Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nat Commun ; 13(1): 513, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1915267

ABSTRACT

Loss of photoreceptors in atrophic age-related macular degeneration (AMD) results in severe visual impairment. Since the low-resolution peripheral vision is retained in such conditions, restoration of central vision should not jeopardize the surrounding healthy retina and allow for simultaneous use of the natural and prosthetic sight. This interim report, prespecified in the study protocol, presents the first clinical results with a photovoltaic substitute of the photoreceptors providing simultaneous use of the central prosthetic and peripheral natural vision in atrophic AMD. In this open-label single group feasibility trial (NCT03333954, recruitment completed), five patients with geographic atrophy have been implanted with a wireless 2 x 2 mm-wide 30 µm-thick device, having 378 pixels of 100 µm in size. All 5 patients achieved the primary outcome of the study by demonstrating the prosthetic visual perception in the former scotoma. The four patients with a subretinal placement of the chip demonstrated the secondary outcome: Landolt acuity of 1.17 ± 0.13 pixels, corresponding to the Snellen range of 20/460-20/565. With electronic magnification of up to a factor of 8, patients demonstrated prosthetic acuity in the range of 20/63-20/98. Under room lighting conditions, patients could simultaneously use prosthetic central vision and their remaining peripheral vision in the implanted eye and in the fellow eye.


Subject(s)
Electric Stimulation Therapy/instrumentation , Electric Stimulation Therapy/methods , Geographic Atrophy/therapy , Macular Degeneration/therapy , Vision Disorders/therapy , Visual Perception , Visual Prosthesis , Aged , Aged, 80 and over , Electric Stimulation , Equipment Design , Eyeglasses , Humans , Retina , Treatment Outcome , Visual Acuity
2.
Int J Environ Res Public Health ; 19(2)2022 01 09.
Article in English | MEDLINE | ID: covidwho-1633758

ABSTRACT

The available data from electroneurography (ENG) studies on the transmission of neural impulses in the motor fibers of upper and lower extremity nerves following neuromuscular functional electrical stimulation (NMFES) combined with kinesiotherapy in post-stroke patients during sixty-day observation do not provide convincing results. This study aims to compare the effectiveness of an NMFES of antagonistic muscle groups at the wrist and ankle and kinesiotherapy based mainly on proprioceptive neuromuscular facilitation (PNF). An ENG was performed once in a group of 60 healthy volunteers and three times in 120 patients after stroke (T0, up to 7 days after the incident; T1, after 21 days of treatment; and T2, after 60 days of treatment); 60 subjects received personalized NMFES and PNF treatment (NMFES+K), while the other 60 received only PNF (K). An ENG studied peripheral (M-wave recordings), C8 and L5 ventral root (F-wave recordings) neural impulse transmission in the peroneal and the ulnar nerves on the hemiparetic side. Both groups statistically differed in their amplitudes of M-wave recording parameters after peroneal nerve stimulation performed at T0 and T2 compared with the control group. After 60 days of treatment, only the patients from the NMFES+K group showed significant improvement in M-wave recordings. The application of the proposed NMFES electrostimulation algorithm combined with PNF improved the peripheral neural transmission in peroneal but not ulnar motor nerve fibers in patients after ischemic stroke. Combined kinesiotherapy and safe, personalized, controlled electrotherapy after stroke give better results than kinesiotherapy alone.


Subject(s)
Electric Stimulation Therapy , Ischemic Stroke , Stroke Rehabilitation , Ankle , Electric Stimulation , Electric Stimulation Therapy/methods , Follow-Up Studies , Humans , Lower Extremity , Muscles , Stroke Rehabilitation/methods , Synaptic Transmission , Treatment Outcome , Wrist
3.
Biomed Res Int ; 2021: 2624860, 2021.
Article in English | MEDLINE | ID: covidwho-1484096

ABSTRACT

BACKGROUND: People with multiple sclerosis (MS) suffer from symptoms related to neural control, such as reduced central activation, lower muscle activity, and accentuated spasticity. A forced 9-week home confinement related to COVID-19 in Spain may have worsened these symptoms. However, no study has demonstrated the impact of home confinement on neuromuscular mechanisms in the MS population. This study was aimed at analyzing the effects of a 9-week home confinement on central activation, muscle activity, contractile function, and spasticity in MS patients. METHODS: Eighteen participants were enrolled in the study. Left and right knee extensor maximum voluntary isometric contraction (MVIC), maximal neural drive via peak surface electromyography (EMG) of the vastus lateralis, central activation ratio (CAR), and muscle contractile function via electrical stimulation of the knee extensor muscles, as well as spasticity using the pendulum test, were measured immediately before and after home confinement. RESULTS: Seventeen participants completed the study. CAR significantly decreased after lockdown (ES = 1.271, p < 0.001). Regarding spasticity, there was a trend to decrease in the number of oscillations (ES = 0.511, p = 0.059) and a significant decrease in the duration of oscillations (ES = 0.568, p = 0.038). Furthermore, in the left leg, there was a significant decrease in the first swing excursion (ES = 0.612, p = 0.027) and in the relaxation index (ES = 0.992, p = 0.001). Muscle contractile properties, MVIC, and EMG variables were not modified after confinement. CONCLUSIONS: The results suggest that a home confinement period of 9 weeks may lead to an increase in lower limb spasticity and a greater deficit in voluntary activation of the knee extensors.


Subject(s)
COVID-19 , Multiple Sclerosis/physiopathology , Muscle, Skeletal/physiopathology , Communicable Disease Control , Electric Stimulation , Electromyography , Female , Humans , Isometric Contraction , Knee/physiology , Male , Middle Aged , Muscle Contraction , Muscle Spasticity , Muscle, Skeletal/physiology , Quadriceps Muscle/physiology
4.
Aging Clin Exp Res ; 33(7): 2053-2059, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1245796

ABSTRACT

Persons suffering with systemic neuromuscular disorders or chronic organ failures, spend less time for daily physical activity, aggravating their mobility impairments. From 2020, patients at risk are also older adults, who, though negative for the SARS-Cov-2 infection, suffer with a fatigue syndrome due to home restriction/quarantine. Besides eventual psycological managements, it could be useful to offer to these patients a rehabilitation workouts easy to learn and to independently repeat at home (Full-Body In-Bed Gym). Inspired by the proven capability to recover skeletal muscle contractility and strength by home-based volitional exercises and functional electrical stimulation (FES), we suggest for this fatigue syndrome a 10-20 min long daily routine of easy and safe physical exercises that may recover from muscle weakness the main 400 skeletal muscles used for every-day activities. Leg muscles could be trained also by an adjunctive neuro-muscular electrical stimulation (NMES) in frail old persons. Many of the exercises could be performed in bed (Full-Body in-Bed Gym), thus hospitalized patients can learn this light training before leaving the hospital. Full-Body in-Bed Gym is, indeed, an extension of well-established cardiovascular-ventilation rehabilitation training performed by patients after heavy surgery. Blood pressure readings, monitored before and after daily routine of Full-Body in-Bed Gym, demonstrate a transient decrease in peripheral resistance due to increased blood flow to major body muscles. Continued regularly, Full-Body in-Bed Gym may help maintaining independence of frail people, including those suffering with the fatigue syndrome related to the restrictions/quarantine imposed to the general population during the COVID-19 pandemic.


Subject(s)
COVID-19 , Electric Stimulation Therapy , Aged , Electric Stimulation , Exercise , Humans , Muscle Strength , Muscle Weakness , Muscle, Skeletal , Pandemics , SARS-CoV-2
5.
HNO ; 69(8): 623-632, 2021 Aug.
Article in German | MEDLINE | ID: covidwho-1227814

ABSTRACT

Olfactory disorders may be temporary or permanent and can have various causes. Currently, many COVID-19 patients report a reduced or complete loss of olfactory function. A wide range of treatment options have been investigated in the past, such as olfactory training, acupuncture, medical therapy, transcranial magnetic stimulation, or surgical excision of olfactory epithelium, e.g., in severe qualitative smell disorders. The development of a bioelectric nose, e.g., in connection with direct electrical stimulation or transplantation of olfactory epithelium or stem cells, represent treatment options of the future. The basis of these developments and the state of knowledge is discussed in the following work.


Subject(s)
COVID-19 , Olfaction Disorders , Electric Stimulation , Humans , Olfactory Mucosa , SARS-CoV-2 , Smell , Stem Cell Transplantation
7.
SELECTION OF CITATIONS
SEARCH DETAIL