ABSTRACT
Within Neurotology, special draping systems have been devised for mastoid surgery recognizing that drilling of middle ear mucosa is an aerosol generating medical procedure (AGMP) which can place surgical teams at risk of COVID-19 infection. We provide a thorough description of a barrier system utilized in our practice, along with work completed by our group to better quantify its effectiveness. Utilization of a barrier system can provide near complete bone dust and droplet containment within the surgical field and prevent contamination of other healthcare workers. As this is an early system, further adaptations and national collaborations are required to ultimately arrive at a system that seamlessly integrates into the surgical suite. While these barrier systems are new, they are timely as we face a pandemic, and can play a crucial role in safely resuming surgery.
Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Disease Transmission, Infectious/prevention & control , Ear Diseases/epidemiology , Mastoid/surgery , Otologic Surgical Procedures/methods , Pneumonia, Viral/epidemiology , Skull Base/surgery , COVID-19 , Comorbidity , Ear Diseases/surgery , Humans , Pandemics , Personal Protective Equipment , SARS-CoV-2ABSTRACT
OBJECTIVE: To investigate small-particle aerosolization from mastoidectomy relevant to potential viral transmission and to test source-control mitigation strategies. STUDY DESIGN: Cadaveric simulation. SETTING: Surgical simulation laboratory. METHODS: An optical particle size spectrometer was used to quantify 1- to 10-µm aerosols 30 cm from mastoid cortex drilling. Two barrier drapes were evaluated: OtoTent1, a drape sheet affixed to the microscope; OtoTent2, a custom-structured drape that enclosed the surgical field with specialized ports. RESULTS: Mastoid drilling without a barrier drape, with or without an aerosol-scavenging second suction, generated large amounts of 1- to 10-µm particulate. Drilling under OtoTent1 generated a high density of particles when compared with baseline environmental levels (P < .001, U = 107). By contrast, when drilling was conducted under OtoTent2, mean particle density remained at baseline. Adding a second suction inside OtoTent1 or OtoTent2 kept particle density at baseline levels. Significant aerosols were released upon removal of OtoTent1 or OtoTent2 despite a 60-second pause before drape removal after drilling (P < .001, U = 0, n = 10, 12; P < .001, U = 2, n = 12, 12, respectively). However, particle density did not increase above baseline when a second suction and a pause before removal were both employed. CONCLUSIONS: Mastoidectomy without a barrier, even when a second suction was added, generated substantial 1- to 10-µm aerosols. During drilling, large amounts of aerosols above baseline levels were detected with OtoTent1 but not OtoTent2. For both drapes, a second suction was an effective mitigation strategy during drilling. Last, the combination of a second suction and a pause before removal prevented aerosol escape during the removal of either drape.