Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Add filters

Document Type
Year range
Front Endocrinol (Lausanne) ; 12: 714909, 2021.
Article in English | MEDLINE | ID: covidwho-1497067


Background: Clinically, evidence shows that uterine corpus endometrial carcinoma (UCEC) patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may have a higher death-rate. However, current anti-UCEC/coronavirus disease 2019 (COVID-19) treatment is lacking. Plumbagin (PLB), a pharmacologically active alkaloid, is an emerging anti-cancer inhibitor. Accordingly, the current report was designed to identify and characterize the anti-UCEC function and mechanism of PLB in the treatment of patients infected with SARS-CoV-2 via integrated in silico analysis. Methods: The clinical analyses of UCEC and COVID-19 in patients were conducted using online-accessible tools. Meanwhile, in silico methods including network pharmacology and biological molecular docking aimed to screen and characterize the anti-UCEC/COVID-19 functions, bio targets, and mechanisms of the action of PLB. Results: The bioinformatics data uncovered the clinical characteristics of UCEC patients infected with SARS-CoV-2, including specific genes, health risk, survival rate, and prognostic index. Network pharmacology findings disclosed that PLB-exerted anti-UCEC/COVID-19 effects were achieved through anti-proliferation, inducing cytotoxicity and apoptosis, anti-inflammation, immunomodulation, and modulation of some of the key molecular pathways associated with anti-inflammatory and immunomodulating actions. Following molecular docking analysis, in silico investigation helped identify the anti-UCEC/COVID-19 pharmacological bio targets of PLB, including mitogen-activated protein kinase 3 (MAPK3), tumor necrosis factor (TNF), and urokinase-type plasminogen activator (PLAU). Conclusions: Based on the present bioinformatic and in silico findings, the clinical characterization of UCEC/COVID-19 patients was revealed. The candidate, core bio targets, and molecular pathways of PLB action in the potential treatment of UCEC/COVID-19 were identified accordingly.

COVID-19 , Carcinoma, Endometrioid , Endometrial Neoplasms , Host-Pathogen Interactions , Naphthoquinones/pharmacology , Adult , Aged , Aged, 80 and over , COVID-19/complications , COVID-19/diagnosis , COVID-19/drug therapy , COVID-19/genetics , Calcium-Binding Proteins/drug effects , Calcium-Binding Proteins/metabolism , Carcinoma, Endometrioid/complications , Carcinoma, Endometrioid/diagnosis , Carcinoma, Endometrioid/drug therapy , Carcinoma, Endometrioid/genetics , Computational Biology , Drug Screening Assays, Antitumor/methods , Endometrial Neoplasms/complications , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Genetic Association Studies , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Membrane Proteins/drug effects , Membrane Proteins/metabolism , Middle Aged , Mitogen-Activated Protein Kinase 3/drug effects , Mitogen-Activated Protein Kinase 3/metabolism , Molecular Docking Simulation/methods , Naphthoquinones/therapeutic use , Prognosis , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism , Uterus/drug effects , Uterus/metabolism , Uterus/pathology , Uterus/virology