistance phenotypes, and the distribution of resistance genes in the Larut River.


Subject(s)
Drug Resistance, Bacterial , Escherichia coli , Rivers , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Malaysia , Phylogeny , Prevalence , Rivers/microbiology
3.
Front Public Health ; 10: 790892, 2022.
Article in English | MEDLINE | ID: covidwho-1775994

ABSTRACT

Background: Antimicrobial resistance is one of the many health challenges worldwide, particularly in resource-limited countries like Ethiopia. Increasing knowledge of health professionals can reduce the occurrence of antimicrobial resistance. In this study, we determined the antimicrobial resistance knowledge and examined the associated factors among the University of Gondar Hospital health professionals. Methods: An institution-based cross-sectional survey was carried out. The samples were randomly recruited. Statistical analysis was performed by using the statistical package for social sciences (SPSS) version 20 after entering the data using Epidemiological information (Epi-Info). To identify associated factors, the authors executed binary logistic regression and multivariate analysis wherein the statistical significance was decided at p < 0.05. Results: Four hundred and twelve health professionals with ages ranging from 20-60 years and mean age of 29.9 years took part in the study. Fifty-three-point-four percent of participants were males. The majority of the total respondents (84.7%, 95% CI: 80.08-88.30) had good knowledge of antimicrobial resistance. It was found that being male (AOR = 1.94, 95% CI: 1.10, 3.52), a work experience of 6-10 years (AOR = 2.45, 95% CI: 1.28, 4.68), having 30-38working hours per week (AOR = 3.93, 95% CI: 1.38, 5.11), and antibiotic intake (AOR = 3.71, 95% CI: 1.75, 7.87) were significant factors of antimicrobial resistance knowledge. Conclusion: In the current study, about 84.5% of health professionals had good knowledge of antimicrobial resistance. Reducing working hours per week and increasing the experience of workers are recommended to increase the knowledge on AMR.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Health Knowledge, Attitudes, Practice , Personnel, Hospital , Adult , Anti-Bacterial Agents/pharmacology , Cross-Sectional Studies , Ethiopia , Hospitals , Humans , Male , Middle Aged , Young Adult
4.
Front Public Health ; 10: 787299, 2022.
Article in English | MEDLINE | ID: covidwho-1775992

ABSTRACT

Background: Macrolides have been widely used to treat moderate-to-severe acne for more than 50 years. However, the prevalent antibiotic resistance of Propionibacterium acnes, along with the absence of clinically available resistance tests, has made macrolide misuse a frequent occurrence around the globe, with serious consequences. Objective: We developed Cutibacterium acnes quantitative PCR (qPCR)-based antibiotics resistance assay (ACQUIRE) to enable fast and accurate detection of C. acnes macrolide resistance in clinical settings, representing an opportunity to administer antibiotics more wisely and improve the quality of care. Methods: A cross-sectional observational study (n = 915) was conducted to probe into the macrolide resistance of C. acnes in patients with acne. Results: The high sensitivity of ACQUIRE enabled us to reveal a much higher C. acnes 23S recombinant DNA (rDNA) point mutation rate (52%) and thus a higher macrolide resistance (75.5%) compared to previous reports. Carriage of ermX gene was discovered on 472 (53%) subjects, which concurs with previous studies. Conclusion: The macrolide resistance of C. acnes is much higher than previously reported. Integrating ACQUIRE into acne treatment modalities may eliminate macrolide misuse and achieve better clinical improvements.


Subject(s)
Acne Vulgaris , Drug Resistance, Bacterial , Acne Vulgaris/drug therapy , Acne Vulgaris/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cross-Sectional Studies , Drug Resistance, Bacterial/genetics , Humans , Macrolides/pharmacology , Macrolides/therapeutic use , Microbial Sensitivity Tests
5.
Front Public Health ; 10: 773704, 2022.
Article in English | MEDLINE | ID: covidwho-1775978

ABSTRACT

Introduction: Quality-assured antimicrobial susceptibility testing (AST) depends upon the knowledge and skills of laboratory staff. In many low- and middle-income countries (LMICs), including Pakistan, such types of knowledge and skills are limited. Therefore, the objective of this study was to use openaccess online courses to improve the knowledge of laboratory staff involved in the detection and reporting of antimicrobial resistance (AMR). Methodology: Seven online modules comprising 22 courses aimed at strengthening the laboratory detection of Antimicrobial resistance (AMR) were developed. The courses were uploaded onto the website www.parn.org.pk. Participants had an option of selecting courses of their interest. Online registration and completion of a pre-course assessment (pre-test) were essential for enrolment. However, participation in post-course assessment (post-test) was optional. The number of registered participants and the proportion of participants who completed each course were computed. A paired t-test was used to assess the increase between mean pre- and post-test scores. The association between the participants working in public vs. private laboratories and course completion rates were determined using the chi-square test. Results: A total of 227 participants from Pakistan (March 2018 to June 2020) were registered. The largest number of registered participants and the highest completion rate were noted for AST and biosafety courses, while quality-related courses attracted a lower interest. A comparison of pre- and post-test performance using the paired mean score for the individual courses showed a statistically significant (the value of p < 0.05) improvement in 13/20 assessed courses. A higher course completion rate was observed in participants from public vs. private sector laboratories (56.8 vs. 30.8%, the value of p = 0.005). Conclusions: Our study suggests a promising potential for open online courses (OOCs) toward addressing knowledge gaps in laboratory practice in resource limited settings.


Subject(s)
Drug Resistance, Bacterial , Education, Distance , Professional Competence , Anti-Bacterial Agents , Humans , Internet , Laboratories , Pakistan
6.
7.
Antimicrob Resist Infect Control ; 11(1): 45, 2022 03 07.
Article in English | MEDLINE | ID: covidwho-1731546

ABSTRACT

BACKGROUND: Pneumonia from SARS-CoV-2 is difficult to distinguish from other viral and bacterial etiologies. Broad-spectrum antimicrobials are frequently prescribed to patients hospitalized with COVID-19 which potentially acts as a catalyst for the development of antimicrobial resistance (AMR). OBJECTIVES: We conducted a systematic review and meta-analysis during the first 18 months of the pandemic to quantify the prevalence and types of resistant co-infecting organisms in patients with COVID-19 and explore differences across hospital and geographic settings. METHODS: We searched MEDLINE, Embase, Web of Science (BioSIS), and Scopus from November 1, 2019 to May 28, 2021 to identify relevant articles pertaining to resistant co-infections in patients with laboratory confirmed SARS-CoV-2. Patient- and study-level analyses were conducted. We calculated pooled prevalence estimates of co-infection with resistant bacterial or fungal organisms using random effects models. Stratified meta-analysis by hospital and geographic setting was also performed to elucidate any differences. RESULTS: Of 1331 articles identified, 38 met inclusion criteria. A total of 1959 unique isolates were identified with 29% (569) resistant organisms identified. Co-infection with resistant bacterial or fungal organisms ranged from 0.2 to 100% among included studies. Pooled prevalence of co-infection with resistant bacterial and fungal organisms was 24% (95% CI 8-40%; n = 25 studies: I2 = 99%) and 0.3% (95% CI 0.1-0.6%; n = 8 studies: I2 = 78%), respectively. Among multi-drug resistant organisms, methicillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa and multi-drug resistant Candida auris were most commonly reported. Stratified analyses found higher proportions of AMR outside of Europe and in ICU settings, though these results were not statistically significant. Patient-level analysis demonstrated > 50% (n = 58) mortality, whereby all but 6 patients were infected with a resistant organism. CONCLUSIONS: During the first 18 months of the pandemic, AMR prevalence was high in COVID-19 patients and varied by hospital and geography although there was substantial heterogeneity. Given the variation in patient populations within these studies, clinical settings, practice patterns, and definitions of AMR, further research is warranted to quantify AMR in COVID-19 patients to improve surveillance programs, infection prevention and control practices and antimicrobial stewardship programs globally.


Subject(s)
Bacteria/drug effects , Bacterial Infections/drug therapy , COVID-19/complications , Drug Resistance, Bacterial , Drug Resistance, Fungal , Mycoses/drug therapy , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Infections/etiology , Bacterial Infections/microbiology , COVID-19/virology , Fungi/classification , Fungi/drug effects , Fungi/genetics , Fungi/isolation & purification , Humans , Mycoses/etiology , Mycoses/microbiology , SARS-CoV-2/physiology
9.
Int J Food Microbiol ; 366: 109572, 2022 Apr 02.
Article in English | MEDLINE | ID: covidwho-1719840

ABSTRACT

Listeria monocytogenes remains a significant public health threat, leading to invasive listeriosis with severe manifestations (i.e. septicemia, meningitis, and abortion) and up to 30% of fatal cases. Here, we aimed to investigate genotypic diversity, virulence profiles, antimicrobial resistance patterns from a large and integrated population of L. monocytogenes isolates in China (n = 369), including food (n = 326), livestock (n = 25), and hospitalized humans (n = 18) over the years (2002-2019). PCR-based serogrouping showed the dominance of serogroup 1/2a-3a (37.4%) in food, 4a-4c (76%) in livestock, and 1/2a-3a (44.4%) in humans. Phylogenetic lineage analysis revealed the dominance of lineage II (63.4%) in food, lineage III (76%) in livestock, and lineage II (55.5%) in humans. Altogether, 369 isolates were grouped into 55 sequence types (STs) via multi-locus sequence typing (MLST), which belonged to 26 clonal complexes (CCs) and 17 singletons. Among various STs, ST9 (26%) was the most abundant in food, ST202 (76%) in livestock, and ST8 (16.6%) in humans. Overall, ST4/CC4, ST218/CC218, and ST619 isolates harbored both LIPI-3 and LIPI-4 genes subsets indicating their hypervirulence potential. Additionally, a low resistance was observed towards tetracycline (5.1%), erythromycin (3.2%), cotrimoxazole (2.9%), chloramphenicol (2.7%), gentamicin (2.4%), and ampicillin (2.1%). Collectively, detection of hypervirulent determinants and antimicrobial-resistant phenotype among Chinese isolates poses an alarming threat to food safety and public health, which requires a continued and enhanced surveillance system for further prevention of human listeriosis.


Subject(s)
Drug Resistance, Bacterial , Listeria monocytogenes , Animals , Anti-Bacterial Agents/pharmacology , China/epidemiology , Food Microbiology , Genetic Variation , Humans , Listeria monocytogenes/drug effects , Listeria monocytogenes/genetics , Listeriosis/epidemiology , Listeriosis/veterinary , Livestock/microbiology , Multilocus Sequence Typing , Phylogeny , Virulence Factors/genetics
10.
J Med Virol ; 94(4): 1670-1688, 2022 04.
Article in English | MEDLINE | ID: covidwho-1718413

ABSTRACT

Bangladesh is experiencing a second wave of COVID-19 since March 2021, despite the nationwide vaccination drive with ChAdOx1 (Oxford-AstraZeneca) vaccine from early February 2021. Here, we characterized 19 nasopharyngeal swab (NPS) samples from COVID-19 suspect patients using genomic and metagenomic approaches. Screening for SARS-CoV-2 by reverse transcriptase polymerase chain reaction and metagenomic sequencing revealed 17 samples of COVID-19 positive (vaccinated = 10, nonvaccinated = 7) and 2 samples of COVID-19 negative. We did not find any significant correlation between associated factors including vaccination status, age or sex of the patients, diversity or abundance of the coinfected organisms/pathogens, and the abundance of SARS-CoV-2. Though the first wave of the pandemic was dominated by clade 20B, Beta, V2 (South African variant) dominated the second wave (January 2021 to May 2021), while the third wave (May 2021 to September 2021) was responsible for Delta variants of the epidemic in Bangladesh including both vaccinated and unvaccinated infections. Noteworthily, the receptor binding domain (RBD) region of S protein of all the isolates harbored similar substitutions including K417N, E484K, and N501Y that signify the Beta, while D614G, D215G, D80A, A67V, L18F, and A701V substitutions were commonly found in the non-RBD region of Spike proteins. ORF7b and ORF3a genes underwent a positive selection (dN/dS ratio 1.77 and 1.24, respectively), while the overall S protein of the Bangladeshi SARS-CoV-2 isolates underwent negative selection pressure (dN/dS = 0.621). Furthermore, we found different bacterial coinfections like Streptococcus agalactiae, Neisseria meningitidis, Elizabethkingia anophelis, Stenotrophomonas maltophilia, Klebsiella pneumoniae, and Pseudomonas plecoglossicida, expressing a number of antibiotic resistance genes such as tetA and tetM. Overall, this approach provides valuable insights on the SARS-CoV-2 genomes and microbiome composition from both vaccinated and nonvaccinated patients in Bangladesh.


Subject(s)
COVID-19/virology , Metagenomics , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Bacteria/classification , Bacteria/genetics , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Bacterial Infections/virology , Bangladesh/epidemiology , COVID-19/epidemiology , COVID-19/microbiology , COVID-19/prevention & control , Coinfection/epidemiology , Coinfection/microbiology , Coinfection/virology , Drug Resistance, Bacterial/genetics , Female , Genome, Bacterial/genetics , Genome, Viral/genetics , Humans , Male , Microbiota/genetics , Middle Aged , Mutation , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Selection, Genetic , Vaccination , Viral Proteins/genetics , Young Adult
11.
BMJ Open ; 12(2): e049867, 2022 02 28.
Article in English | MEDLINE | ID: covidwho-1714406

ABSTRACT

INTRODUCTION: Antimicrobial resistance (AMR) is one of the critical medical issues of the 21st century. Medical professionals are the primary prescribers of antimicrobials; their undergraduate education of antimicrobial stewardship (AMS) is considered one of the fundamental approaches in combating the issue of AMR. This education level provides a platform to bridge any gaps in their knowledge and competency in AMS. This study aims to develop an educational resource on microbes, hygiene and prudent antimicrobial use for the undergraduate medical programme. The guideline produced will then be assimilated into the existing curriculum which will help to improve the quality of education which in turn will improve rationale as the use of antimicrobials in the future. METHODS AND ANALYSIS: A three-step approach consensus approach will be adopted for this study for the development of a validated medical curriculum guideline on AMR. A preliminary curriculum for the programme will be drafted from reviews of published literature including syllabi as well as national and international guidelines. A total of 26 potential sources were found to be relevant, and selected for this study. Subsequently, the drafted curriculum will be subjected for validation via online surveys by various infectious disease experts. Finally, a Delphi technique will be employed to obtain consensus on heterogeneous findings to the revised curriculum. The quantitative and qualitative responses will be analysed and discussed among the panel of researchers. ETHICS AND DISSEMINATION: This study protocol has been approved by the Institute of Health Sciences Research Ethics Committee of Universiti Brunei Darussalam (Reference: UBD/PAPRSBIHSREC/2020/124). Informed consent declaration will be collected prior to data collections as indication of agreement of participation in the study. Results will be made available to medical educators and also researchers on AMR and stewardship. The results also will be disseminated at feedback sessions to officers at Ministry of Health and Ministry of Education, Brunei Darussalam.


Subject(s)
Anti-Infective Agents , Antimicrobial Stewardship , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Antimicrobial Stewardship/methods , Drug Resistance, Bacterial , Humans , Prospective Studies
12.
JNMA J Nepal Med Assoc ; 60(246): 225-228, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1716442

ABSTRACT

As the world still mourns the victims of the pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2, another pandemic that is expected to kill millions of people in less than a century, is already brewing. In the distant future, the global, mostly silent pandemic of antimicrobial resistance is increasingly claiming the lives of patients on hospital floors. Unfortunately, the global health community is now gradually and progressively facing the silently emerging pandemic that could endanger some of the most significant advances in modern medicine. Medical students as future physicians, have the potential to help address this problem sustainably keeping in mind that today's medical professionals will hand over the baton to them and hope for a greater improvement in antimicrobial resistance and antibiotic usage. Thus, the next generation of doctors must be better prepared to use antimicrobials more sparingly and appropriately.


Subject(s)
Anti-Infective Agents , COVID-19 , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Humans , Pandemics , SARS-CoV-2
13.
Eur J Hosp Pharm ; 29(2): 63-64, 2022 03.
Article in English | MEDLINE | ID: covidwho-1707684
14.
Environ Toxicol Chem ; 41(3): 687-714, 2022 03.
Article in English | MEDLINE | ID: covidwho-1706213

ABSTRACT

River ecosystems are very important parts of the water cycle and an excellent habitat, food, and drinking water source for many organisms, including humans. Antibiotics are emerging contaminants which can enter rivers from various sources. Several antibiotics and their related antibiotic resistance genes (ARGs) have been detected in these ecosystems by various research programs and could constitute a substantial problem. The presence of antibiotics and other resistance cofactors can boost the development of ARGs in the chromosomes or mobile genetic elements of natural bacteria in rivers. The ARGs in environmental bacteria can also be transferred to clinically important pathogens. However, antibiotics and their resistance genes are both not currently monitored by national or international authorities responsible for controlling the quality of water bodies. For example, they are not included in the contaminant list in the European Water Framework Directive or in the US list of Water-Quality Benchmarks for Contaminants. Although ARGs are naturally present in the environment, very few studies have focused on non-impacted rivers to assess the background ARG levels in rivers, which could provide some useful indications for future environmental regulation and legislation. The present study reviews the antibiotics and associated ARGs most commonly measured and detected in rivers, including the primary analysis tools used for their assessment. In addition, other factors that could enhance antibiotic resistance, such as the effects of chemical mixtures, the effects of climate change, and the potential effects of the coronavirus disease 2019 pandemic, are discussed. Environ Toxicol Chem 2022;41:687-714. © 2022 SETAC.


Subject(s)
COVID-19 , Rivers , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , China , Drug Resistance, Bacterial/genetics , Ecosystem , Genes, Bacterial , Humans , Rivers/chemistry , SARS-CoV-2
16.
BMC Infect Dis ; 22(1): 185, 2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-1699104

ABSTRACT

OBJECTIVES: Severe acute respiratory syndrome 2 (SARS-CoV-2) pandemic has had a heavy impact on national health system, especially in the first wave. That impact hit principally the intensive care units (ICUs). The large number of patients requiring hospitalization in ICUs lead to a complete upheaval of intensive wards. The increase in bed, the fewer number of nurses per patient, the constant use of personal protective equipment, the new antimicrobial surveillance protocols could have had deeply effects on microbiological flora of these wards. Moreover, the overconsumption of antimicrobial therapy in COVID-19 patients, like several studies report, could have impact of this aspect. Aim of this study is to evaluate the changing pattern of microbiological respiratory isolates during and before COVID-19 pandemic in a tertiary hospital ICUs. METHODS: A retrospective, observational study was conducted in ICUs of "ASST Papa Giovanni XXIII", a large tertiary referral hospital in Northern Italy. We have retrospectively collected the microbiological data from bronchoalveolar lavage (BAL) and tracheal aspirate (TA) of patients with COVID-19, hospitalized in ICUs from 22nd February 2020 to 31st May 2020 (Period 1), and without COVID-19, from 22nd February 2019 to 31st May 2019 (Period 2). We compared the prevalence and the antibiotic profile of bacterial and fungal species in the two time periods. RESULTS: The prevalence of Pseudomonas spp. shows a statistically significant increase from patients without COVID-19 compared to COVID-19 positive as well as the prevalence of Enterococcus spp. On the contrary, the prevalence of Gram negative non fermenting bacteria (GN-NFB), Haemophilus influenzae and Streptococcus pneumoniae showed a significant reduction between two periods. There was a statistically significant increase in resistance of Pseudomonas spp. to carbapenems and piperacillin/tazobactam and Enterobacterales spp. for piperacillin/tazobactam, in COVID-19 positive patients compared to patients without COVID-19. We did not observe significant changing in fungal respiratory isolates. CONCLUSIONS: A changing pattern in prevalence and resistance profiles of bacterial and fungal species was observed during COVID-19 pandemic.


Subject(s)
COVID-19 , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Drug Resistance, Bacterial , Hospitalization , Humans , Intensive Care Units , Microbial Sensitivity Tests , Pandemics , Retrospective Studies , SARS-CoV-2
17.
Microbiol Spectr ; 10(1): e0155021, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1685499

ABSTRACT

Mycoplasma pneumoniae is a common pathogen causing respiratory disease in children. We sought to investigate the epidemiology of M. pneumoniae among outpatient children with mild respiratory tract infections (RTIs) during the coronavirus disease 2019 (COVID-19) pandemic. Eligible patients were prospectively enrolled from January 2020 to June 2021. Throat swabs were tested for M. pneumoniae RNA. M. pneumoniae IgM was tested by a colloidal gold assay. Macrolide resistance and the effect of the COVID-19 countermeasures on M. pneumoniae prevalence were assessed. Symptom scores, treatments, and outcomes were evaluated. Eight hundred sixty-two eligible children at 15 centers in China were enrolled. M. pneumoniae was detected in 78 (9.0%) patients. Seasonally, M. pneumoniae peaked in the first spring and dropped dramatically to extremely low levels over time until the next summer. Decreases in COVID-19 prevalence were significantly associated with decreases in M. pneumoniae prevalence (r = 0.76, P = 0.001). The macrolide resistance rate was 7.7%. The overall sensitivity and specificity of the colloidal gold assay used in determining M. pneumoniae infection were 32.1% and 77.9%, respectively. No more benefits for improving the severity of symptoms and outcomes were observed in M. pneumoniae-infected patients treated with a macrolide than in those not treated with a macrolide during follow-up. The prevalences of M. pneumoniae and macrolide resistance in outpatient children with mild RTIs were at low levels in the early stage of the COVID-19 pandemic but may have rebounded recently. The colloidal gold assay for M. pneumoniae IgM may be not appropriate for diagnosis of M. pneumoniae infection. Macrolides should be used with caution among outpatients with mild RTIs. IMPORTANCE This is the first and largest prospective, multicenter, active, population-based surveillance study of the epidemiology of Mycoplasma pneumoniae among outpatient children with mild respiratory tract infections (RTIs) during the COVID-19 pandemic. Nationwide measures like strict face mask wearing and restrictions on population movement implemented to prevent the spread of COVID-19 might also effectively prevent the spread of M. pneumoniae. The prevalence of M. pneumoniae and the proportion of drug-resistant M. pneumoniae isolates in outpatient children with mild RTIs were at low levels in the early stage of the COVID-19 pandemic but may have rebounded recently. The colloidal gold assay for M. pneumoniae IgM may be not appropriate for screening and diagnosis of M. pneumoniae infection. Macrolides should be used with caution among outpatients with mild RTIs.


Subject(s)
Mycoplasma pneumoniae/isolation & purification , Pneumonia, Mycoplasma/microbiology , Respiratory Tract Infections/microbiology , Adolescent , Adult , Anti-Bacterial Agents/therapeutic use , COVID-19/epidemiology , Child , Child, Preschool , China/epidemiology , Drug Resistance, Bacterial , Female , Humans , Infant , Macrolides/therapeutic use , Male , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/physiology , Outpatients/statistics & numerical data , Pneumonia, Mycoplasma/drug therapy , Pneumonia, Mycoplasma/epidemiology , Prospective Studies , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Young Adult
18.
Eur J Pharm Sci ; 170: 106103, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1578592

ABSTRACT

Antibiotic resistance is a major health concern globally and has been estimated to cause 10 million deaths worldwide by year 2050 if the current trend of inappropriate and excessive use of antibiotics continues. Although, the discovery of antibiotics has saved countless of lives for the past 80 years, increasing levels of bacterial resistance to antibiotics would jeopardize the progress in clinical and agricultural sectors and may cause life-threatening situations even for previously treatable bacterial infections. Antibiotic resistance would increase the levels of poverty of low-middle income countries mostly due to extended hospital stays, higher cost of treatment and untimely deaths that directly affect the total productivity rate. Recent incidences of antibiotic resistance have been gradually increasing globally and this may potentiate horizontal transmission of the resistant gene and have been linked with cross-resistance to other antibiotic families as well. This review summarizes the global burden of antibiotic resistance from the economic viewpoint, highlights the recent incidences of antibiotic resistance mainly related to Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Salmonella spp. and Staphylococcus aureus, describes the common mechanistic actions of antibiotic resistance and potential strategies to overcome antibiotic resistance.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Financial Stress , Humans , Prevalence
19.
Murray, Christopher J. L.; Ikuta, Kevin Shunji, Sharara, Fablina, Swetschinski, Lucien, Robles Aguilar, Gisela, Gray, Authia, Han, Chieh, Bisignano, Catherine, Rao, Puja, Wool, Eve, Johnson, Sarah C.; Browne, Annie J.; Chipeta, Michael Give, Fell, Frederick, Hackett, Sean, Haines-Woodhouse, Georgina, Kashef Hamadani, Bahar H.; Kumaran, Emmanuelle A. P.; McManigal, Barney, Agarwal, Ramesh, Akech, Samuel, Albertson, Samuel, Amuasi, John, Andrews, Jason, Aravkin, Aleskandr, Ashley, Elizabeth, Bailey, Freddie, Baker, Stephen, Basnyat, Buddha, Bekker, Adrie, Bender, Rose, Bethou, Adhisivam, Bielicki, Julia, Boonkasidecha, Suppawat, Bukosia, James, Carvalheiro, Cristina, Castañeda-Orjuela, Carlos, Chansamouth, Vilada, Chaurasia, Suman, Chiurchiù, Sara, Chowdhury, Fazle, Cook, Aislinn J.; Cooper, Ben, Cressey, Tim R.; Criollo-Mora, Elia, Cunningham, Matthew, Darboe, Saffiatou, Day, Nicholas P. J.; De Luca, Maia, Dokova, Klara, Dramowski, Angela, Dunachie, Susanna J.; Eckmanns, Tim, Eibach, Daniel, Emami, Amir, Feasey, Nicholas, Fisher-Pearson, Natasha, Forrest, Karen, Garrett, Denise, Gastmeier, Petra, Giref, Ababi Zergaw, Greer, Rachel Claire, Gupta, Vikas, Haller, Sebastian, Haselbeck, Andrea, Hay, Simon I.; Holm, Marianne, Hopkins, Susan, Iregbu, Kenneth C.; Jacobs, Jan, Jarovsky, Daniel, Javanmardi, Fatemeh, Khorana, Meera, Kissoon, Niranjan, Kobeissi, Elsa, Kostyanev, Tomislav, Krapp, Fiorella, Krumkamp, Ralf, Kumar, Ajay, Kyu, Hmwe Hmwe, Lim, Cherry, Limmathurotsakul, Direk, Loftus, Michael James, Lunn, Miles, Ma, Jianing, Mturi, Neema, Munera-Huertas, Tatiana, Musicha, Patrick, Mussi-Pinhata, Marisa Marcia, Nakamura, Tomoka, Nanavati, Ruchi, Nangia, Sushma, Newton, Paul, Ngoun, Chanpheaktra, Novotney, Amanda, Nwakanma, Davis, Obiero, Christina W.; Olivas-Martinez, Antonio, Olliaro, Piero, Ooko, Ednah, Ortiz-Brizuela, Edgar, Peleg, Anton Yariv, Perrone, Carlo, Plakkal, Nishad, Ponce-de-Leon, Alfredo, Raad, Mathieu, Ramdin, Tanusha, Riddell, Amy, Roberts, Tamalee, Robotham, Julie Victoria, Roca, Anna, Rudd, Kristina E.; Russell, Neal, Schnall, Jesse, Scott, John Anthony Gerard, Shivamallappa, Madhusudhan, Sifuentes-Osornio, Jose, Steenkeste, Nicolas, Stewardson, Andrew James, Stoeva, Temenuga, Tasak, Nidanuch, Thaiprakong, Areerat, Thwaites, Guy, Turner, Claudia, Turner, Paul, van Doorn, H. Rogier, Velaphi, Sithembiso, Vongpradith, Avina, Vu, Huong, Walsh, Timothy, Waner, Seymour, Wangrangsimakul, Tri, Wozniak, Teresa, Zheng, Peng, Sartorius, Benn, Lopez, Alan D.; Stergachis, Andy, Moore, Catrin, Dolecek, Christiane, Naghavi, Mohsen.
Lancet ; 399(10325): 629-655, 2022 02 12.
Article in English | MEDLINE | ID: covidwho-1624565

ABSTRACT

BACKGROUND: Antimicrobial resistance (AMR) poses a major threat to human health around the world. Previous publications have estimated the effect of AMR on incidence, deaths, hospital length of stay, and health-care costs for specific pathogen-drug combinations in select locations. To our knowledge, this study presents the most comprehensive estimates of AMR burden to date. METHODS: We estimated deaths and disability-adjusted life-years (DALYs) attributable to and associated with bacterial AMR for 23 pathogens and 88 pathogen-drug combinations in 204 countries and territories in 2019. We obtained data from systematic literature reviews, hospital systems, surveillance systems, and other sources, covering 471 million individual records or isolates and 7585 study-location-years. We used predictive statistical modelling to produce estimates of AMR burden for all locations, including for locations with no data. Our approach can be divided into five broad components: number of deaths where infection played a role, proportion of infectious deaths attributable to a given infectious syndrome, proportion of infectious syndrome deaths attributable to a given pathogen, the percentage of a given pathogen resistant to an antibiotic of interest, and the excess risk of death or duration of an infection associated with this resistance. Using these components, we estimated disease burden based on two counterfactuals: deaths attributable to AMR (based on an alternative scenario in which all drug-resistant infections were replaced by drug-susceptible infections), and deaths associated with AMR (based on an alternative scenario in which all drug-resistant infections were replaced by no infection). We generated 95% uncertainty intervals (UIs) for final estimates as the 25th and 975th ordered values across 1000 posterior draws, and models were cross-validated for out-of-sample predictive validity. We present final estimates aggregated to the global and regional level. FINDINGS: On the basis of our predictive statistical models, there were an estimated 4·95 million (3·62-6·57) deaths associated with bacterial AMR in 2019, including 1·27 million (95% UI 0·911-1·71) deaths attributable to bacterial AMR. At the regional level, we estimated the all-age death rate attributable to resistance to be highest in western sub-Saharan Africa, at 27·3 deaths per 100 000 (20·9-35·3), and lowest in Australasia, at 6·5 deaths (4·3-9·4) per 100 000. Lower respiratory infections accounted for more than 1·5 million deaths associated with resistance in 2019, making it the most burdensome infectious syndrome. The six leading pathogens for deaths associated with resistance (Escherichia coli, followed by Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa) were responsible for 929 000 (660 000-1 270 000) deaths attributable to AMR and 3·57 million (2·62-4·78) deaths associated with AMR in 2019. One pathogen-drug combination, meticillin-resistant S aureus, caused more than 100 000 deaths attributable to AMR in 2019, while six more each caused 50 000-100 000 deaths: multidrug-resistant excluding extensively drug-resistant tuberculosis, third-generation cephalosporin-resistant E coli, carbapenem-resistant A baumannii, fluoroquinolone-resistant E coli, carbapenem-resistant K pneumoniae, and third-generation cephalosporin-resistant K pneumoniae. INTERPRETATION: To our knowledge, this study provides the first comprehensive assessment of the global burden of AMR, as well as an evaluation of the availability of data. AMR is a leading cause of death around the world, with the highest burdens in low-resource settings. Understanding the burden of AMR and the leading pathogen-drug combinations contributing to it is crucial to making informed and location-specific policy decisions, particularly about infection prevention and control programmes, access to essential antibiotics, and research and development of new vaccines and antibiotics. There are serious data gaps in many low-income settings, emphasising the need to expand microbiology laboratory capacity and data collection systems to improve our understanding of this important human health threat. FUNDING: Bill & Melinda Gates Foundation, Wellcome Trust, and Department of Health and Social Care using UK aid funding managed by the Fleming Fund.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Infections/epidemiology , Drug Resistance, Bacterial , Global Burden of Disease , Anti-Bacterial Agents/therapeutic use , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Global Health , Humans , Models, Statistical
20.
Int J Infect Dis ; 117: 174-178, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1670584

ABSTRACT

This article summarizes the consequences of the COVID-19 pandemic, on an international project to tackle antimicrobial resistance (AMR). The research leadership and process, the access to data, and stakeholders were deeply disrupted by the national and international response to the pandemic, including the interruption of healthcare delivery, lockdowns, and quarantines. The key principles to deliver the research through the pandemic were mainly the high degree of interdisciplinary engagement with integrated teams, and equitable partnership across sites with capacity building and leadership training. The level of preexisting collaboration and partnership were also keys to sustaining connections and involvements throughout the pandemic. The pandemic offered opportunities for realigning research priorities. Flexibility in funding timelines and projects inputs are required to accommodate variance introduced by external factors. The current models for research collaboration and funding need to be critically evaluated and redesigned to retain the innovation that was shown to be successful through this pandemic.


Subject(s)
COVID-19 , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Communicable Disease Control , Developing Countries , Drug Resistance, Bacterial , Humans , Pandemics , Research
SELECTION OF CITATIONS
SEARCH DETAIL