Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Sheng Wu Gong Cheng Xue Bao ; 37(10): 3405-3410, 2021 Oct 25.
Article in Chinese | MEDLINE | ID: covidwho-1497978

ABSTRACT

The international cooperation project "electricity-driven low energy and chemical input technology for accelerated bioremediation" (abridged as "ELECTRA") is jointly supported by National Nature Science Foundation of China (NSFC) and European Commission (EC). The ELECTRA consortium consists of 5 research institutions and universities from China and 17 European research institutions and universities, as well as high-tech companies of EC countries. ELECTRA focuses on researches of biodegradation of emerging organic compounds (EOCs) and novel environmental biotechnologies of low-energy and low-chemical inputs. The project has been successfully operated for 2 years, and has made important progresses in obtaining EOCs-degrading microbes, developing weak-electricity-accelerated bioremediation, and 3D-printing techniques for microbial consortium. The ELECTRA has promoted collaborations among the Chinese and European scientists. In the future, ELECTRA will overcome the negative impact of the COVID-19 pandemic and fulfill the scientific objectives through strengthening the international collaboration.


Subject(s)
COVID-19 , Pandemics , Biodegradation, Environmental , Biotechnology , Electricity , Humans , SARS-CoV-2
2.
Int J Mol Sci ; 22(19)2021 Oct 01.
Article in English | MEDLINE | ID: covidwho-1463707

ABSTRACT

The electron density of a nanoparticle is a very important characteristic of the properties of a material. This paper describes the formation of silver nanoparticles (NPs) and the variation in the electronic state of an NP's surface upon the reduction in Ag+ ions with oxalate ions, induced by UV irradiation. The calculations were based on optical spectrophotometry data. The NPs were characterized using Transmission electron microscopy and Dynamic light scattering. As ~10 nm nanoparticles are formed, the localized surface plasmon resonance (LSPR) band increases in intensity, decreases in width, and shifts to the UV region from 402 to 383 nm. The interband transitions (IBT) band (≤250 nm) increases in intensity, with the band shape and position remaining unchanged. The change in the shape and position of the LSPR band of silver nanoparticles in the course of their formation is attributable to an increasing concentration of free electrons in the particles as a result of a reduction in Ag+ ions on the surface and electron injection by CO2- radicals. The ζ-potential of colloids increases with an increase in electron density in silver nuclei. A quantitative relationship between this shift and electron density on the surface was derived on the basis of the Mie-Drude theory. The observed blue shift (19 nm) corresponds to an approximately 10% increase in the concentration of electrons in silver nanoparticles.


Subject(s)
Electricity , Electrons , Metal Nanoparticles/chemistry , Silver/chemistry , Solutions/chemistry , Chemical Phenomena , Electrochemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Models, Theoretical , Particle Size , Surface Plasmon Resonance
3.
Sci Rep ; 11(1): 19960, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1462021

ABSTRACT

Coping with the outbreak of Coronavirus disease 2019 (COVID-19), many countries have implemented public-health measures and movement restrictions to prevent the spread of the virus. However, the strict mobility control also brought about production stagnation and market disruption, resulting in a severe worldwide economic crisis. Quantifying the economic stagnation and predicting post-pandemic recovery are imperative issues. Besides, it is significant to examine how the impact of COVID-19 on economic activities varied with industries. As a reflection of enterprises' production output, high-frequency electricity-consumption data is an intuitive and effective tool for evaluating the economic impact of COVID-19 on different industries. In this paper, we quantify and compare economic impacts on the electricity consumption of different industries in eastern China. In order to address this problem, we conduct causal analysis using a difference-in-difference (DID) estimation model to analyze the effects of multi-phase public-health measures. Our model employs the electricity-consumption data ranging from 2019 to 2020 of 96 counties in the Eastern China region, which covers three main economic sectors and their 53 sub-sectors. The results indicate that electricity demand of all industries (other than information transfer industry) rebounded after the initial shock, and is back to pre-pandemic trends after easing the control measures at the end of May 2020. Emergency response, the combination of all countermeasures to COVID-19 in a certain period, affected all industries, and the higher level of emergency response with stricter movement control resulted in a greater decrease in electricity consumption and production. The pandemic outbreak has a negative-lag effect on industries, and there is greater resilience in industries that are less dependent on human mobility for economic production and activities.


Subject(s)
COVID-19 , Industry , COVID-19/epidemiology , China/epidemiology , Electricity , Humans , Models, Economic , Pandemics , Power Plants , Public Health
5.
Int J Environ Res Public Health ; 18(18)2021 09 15.
Article in English | MEDLINE | ID: covidwho-1409607

ABSTRACT

Lockdown measures to prevent the spread of coronavirus disease 2019 (COVID-19) resulted in the plummeting of China's overall electric-power demand and production. To date, power generation remains one of the largest carbon dioxide (CO2) emitting sectors of China on account of its high carbon intensity. Within this context, our study seeks to measure the impacts of COVID-19 lockdown on the electricity-power related carbon footprints on both generation and consumption sides. Built on statistical data of electricity generation and consumption released by the National Bureau of Statistics of China (NBSC), we calculate he nationwide electricity related CO2 emission changes in regional, economic-sectoral and technological dimensions during January-April 2020, when the strictest lock-down measures were taken in China and compare the results with the same months of the year prior. Our results show that both east and central China power grids witnessed drastic reduction (15.0% and 13.8%) in electricity-generation caused CO2 emissions; and the biggest falls of provincial-scale electricity-generation CO2 emission took place in Hubei (27.3%). Among China's electricity production mix, coal remains the biggest CO2 emitter and contributed 95.7% of the overall nationwide reduction. The most significant decline of the nationwide consumptive-electricity carbon footprint was by 10.1% in February, with the secondary economic sector the biggest contributor.


Subject(s)
COVID-19 , Carbon Dioxide/analysis , China , Coal , Communicable Disease Control , Electricity , Humans , SARS-CoV-2
6.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: covidwho-1364637

ABSTRACT

Understanding how populations' daily behaviors change during the COVID-19 pandemic is critical to evaluating and adapting public health interventions. Here, we use residential electricity-consumption data to unravel behavioral changes within peoples' homes in this period. Based on smart energy-meter data from 10,246 households in Singapore, we find strong positive correlations between the progression of the pandemic in the city-state and the residential electricity consumption. In particular, we find that the daily new COVID-19 cases constitute the most dominant influencing factor on the electricity demand in the early stages of the pandemic, before a lockdown. However, this influence wanes once the lockdown is implemented, signifying that residents have settled into their new lifestyles under lockdown. These observations point to a proactive response from Singaporean residents-who increasingly stayed in or performed more activities at home during the evenings, despite there being no government mandates-a finding that surprisingly extends across all demographics. Overall, our study enables policymakers to close the loop by utilizing residential electricity usage as a measure of community response during unprecedented and disruptive events, such as a pandemic.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/methods , Cooperative Behavior , Electrical Equipment and Supplies/statistics & numerical data , Electricity , Quarantine , COVID-19/transmission , Family Characteristics , Humans , Public Health , SARS-CoV-2/isolation & purification , Singapore/epidemiology
7.
Sci Total Environ ; 760: 143382, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1342307

ABSTRACT

The spread of coronavirus disease 2019 (COVID-19) on 2020 has affected human activities in a way never documented in modern history. As a consequence of the prevention measures implemented to contain the virus, cities around the world are experiencing a decrease in urban mobility and electricity demand that have positively affected the air quality. The most extreme cases for cities around the world show a decrease of 90, 40, and 70% in mobility, electricity demand, and NO2 emissions respectively. At the same time, the inspection of these changes along the evaluation of COVID-19 incidence curves allow to obtain feedback about the timely execution of prevention measures for this and future global events. In this case, we identify and discuss the early effort of Latin-American countries to successfully delay the spread of the virus by implementing prevention measures before the fast growth of COVID-19 cases in comparison to European countries.


Subject(s)
Air Pollution , COVID-19 , Air Pollution/analysis , Air Pollution/prevention & control , Cities , Electricity , Europe , Feedback , Humans , Nitrogen Dioxide/analysis , Particulate Matter/analysis , SARS-CoV-2
8.
Nat Commun ; 12(1): 4675, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1340998

ABSTRACT

Recent studies conclude that the global coronavirus (COVID-19) pandemic decreased power sector CO2 emissions globally and in the United States. In this paper, we analyze the statistical significance of CO2 emissions reductions in the U.S. power sector from March through December 2020. We use Gaussian process (GP) regression to assess whether CO2 emissions reductions would have occurred with reasonable probability in the absence of COVID-19 considering uncertainty due to factors unrelated to the pandemic and adjusting for weather, seasonality, and recent emissions trends. We find that monthly CO2 emissions reductions are only statistically significant in April and May 2020 considering hypothesis tests at 5% significance levels. Separately, we consider the potential impact of COVID-19 on coal-fired power plant retirements through 2022. We find that only a small percentage of U.S. coal power plants are at risk of retirement due to a possible COVID-19-related sustained reduction in electricity demand and prices. We observe and anticipate a return to pre-COVID-19 CO2 emissions in the U.S. power sector.


Subject(s)
COVID-19/epidemiology , Power Plants/statistics & numerical data , Air Pollutants/analysis , Carbon Dioxide/analysis , Climate , Coal/analysis , Coal/economics , Electricity , Fossil Fuels/analysis , Humans , Power Plants/economics , Power Plants/trends , SARS-CoV-2 , United States/epidemiology
9.
ACS Appl Bio Mater ; 4(7): 5485-5493, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1327183

ABSTRACT

Attachment of microbial bodies including the corona virus on the surface of personal protective equipment (PPE) is found to be potential threat of spreading infection. Here, we report the development of a triboelectroceutical fabric (TECF) consisting of commonly available materials, namely, nylon and silicone rubber (SR), for the fabrication of protective gloves on the nitrile platform as model wearable PPE. A small triboelectric device (2 cm × 2 cm) consisting of SR and nylon on nitrile can generate more than 20 V transient or 41 µW output power, which is capable of charging a capacitor up to 65 V in only ∼50 s. The importance of the present work relies on the TECF-led antimicrobial activity through the generation of an electric current in saline water. The fabrication of TECF-based functional prototype gloves can generate hypochlorite ions through the formation of electrolyzed water upon rubbing them with saline water. Further, computational modelling has been employed to reveal the optimum structure and mechanistic pathway of antimicrobial hypochlorite generation. Detailed antimicrobial assays have been performed to establish effectiveness of such TECF-based gloves to reduce the risk from life-threatening pathogen spreading. The present work provides the rationale to consider the studied TECF, or other materials with comparable properties, as a material of choice for the development of self-sanitizing PPE in the fight against microbial infections including COVID-19.


Subject(s)
Anti-Infective Agents/chemistry , Electricity , Personal Protective Equipment , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , Humans , Nylons/chemistry , Personal Protective Equipment/microbiology , Personal Protective Equipment/virology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Recycling , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Silicone Elastomers/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
10.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: covidwho-1279951

ABSTRACT

The large fluctuations in traffic during the COVID-19 pandemic provide an unparalleled opportunity to assess vehicle emission control efficacy. Here we develop a random-forest regression model, based on the large volume of real-time observational data during COVID-19, to predict surface-level NO2, O3, and fine particle concentration in the Los Angeles megacity. Our model exhibits high fidelity in reproducing pollutant concentrations in the Los Angeles Basin and identifies major factors controlling each species. During the strictest lockdown period, traffic reduction led to decreases in NO2 and particulate matter with aerodynamic diameters <2.5 µm by -30.1% and -17.5%, respectively, but a 5.7% increase in O3 Heavy-duty truck emissions contribute primarily to these variations. Future traffic-emission controls are estimated to impose similar effects as observed during the COVID-19 lockdown, but with smaller magnitude. Vehicular electrification will achieve further alleviation of NO2 levels.


Subject(s)
Air Pollution/analysis , COVID-19/epidemiology , Machine Learning , Models, Theoretical , Transportation , Air Pollutants/analysis , Algorithms , Electricity , Humans , Particulate Matter/analysis , Vehicle Emissions
13.
Nano Lett ; 20(7): 5544-5552, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-459118

ABSTRACT

The COVID-19 pandemic is currently causing a severe disruption and shortage in the global supply chain of necessary personal protective equipment (e.g., N95 respirators). The U.S. CDC has recommended use of household cloth by the general public to make cloth face coverings as a method of source control. We evaluated the filtration properties of natural and synthetic materials using a modified procedure for N95 respirator approval. Common fabrics of cotton, polyester, nylon, and silk had filtration efficiency of 5-25%, polypropylene spunbond had filtration efficiency 6-10%, and paper-based products had filtration efficiency of 10-20%. An advantage of polypropylene spunbond is that it can be simply triboelectrically charged to enhance the filtration efficiency (from 6 to >10%) without any increase in pressure (stable overnight and in humid environments). Using the filtration quality factor, fabric microstructure, and charging ability, we are able to provide an assessment of suggested fabric materials for homemade facial coverings.


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Masks , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Textiles , Aerosols , Air Microbiology , COVID-19 , Coronavirus Infections/transmission , Electricity , Equipment Design , Filtration , Humans , Masks/supply & distribution , Microscopy, Electron, Scanning , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology , Particle Size , Personal Protective Equipment/supply & distribution , Pneumonia, Viral/transmission , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...