Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
J Med Virol ; 94(5): 2067-2078, 2022 05.
Article in English | MEDLINE | ID: covidwho-1777581

ABSTRACT

Rapid detection of antibodies to SARS-CoV-2 is critical for COVID-19 diagnostics, epidemiological research, and studies related to vaccine evaluation. It is known that the nucleocapsid (N) is the most abundant protein of SARS-CoV-2 and can serve as an excellent biomarker due to its strong immunogenicity. This paper reports a rapid and ultrasensitive 3D biosensor for quantification of COVID-19 antibodies in seconds via electrochemical transduction. This sensor consists of an array of three-dimensional micro-length-scale electrode architecture that is fabricated by aerosol jet 3D printing, which is an additive manufacturing technique. The micropillar array is coated with N proteins via an intermediate layer of nano-graphene and is integrated into a microfluidic channel to complete an electrochemical cell that uses antibody-antigen interaction to detect the antibodies to the N protein. Due to the structural innovation in the electrode geometry, the sensing is achieved in seconds, and the sensor shows an excellent limit of detection of 13 fm and an optimal detection range of 100 fm to 1 nm. Furthermore, the sensor can be regenerated at least 10 times, which reduces the cost per test. This work provides a powerful platform for rapid screening of antibodies to SARS-CoV-2 after infection or vaccination.


Subject(s)
Biosensing Techniques , COVID-19 , Antibodies, Viral , Biosensing Techniques/methods , COVID-19/diagnosis , Electrodes , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
2.
Mikrochim Acta ; 189(4): 168, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1767504

ABSTRACT

The rapid spread of the novel human coronavirus 2019 (COVID-19) and its morbidity have created an urgent need for rapid and sensitive diagnostics. The real-time polymerase chain reaction is the gold standard for detecting the coronavirus in various types of biological specimens. However, this technique is time consuming, labor intensive, and expensive. Screen-printed electrodes (SPEs) can be used as point-of-care devices because of their low cost, sensitivity, selectivity, and ability to be miniaturized. The ability to detect the spike protein of COVID-19 in serum, urine, and saliva was developed using SPE aided by magnetic beads (MBs) and a portable potentiostat. The antibody-peroxidase-loaded MBs were the captured and catalytic units for the electrochemical assays. The MBs enable simple washing and homogenous deposition on the working electrode using a magnet. The assembly of the immunological MBs and the electrochemical system increases the measuring sensitivity and speed. The physical and electrochemical properties of the layer-by-layer modified MBs were systematically characterized. The performance of these immunosensors was evaluated using spike protein in the range 3.12-200 ng mL-1. We achieved a limit of detection of 0.20, 0.31, and 0.54 ng mL-1 in human saliva, urine, and serum, respectively. A facile electrochemical method to detect COVID-19 spike protein was developed for quick point-of-care testing.


Subject(s)
Biosensing Techniques , COVID-19 , Biosensing Techniques/methods , COVID-19/diagnosis , Electrodes , Humans , Immunoassay , Magnetic Phenomena , Point-of-Care Testing , Spike Glycoprotein, Coronavirus
3.
Biosensors (Basel) ; 12(3)2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1725509

ABSTRACT

Worldwide, human health is affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, the fabrication of the biosensors to diagnose SARS-CoV-2 is critical. In this paper, we report an electrochemical impedance spectroscopy (EIS)-based aptasensor for the determination of the SARS-CoV-2 receptor-binding domain (SARS-CoV-2-RBD). For this purpose, the carbon nanofibers (CNFs) were first decorated with gold nanoparticles (AuNPs). Then, the surface of the carbon-based screen-printed electrode (CSPE) was modified with the CNF-AuNP nanocomposite (CSPE/CNF-AuNP). After that, the thiol-terminal aptamer probe was immobilized on the surface of the CSPE/CNF-AuNP. The surface coverage of the aptamer was calculated to be 52.8 pmol·cm-2. The CSPE/CNF-AuNP/Aptamer was then used for the measurement of SARS-CoV-2-RBD by using the EIS method. The obtained results indicate that the signal had a linear-logarithmic relationship in the range of 0.01-64 nM with a limit of detection of 7.0 pM. The proposed aptasensor had a good selectivity to SARS-CoV-2-RBD in the presence of human serum albumin; human immunoglobulins G, A, and M, hemagglutinin, and neuraminidase. The analytical performance of the aptasensor was studied in human saliva samples. The present study indicates a practical application of the CSPE/CNF-AuNP/Aptamer for the determination of SARS-CoV-2-RBD in human saliva samples with high sensitivity and accuracy.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Metal Nanoparticles , Nanocomposites , Nanofibers , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , COVID-19/diagnosis , Carbon/chemistry , Dielectric Spectroscopy , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Humans , Limit of Detection , Metal Nanoparticles/chemistry , Nanofibers/chemistry , SARS-CoV-2
4.
ACS Appl Mater Interfaces ; 14(8): 10844-10855, 2022 Mar 02.
Article in English | MEDLINE | ID: covidwho-1692677

ABSTRACT

The widespread and long-lasting effect of the COVID-19 pandemic has called attention to the significance of technological advances in the rapid diagnosis of SARS-CoV-2 virus. This study reports the use of a highly stable buffer-based zinc oxide/reduced graphene oxide (bbZnO/rGO) nanocomposite coated on carbon screen-printed electrodes for electrochemical immuno-biosensing of SARS-CoV-2 nuelocapsid (N-) protein antigens in spiked and clinical samples. The incorporation of a salt-based (ionic) matrix for uniform dispersion of the nanomixture eliminates multistep nanomaterial synthesis on the surface of the electrode and enables a stable single-step sensor nanocoating. The immuno-biosensor provides a limit of detection of 21 fg/mL over a linear range of 1-10 000 pg/mL and exhibits a sensitivity of 32.07 ohms·mL/pg·mm2 for detection of N-protein in spiked samples. The N-protein biosensor is successful in discriminating positive and negative clinical samples within 15 min, demonstrating its proof of concept used as a COVID-19 rapid antigen test.


Subject(s)
Antigens, Viral/analysis , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/analysis , Graphite/chemistry , Nanocomposites/chemistry , Zinc Oxide/chemistry , Antibodies, Immobilized/immunology , Antigens, Viral/immunology , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Coronavirus Nucleocapsid Proteins/immunology , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Humans , Immunoassay/instrumentation , Immunoassay/methods , Limit of Detection , Phosphoproteins/analysis , Phosphoproteins/immunology , Proof of Concept Study , SARS-CoV-2/chemistry
5.
Food Chem ; 382: 132251, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1654433

ABSTRACT

Ascorbic acid (AA) and eugenol (EUG) are well-known antioxidants found in several fruits, spices and herbs. In particular, the EUG, one of the major phytocompounds present in clove, acts as pro-oxidant or anti-oxidant depending on its concentration. Considering the medical importance of AA and EUG and its extensive usage in the form of food and medicine, we have developed a voltammetric sensor based on hydroxyapatite-TiO2 composite modified GCE for their selective and simultaneous determination over very wide linear range of 2.78-2490 µM for AA and 1.4-78 µM for EUG with the LODs of 63.3 nM and 94 nM respectively. Practical applicability of the prepared electrode has been demonstrated by detecting AA and EUG in lemon juice, vitamin tablet, clove oil and Kabasura Kudineer, an herbal decoction used as an immunity booster against number of diseases including Covid-19. The proposed HAP-TiO2/GCE shall be useful for food and pharmaceutical industries.


Subject(s)
COVID-19 , Graphite , Nanocomposites , Plants, Medicinal , Ascorbic Acid , Dopamine/analysis , Durapatite , Electrodes , Eugenol , Fruit/chemistry , Pharmaceutical Preparations , Titanium
6.
Biosens Bioelectron ; 203: 114018, 2022 May 01.
Article in English | MEDLINE | ID: covidwho-1648431

ABSTRACT

Multiplex electrochemical biosensors have been used for eliminating the matrix effect in complex bodily fluids or enabling the detection of two or more bioanalytes, overall resulting in more sensitive assays and accurate diagnostics. Many electrochemical biosensors lack reliable and low-cost multiplexing to meet the requirements of point-of-care detection due to either limited functional biosensors for multi-electrode detection or incompatible readout systems. We developed a new dual electrochemical biosensing unit accompanied by a customized potentiostat to address the unmet need for point-of-care multi-electrode electrochemical biosensing. The two-working electrode system was developed using screen-printing of a carboxyl-rich nanomaterial containing ink, with both working electrodes offering active sites for recognition of bioanalytes. The low-cost bi-potentiostat system (∼$80) was developed and customized specifically to the bi-electrode design and used for rapid, repeatable, and accurate measurement of electrochemical impedance spectroscopy signals from the dual biosensor. This binary electrochemical data acquisition (Bi-ECDAQ) system accurately and selectively detected SARS-CoV-2 Nucleocapsid protein (N-protein) in both spiked samples and clinical nasopharyngeal swab samples of COVID-19 patients within 30 min. The two working electrodes offered the limit of detection of 116 fg/mL and 150 fg/mL, respectively, with the dynamic detection range of 1-10,000 pg/mL and the sensitivity range of 2744-2936 Ω mL/pg.mm2 for the detection of N-protein. The potentiostat performed comparable or better than commercial Autolab potentiostats while it is significantly lower cost. The open-source Bi-ECDAQ presents a customizable and flexible approach towards addressing the need for rapid and accurate point-of-care electrochemical biosensors for the rapid detection of various diseases.


Subject(s)
Biosensing Techniques , COVID-19 , Biosensing Techniques/methods , COVID-19/diagnosis , Electrochemical Techniques/methods , Electrodes , Humans , Nucleocapsid Proteins , SARS-CoV-2
7.
Anal Chem ; 94(4): 2126-2133, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1634451

ABSTRACT

SARS-CoV-2 diagnostic practices broadly involve either quantitative polymerase chain reaction (qPCR)-based nucleic amplification of viral sequences or antigen-based tests such as lateral flow assays (LFAs). Reverse transcriptase-qPCR can detect viral RNA and is the gold standard for sensitivity. However, the technique is time-consuming and requires expensive laboratory infrastructure and trained staff. LFAs are lower in cost and near real time, and because they are antigen-based, they have the potential to provide a more accurate indication of a disease state. However, LFAs are reported to have low real-world sensitivity and in most cases are only qualitative. Here, an antigen-based electrochemical aptamer sensor is presented, which has the potential to address some of these shortfalls. An aptamer, raised to the SARS-CoV-2 spike protein, was immobilized on a low-cost gold-coated polyester substrate adapted from the blood glucose testing industry. Clinically relevant detection levels for SARS-CoV-2 are achieved in a simple, label-free measurement format using sample incubation times as short as 15 min on nasopharyngeal swab samples. This assay can readily be optimized for mass manufacture and is compatible with a low-cost meter.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Dielectric Spectroscopy , Electrodes , Humans , RNA, Viral , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus
8.
Sensors (Basel) ; 22(2)2022 Jan 12.
Article in English | MEDLINE | ID: covidwho-1632064

ABSTRACT

A graphene oxide (GO)-based cortisol biosensor was developed to accurately detect cortisol concentrations from sweat samples at point-of-care (POC) sites. A reference electrode, counter electrode, and working electrode make up the biosensor, and the working electrode was functionalized using multiple layers consisting of GO and antibodies, including Protein A, IgG, and anti-Cab. Sweat samples contact the anti-Cab antibodies to transport electrons to the electrode, resulting in an electrochemical current response. The sensor was tested at each additional functionalization layer and at cortisol concentrations between 0.1 and 150 ng/mL to determine how the current response differed. A potentiostat galvanostat device was used to measure and quantify the electrochemical response in the GO-based biosensor. In both tests, the electrochemical responses were reduced in magnitude with the addition of antibody layers and with increased cortisol concentrations. The proposed cortisol biosensor has increased accuracy with each additional functionalization layer, and the proposed device has the capability to accurately measure cortisol concentrations for diagnostic purposes.


Subject(s)
Biosensing Techniques , Graphite , Biomarkers , Electrochemical Techniques , Electrodes
9.
Adv Mater ; 34(8): e2107892, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1634021

ABSTRACT

Surface chemistry critically affects the diagnostic performance of biosensors. An ideal sensor surface should be resistant to nonspecific protein adsorption, yet be conducive to analytical responses. Here a new polymeric material, zwitterionic polypyrrole (ZiPPy), is reported to produce optimal surface condition for biosensing electrodes. ZiPPy combines two unique advantages: the zwitterionic function that efficiently hydrates electrode surface, hindering nonspecific binding of hydrophobic proteins; and the pyrrole backbone, which enables rapid (<7 min), controlled deposition of ZiPPy through electropolymerization. ZiPPy-coated electrodes show lower electrochemical impedance and less nonspecific protein adsorption (low fouling), outperforming bare and polypyrrole-coated electrodes. Moreover, affinity ligands for target biomarkers can be immobilized together with ZiPPy in a single-step electropolymerization. ZiPPy-coated electrodes are developed with specificity for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The prepared sensor detects SARS-CoV-2 antibodies in human saliva down to 50 ng mL-1 , without the need for sample purification or secondary labeling.


Subject(s)
Antibodies, Viral/analysis , Biosensing Techniques/methods , COVID-19/diagnosis , Polymers/chemistry , Pyrroles/chemistry , Biosensing Techniques/instrumentation , COVID-19/virology , Electrochemical Techniques , Electrodes , Electroplating , Gold/chemistry , Humans , Limit of Detection , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Saliva/metabolism , Surface Properties
10.
Biosensors (Basel) ; 12(1)2022 Jan 07.
Article in English | MEDLINE | ID: covidwho-1613612

ABSTRACT

C-reactive protein (CRP) is a non-specific biomarker of inflammation and may be associated with cardiovascular disease. In recent studies, systemic inflammatory responses have also been observed in cases of coronavirus disease 2019 (COVID-19). Molecularly imprinted polymers (MIPs) have been developed to replace natural antibodies with polymeric materials that have low cost and high stability and could thus be suitable for use in a home-care system. In this work, a MIP-based electrochemical sensing system for measuring CRP was developed. Such a system can be integrated with microfluidics and electronics for lab-on-a-chip technology. MIP composition was optimized using various imprinting template (CRP peptide) concentrations. Tungsten disulfide (WS2) was doped into the MIPs. Doping not only enhances the electrochemical response accompanying the recognition of the template molecules but also raises the top of the sensing range from 1.0 pg/mL to 1.0 ng/mL of the imprinted peptide. The calibration curve of the WS2-doped peptide-imprinted polymer-coated electrodes in the extended-gate field-effect transistor platform was obtained and used for the measurement of CRP concentration in real human serum.


Subject(s)
C-Reactive Protein/analysis , Molecularly Imprinted Polymers , Sulfides , Tungsten Compounds , Electrochemical Techniques , Electrodes , Humans , Peptides
11.
Biosens Bioelectron ; 202: 113975, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1611634

ABSTRACT

Vertically paired electrodes (VPEs) with multiple electrode pairs were developed for the enhancement of capacitive measurements by optimizing the electrode gap and number of electrode pairs. The electrode was fabricated using a conductive polymer layer of PEDOT:PSS instead of Ag and Pt metal electrodes to increase the VPE fabrication yield because the PEDOT:PSS layer could be effectively etched using a reactive dry etching process. In this study, sensitivity enhancement was realized by decreasing the electrode gap and increasing the number of VPE electrode pairs. Such an increase in sensitivity according to the electrode gap and the number of electrode pairs was estimated using a model analyte for an immunoassay. Additionally, a computer simulation was performed using VPEs with different electrode gaps and numbers of VPE electrode pairs. Finally, VPEs with multiple electrode pairs were applied for SARS-CoV-2 nucleoprotein (NP) detection. The capacitive biosensor based on the VPE with immobilized anti-SARS-CoV-2 NP was applied for the specific detection of SARS-CoV-2 in viral cultures. Using viral cultures of SARS-CoV-2, SARS-CoV, MERS-CoV, and CoV-strain 229E, the limit of detection (LOD) was estimated to satisfy the cutoff value (dilution factor of 1/800) for the medical diagnosis of COVID-19, and the assay results from the capacitive biosensor were compared with commercial rapid kit based on a lateral flow immunoassay.


Subject(s)
Biosensing Techniques , COVID-19 , Biosensing Techniques/methods , Computer Simulation , Electrodes , Humans , SARS-CoV-2 , Sensitivity and Specificity
12.
Biosens Bioelectron ; 202: 113974, 2022 Apr 15.
Article in English | MEDLINE | ID: covidwho-1611633

ABSTRACT

Rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody can provide immunological evidence in addition to nucleic acid test for the early diagnosis and on-site screening of coronavirus disease 2019 (COVID-19). All-solid-state biosensor capable of rapid, quantitative SARS-CoV-2 antibody testing is still lacking. Herein, we propose an electronic labelling strategy of protein molecules and demonstrate SARS-CoV-2 protein biosensor employing colloidal quantum dots (CQDs)-modified electrode. The feature current peak corresponding to the specific binding reaction of SARS-CoV-2 antigen and antibody proteins was observed for the first time. The unique charging and discharging effect depending on the alternating voltage applied was ascribed to the quantum confinement, Coulomb blockade and quantum tunneling effects of quantum dots. CQDs-modified electrode could recognize the specific binding reaction between antigen and antibody and then transduce it into significant electrical current. In the case of serum specimens from COVID-19 patient samples, the all-solid-state protein biosensor provides quantitative analysis of SARS-CoV-2 antibody with correlation coefficient of 93.8% compared to enzyme-linked immunosorbent assay (ELISA) results. It discriminates patient and normal samples with accuracy of about 90%. The results could be read within 1 min by handheld testing system prototype. The sensitive and specific protein biosensor combines the advantages of rapidity, accuracy, and convenience, facilitating the implement of low-cost, high-throughput immunological diagnostic technique for clinical lab, point-of-care testing (POCT) as well as home-use test.


Subject(s)
Biosensing Techniques , COVID-19 , Quantum Dots , Biosensing Techniques/methods , Electrodes , Humans , SARS-CoV-2 , Sensitivity and Specificity
13.
Biosens Bioelectron ; 200: 113922, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1588209

ABSTRACT

Fast, affordable, portable, and sensitive technology to detect COVID-19 is critical to address the current outbreak. Here, we present a CRISPR/Cas12a-derived electrochemical aptasensor for cost-effective, fast, and ultrasensitive COVID-19 nucleocapsid protein (Np) detection. First, an electrochemical sensing interface was fabricated by immobilizing methylene blue labeled poly adenines DNA sequence (polyA-MB electrochemical reporter) on a gold electrode surface. Second, an arched probe was prepared via hybridization of Np aptamer and an activator strand. In the presence of COVID-19 Np, the activator strand could be released from the arched probe due to the specific interaction between the target and the aptamer, which then activated the trans-cleavage activity of the CRISPR/Cas12a system. Subsequently, the polyA-MB reporters were cleaved from the electrode surface, decreasing the current of differential pulse voltammetry (DPV) at a potential of -0.27 V(vs. Ag/AgCl). The CRISPR/Cas12a-derived electrochemical aptasensor shows a highly efficient performance for COVID-19 Np detection in 50 pg mL-1 to 100 ng mL-1 with a limit of detection (LOD) low to 16.5 pg mL-1. Notably, the whole process of one test can be completed within 30 min. Simultaneously, the aptasensor displays a high selectivity to other proteins. The further measurements demonstrate that the aptasensor is robust in a natural system for point-of-care testing, such as in tap water, milk, or serum. The aptasensor is universal and expandable and holds great potential in the COVID-19 early diagnosis, environmental surveillance, food security, and other aspects.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , CRISPR-Cas Systems , Electrochemical Techniques , Electrodes , Gold , Humans , Limit of Detection , Nucleocapsid Proteins , SARS-CoV-2
14.
Anal Methods ; 14(1): 7-16, 2021 12 24.
Article in English | MEDLINE | ID: covidwho-1559288

ABSTRACT

The detection of biomolecular analytes is of great importance in clinical, environmental, and argo-food areas, among which the electrochemical methodology is attracting much attention. In particular, screen-printed electrode (SPE)-based sensing applications have exhibited potential possibility for on-site detection, especially for fast clinical biomarker detection, since they provide a miniaturized but robust and portable electrode detection system. In this context, we focused on the modification of SPE with functional antibodies to improve the electrochemical detection performance in versatile sensing applications, particularly for COVID-19 detection. These antibodies were immobilized onto the electrode surface via various methodologies, through which the powerful potential from the modification of SPE was revealed. Finally, more novel and excellent works on the biomolecular modification of SPE and the prospects of this technology from its state-of-art status to commercialization are previewed and future perspectives in this field are mentioned.


Subject(s)
Biosensing Techniques , COVID-19 , Electrodes , Humans , SARS-CoV-2
15.
Biosens Bioelectron ; 197: 113735, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1544823

ABSTRACT

In an aim of developing portable biosensor for SARS-CoV-2 pandemic, which facilitates the point-of-care aptasensing, a strategy using 10 µm gap-sized gold interdigitated electrode (AuIDE) is presented. The silane-modified AuIDE surface was deposited with ∼20 nm diamond and enhanced the detection of SARS-CoV-2 nucleocapsid protein (NCP). The characteristics of chemically modified diamond were evidenced by structural analyses, revealing the cubic crystalline nature at (220) and (111) planes as observed by XRD. XPS analysis denotes a strong interaction of carbon element, composed ∼95% as seen in EDS analysis. The C-C, CC, CO, CN functional groups were well-refuted from XPS spectra of carbon and oxygen elements in diamond. The interrelation between elements through FTIR analysis indicates major intrinsic bondings at 2687-2031 cm-1. The aptasensing was evaluated through electrochemical impedance spectroscopy measurements, using NCP spiked human serum. With a good selectivity the lower detection limit was evidenced as 0.389 fM, at a linear detection range from 1 fM to 100 pM. The stability, and reusability of the aptasensor were demonstrated, showing ∼30% and ∼33% loss of active state, respectively, after ∼11 days. The detection of NCP was evaluated by comparing anti-NCP aptamer and antibody as the bioprobes. The determination coefficients of R2 = 0.9759 and R2 = 0.9772 were obtained for aptamer- and antibody-based sensing, respectively. Moreover, the genuine interaction of NCP aptamer and protein was validated by enzyme linked apta-sorbent assay. The aptasensing strategy proposed with AuIDE/diamond enhanced sensing platform is highly recommended for early diagnosis of SARS-CoV-2 infection.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , COVID-19 , Communicable Diseases , Nanodiamonds , Electrochemical Techniques , Electrodes , Gold , Humans , Limit of Detection , Nucleocapsid Proteins , SARS-CoV-2
16.
Mikrochim Acta ; 188(12): 434, 2021 11 27.
Article in English | MEDLINE | ID: covidwho-1536308

ABSTRACT

A novel and sensitive voltammetric nanosensor was developed for the first time for trace level monitoring of favipiravir based on gold/silver core-shell nanoparticles (Au@Ag CSNPs) with conductive polymer poly (3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) and functionalized multi carbon nanotubes (F-MWCNTs) on a glassy carbon electrode (GCE). The formation of Au@Ag CSNPs/PEDOT:PSS/F-MWCNT composite was confirmed by various analytical techniques, including X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and field-emission scanning electron microscopy (SEM). Under the optimized conditions and at a typical working potential of + 1.23 V (vs. Ag/AgCl), the Au@Ag CSNPs/PEDOT:PSS/F-MWCNT/GCE revealed linear quantitative ranges from 0.005 to 0.009 and 0.009 to 1.95 µM with a limit of detection 0.46 nM (S/N = 3) with acceptable relative standard deviations (1.1-4.9 %) for pharmaceutical formulations, urine, and human plasma samples without applying any sample pretreatment (1.12-4.93%). The interference effect of antiviral drugs, biological compounds, and amino acids was negligible, and the sensing system demonstrated outstanding reproducibility, repeatability, stability, and reusability. The findings revealed that this assay strategy has promising applications in diagnosing FAV in clinical samples, which could be attributed to the large surface area on active sites and high conductivity of bimetallic nanocomposite.


Subject(s)
Amides/pharmacology , Antiviral Agents/pharmacology , COVID-19/drug therapy , Electrochemistry/methods , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Nanomedicine/methods , Nanotechnology/methods , Pyrazines/pharmacology , Colloids/chemistry , Electrodes , Gold/chemistry , Humans , Limit of Detection , Linear Models , Nanotubes , Polymers/chemistry
17.
Sensors (Basel) ; 21(21)2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1512567

ABSTRACT

Potentiometric pH measurements have long been used for the bioanalysis of biofluids, tissues, and cells. A glass pH electrode and ion-sensitive field-effect transistor (ISFET) can measure the time course of pH changes in a microenvironment as a result of physiological and biological activities. However, the signal interpretation of passive pH sensing is difficult because many biological activities influence the spatiotemporal distribution of pH in the microenvironment. Moreover, time course measurement suffers from stability because of gradual drifts in signaling. To address these issues, an active method of pH sensing was developed for the analysis of the cell barrier in vitro. The microenvironmental pH is temporarily perturbed by introducing a low concentration of weak acid (NH4+) or base (CH3COO-) to cells cultured on the gate insulator of ISFET using a superfusion system. Considering the pH perturbation originates from the semi-permeability of lipid bilayer plasma membranes, induced proton dynamics are used for analyzing the biomembrane barriers against ions and hydrated species following interaction with exogenous reagents. The unique feature of the method is the sensitivity to the formation of transmembrane pores as small as a proton (H+), enabling the analysis of cell-nanomaterial interactions at the molecular level. The new modality of cell analysis using ISFET is expected to be applied to nanomedicine, drug screening, and tissue engineering.


Subject(s)
Biosensing Techniques , Transistors, Electronic , Electrodes , Hydrogen-Ion Concentration , Ions , Potentiometry
18.
Anal Chim Acta ; 1188: 339207, 2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1487555

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, also known as 2019-nCov or COVID-19) outbreak has become a huge public health issue due to its rapid transmission making it a global pandemic. Here, we report fabricated fluorine doped tin oxide (FTO) electrodes/gold nanoparticles (AuNPs) complex coupled with in-house developed SARS-CoV-2 spike S1 antibody (SARS-CoV-2 Ab) to measure the response with Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV). The biophysical characterisation of FTO/AuNPs/SARS-CoV-2Ab was done via UV-Visible spectroscopy, Dynamic Light Scattering (DLS), and Fourier Transform Infrared Spectroscopy (FT-IR). The fabricated FTO/AuNPs/SARS-CoV-2Ab immunosensor was optimised for response time, antibody concentration, temperature, and pH. Under optimum conditions, the FTO/AuNPs/Ab based immunosensor displayed high sensitivity with limit of detection (LOD) up to 0.63 fM in standard buffer and 120 fM in spiked saliva samples for detection of SARS-CoV-2 spike S1 antigen (Ag) with negligible cross reactivity Middle East Respiratory Syndrome (MERS) spike protein. The proposed FTO/AuNPs/SARS-CoV-2Ab based biosensor proved to be stable for up to 4 weeks and can be used as an alternative non-invasive diagnostic tool for the rapid, specific and sensitive detection of SARS-CoV-2 Spike Ag traces in clinical samples.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Spike Glycoprotein, Coronavirus/analysis , Electrodes , Fluorine , Gold , Humans , Immunoassay , SARS-CoV-2 , Spectroscopy, Fourier Transform Infrared , Tin Compounds
19.
Biosens Bioelectron ; 196: 113729, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1482463

ABSTRACT

Herein, a novel molecularly imprinted polymer (MIP) based electrochemical sensor for the determination of the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2-RBD) has been developed. For this purpose, first, a macroporous gold screen-printed electrode (MP-Au-SPE) has been fabricated. The MIP was then synthesized on the surface of the MP-Au-SPE through the electro-polymerization of ortho-phenylenediamine in the presence of SARS-CoV-2-RBD molecules as matrix polymer, and template molecules, respectively. During the fabrication process, the SARS-CoV-2-RBD molecules were embedded in the polymer matrix. Subsequently, the template molecules were removed from the electrode by using alkaline ethanol. The template molecules removal was studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), and attenuated total reflectance spectroscopy (ATR). The fabricated MIP film acted as an artificial recognition element for the measurement of SARS-CoV-2-RBD. The EIS technique was used for the measurement of the SARS-CoV-2-RBD in the saliva solution. The electron transfer resistance (Ret) of the MIP-based sensor in a ferri/ferrocyanide solution increased as the SARS-CoV-2-RBD concentration increased due to the occupation of the imprinted cavities by the SARS-CoV-2-RBD. The MIP-based sensor exhibited a good response to the SARS-CoV-2-RBD in the concentration range between 2.0 and 40.0 pg mL-1 with a limit of detection of 0.7 pg mL-1. The obtained results showed that the fabricated MIP sensor has high selectivity sensitivity, and stability.


Subject(s)
Biosensing Techniques , COVID-19 , Molecular Imprinting , Electrochemical Techniques , Electrodes , Gold , Humans , Limit of Detection , Molecularly Imprinted Polymers , SARS-CoV-2
20.
ACS Appl Mater Interfaces ; 13(42): 49754-49761, 2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1475248

ABSTRACT

A reliable and sensitive detection approach for SARS-CoV 2 is essential for timely infection diagnosis and transmission prevention. Here, a two-dimensional (2D) metal-organic framework (MOF)-based photoelectrochemical (PEC) aptasensor with high sensitivity and stability for SARS-CoV 2 spike glycoprotein (S protein) detection was developed. The PEC aptasensor was constructed by a plasmon-enhanced photoactive material (namely, Au NPs/Yb-TCPP) with a specific DNA aptamer against S protein. The Au NPs/Yb-TCPP fabricated by in situ growth of Au NPs on the surface of 2D Yb-TCPP nanosheets showed a high electron-hole (e-h) separation efficiency due to the enhancement effect of plasmon, resulting in excellent photoelectric performance. The modified DNA aptamer on the surface of Au NPs/Yb-TCPP can bind with S protein with high selectivity, thus decreasing the photocurrent of the system due to the high steric hindrance and low conductivity of the S protein. The established PEC aptasensor demonstrated a highly sensitive detection for S protein with a linear response range of 0.5-8 µg/mL with a detection limit of 72 ng/mL. This work presented a promising way for the detection of SARS-CoV 2, which may conduce to the impetus of clinic diagnostics.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Metal-Organic Frameworks/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/analysis , Base Sequence , Biosensing Techniques/instrumentation , COVID-19/diagnosis , DNA/chemistry , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Gold/chemistry , Gold/radiation effects , Humans , Immobilized Nucleic Acids/chemistry , Light , Limit of Detection , Metal Nanoparticles/chemistry , Metal Nanoparticles/radiation effects , Pharynx/virology , Photochemical Processes , Porphyrins/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Ytterbium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL