Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add filters

Document Type
Year range
1.
Int J Mol Sci ; 22(21)2021 Nov 03.
Article in English | MEDLINE | ID: covidwho-1502439

ABSTRACT

The 2019 novel coronavirus, known as severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19), is causing a global pandemic. The virus primarily affects the upper and lower respiratory tracts and raises the risk of a variety of non-pulmonary consequences, the most severe and possibly fatal of which are cardiovascular problems. Data show that almost one-third of the patients with a moderate or severe form of COVID-19 had preexisting cardiovascular comorbidities such as diabetes mellitus, obesity, hypertension, heart failure, or coronary artery disease. SARS-CoV2 causes hyper inflammation, hypoxia, apoptosis, and a renin-angiotensin system imbalance in a variety of cell types, primarily endothelial cells. Profound endothelial dysfunction associated with COVID-19 can be the cause of impaired organ perfusion that may generate acute myocardial injury, renal failure, and a procoagulant state resulting in thromboembolic events. We discuss the most recent results on the involvement of endothelial dysfunction in the pathogenesis of COVID-19 in patients with cardiometabolic diseases in this review. We also provide insights on treatments that may reduce the severity of this viral infection.


Subject(s)
COVID-19/pathology , Endothelial Cells/metabolism , COVID-19/complications , COVID-19/virology , Cytokine Release Syndrome/etiology , Endothelial Cells/cytology , Endothelial Cells/virology , Heart Failure/etiology , Humans , Renal Insufficiency/etiology , Renin-Angiotensin System/physiology , SARS-CoV-2/isolation & purification , Thrombosis/etiology
2.
Clin Appl Thromb Hemost ; 27: 10760296211042940, 2021.
Article in English | MEDLINE | ID: covidwho-1484251

ABSTRACT

The world is in a hard battle against COVID-19. Endothelial cells are among the most critical targets of SARS-CoV-2. Dysfunction of endothelium leads to vascular injury following by coagulopathies and thrombotic conditions in the vital organs increasing the risk of life-threatening events. Growing evidences revealed that endothelial dysfunction and consequent thrombotic conditions are associated with the severity of outcomes. It is not yet fully clear that these devastating sequels originate directly from the virus or a side effect of virus-induced cytokine storm. Due to endothelial dysfunction, plasma levels of some biomarkers are changed and relevant clinical manifestations appear as well. Stabilization of endothelial integrity and supporting its function are among the promising therapeutic strategies. Other than respiratory, COVID-19 could be called a systemic vascular disease and this aspect should be scrutinized in more detail in order to reduce related mortality. In the present investigation, the effects of COVID-19 on endothelial function and thrombosis formation are discussed. In this regard, critical players, laboratory findings, clinical manifestation, and suggestive therapies are presented.


Subject(s)
Blood Coagulation , COVID-19/virology , Endothelial Cells/virology , Endothelium, Vascular/virology , SARS-CoV-2/pathogenicity , Thrombosis/virology , Animals , COVID-19/blood , COVID-19/pathology , COVID-19/physiopathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Host-Pathogen Interactions , Humans , Signal Transduction , Thrombosis/blood , Thrombosis/pathology , Thrombosis/physiopathology
3.
Viruses ; 13(10)2021 10 08.
Article in English | MEDLINE | ID: covidwho-1463838

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease (COVID-19), is currently infecting millions of people worldwide and is causing drastic changes in people's lives. Recent studies have shown that neurological symptoms are a major issue for people infected with SARS-CoV-2. However, the mechanism through which the pathological effects emerge is still unclear. Brain endothelial cells (ECs), one of the components of the blood-brain barrier, are a major hurdle for the entry of pathogenic or infectious agents into the brain. They strongly express angiotensin converting enzyme 2 (ACE2) for its normal physiological function, which is also well-known to be an opportunistic receptor for SARS-CoV-2 spike protein, facilitating their entry into host cells. First, we identified rapid internalization of the receptor-binding domain (RBD) S1 domain (S1) and active trimer (Trimer) of SARS-CoV-2 spike protein through ACE2 in brain ECs. Moreover, internalized S1 increased Rab5, an early endosomal marker while Trimer decreased Rab5 in the brain ECs. Similarly, the permeability of transferrin and dextran was increased in S1 treatment but decreased in Trimer, respectively. Furthermore, S1 and Trimer both induced mitochondrial damage including functional deficits in mitochondrial respiration. Overall, this study shows that SARS-CoV-2 itself has toxic effects on the brain ECs including defective molecular delivery and metabolic function, suggesting a potential pathological mechanism to induce neurological signs in the brain.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/pathology , COVID-19/pathology , Endothelial Cells/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , Brain/metabolism , Brain/virology , Endothelial Cells/virology , Humans , Mice , Mitochondria/metabolism , Protein Domains , SARS-CoV-2/metabolism , rab5 GTP-Binding Proteins/metabolism
4.
mBio ; 12(4): e0157221, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1349194

ABSTRACT

Tissue- and cell-specific expression patterns are highly variable within and across individuals, leading to altered host responses after acute virus infection. Unraveling key tissue-specific response patterns provides novel opportunities for defining fundamental mechanisms of virus-host interaction in disease and the identification of critical tissue-specific networks for disease intervention in the lung. Currently, there are no approved therapeutics for Middle East respiratory syndrome coronavirus (MERS-CoV) patients, and little is understood about how lung cell types contribute to disease outcomes. MERS-CoV replicates equivalently in primary human lung microvascular endothelial cells (MVE) and fibroblasts (FB) and to equivalent peak titers but with slower replication kinetics in human airway epithelial cell cultures (HAE). However, only infected MVE demonstrate observable virus-induced cytopathic effect. To explore mechanisms leading to reduced MVE viability, donor-matched human lung MVE, HAE, and FB were infected, and their transcriptomes, proteomes, and lipidomes were monitored over time. Validated functional enrichment analysis demonstrated that MERS-CoV-infected MVE were dying via an unfolded protein response (UPR)-mediated apoptosis. Pharmacologic manipulation of the UPR in MERS-CoV-infected primary lung cells reduced viral titers and in male mice improved respiratory function with accompanying reductions in weight loss, pathological signatures of acute lung injury, and times to recovery. Systems biology analysis and validation studies of global kinetic transcript, protein, and lipid data sets confirmed that inhibition of host stress pathways that are differentially regulated following MERS-CoV infection of different tissue types can alleviate symptom progression to end-stage lung disease commonly seen following emerging coronavirus outbreaks. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe atypical pneumonia in infected individuals, but the underlying mechanisms of pathogenesis remain unknown. While much has been learned from the few reported autopsy cases, an in-depth understanding of the cells targeted by MERS-CoV in the human lung and their relative contribution to disease outcomes is needed. The host response in MERS-CoV-infected primary human lung microvascular endothelial (MVE) cells and fibroblasts (FB) was evaluated over time by analyzing total RNA, proteins, and lipids to determine the cellular pathways modulated postinfection. Findings revealed that MERS-CoV-infected MVE cells die via apoptotic mechanisms downstream of the unfolded protein response (UPR). Interruption of enzymatic processes within the UPR in MERS-CoV-infected male mice reduced disease symptoms, virus-induced lung injury, and time to recovery. These data suggest that the UPR plays an important role in MERS-CoV infection and may represent a host target for therapeutic intervention.


Subject(s)
Acute Lung Injury/pathology , Apoptosis/physiology , Coronavirus Infections/pathology , Unfolded Protein Response/physiology , Acute Lung Injury/virology , Animals , Cell Line , Endothelial Cells/metabolism , Endothelial Cells/virology , Female , Fibroblasts/metabolism , Fibroblasts/virology , Humans , Male , Mice , Middle East Respiratory Syndrome Coronavirus/immunology
5.
Microvasc Res ; 138: 104232, 2021 11.
Article in English | MEDLINE | ID: covidwho-1446976

ABSTRACT

The mechanisms by which the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) induces neurological complications remain to be elucidated. We aimed to identify possible effects of hypoxia on the expression of SARS-CoV-2 cell entry mediators, angiotensin-converting enzyme 2 (ACE2) receptor and transmembrane protease serine 2 (TMPRSS2) protein, in human brain endothelial cells, in vitro. hCMEC/D3 cells were exposed to different oxygen tensions: 20% (Control group), 8% or 2% O2 (Hypoxia groups). Cells were harvested 6-, 24- and 48 h following hypoxic challenge for assessment of mRNA and protein, using qPCR and Western Blot. The response of the brain endothelial cells to hypoxia was replicated using modular incubator chambers. We observed an acute increase (6 h, p < 0.05), followed by a longer-term decrease (48 h, p < 0.05) in ACE2 mRNA and protein expression, accompanied by reduced expression of TMPRSS2 protein levels (48 h, p < 0.05) under the more severe hypoxic condition (2% O2). No changes in levels of von Willebrand Factor (vWF - an endothelial cell damage marker) or interleukin 6 (IL-6 - a pro-inflammatory cytokine) mRNA were observed. We conclude that hypoxia regulates brain endothelial cell ACE2 and TMPRSS2 expression in vitro, which may indicate human brain endothelial susceptibility to SARS-CoV-2 infection and subsequent brain sequelae.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Brain/blood supply , COVID-19/virology , Endothelial Cells/virology , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2/genetics , COVID-19/enzymology , Cell Hypoxia , Cell Line , Endothelial Cells/enzymology , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Serine Endopeptidases/genetics
6.
J Virol ; 95(23): e0139621, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1434896

ABSTRACT

Emerging evidence suggests that endothelial activation plays a central role in the pathogenesis of acute respiratory distress syndrome (ARDS) and multiorgan failure in patients with coronavirus disease 2019 (COVID-19). However, the molecular mechanisms underlying endothelial activation in COVID-19 patients remain unclear. In this study, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins that potently activate human endothelial cells were screened to elucidate the molecular mechanisms involved in endothelial activation. It was found that nucleocapsid protein (NP) of SARS-CoV-2 significantly activated human endothelial cells through Toll-like receptor 2 (TLR2)/NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, by screening a natural microbial compound library containing 154 natural compounds, simvastatin was identified as a potent inhibitor of NP-induced endothelial activation. Remarkably, though the protein sequences of N proteins from coronaviruses are highly conserved, only NP from SARS-CoV-2 induced endothelial activation. The NPs from other coronaviruses such as SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), HUB1-CoV, and influenza virus H1N1 did not activate endothelial cells. These findings are consistent with the results from clinical investigations showing broad endotheliitis and organ injury in severe COVID-19 patients. In conclusion, the study provides insights on SARS-CoV-2-induced vasculopathy and coagulopathy and suggests that simvastatin, an FDA-approved lipid-lowering drug, may help prevent the pathogenesis and improve the outcome of COVID-19 patients. IMPORTANCE Coronavirus disease 2019 (COVID-19), caused by the betacoronavirus SARS-CoV-2, is a worldwide challenge for health care systems. The leading cause of mortality in patients with COVID-19 is hypoxic respiratory failure from acute respiratory distress syndrome (ARDS). To date, pulmonary endothelial cells (ECs) have been largely overlooked as a therapeutic target in COVID-19, yet emerging evidence suggests that these cells contribute to the initiation and propagation of ARDS by altering vessel barrier integrity, promoting a procoagulative state, inducing vascular inflammation and mediating inflammatory cell infiltration. Therefore, a better mechanistic understanding of the vasculature is of utmost importance. In this study, we screened the SARS-CoV-2 viral proteins that potently activate human endothelial cells and found that nucleocapsid protein (NP) significantly activated human endothelial cells through TLR2/NF-κB and MAPK signaling pathways. Moreover, by screening a natural microbial compound library containing 154 natural compounds, simvastatin was identified as a potent inhibitor of NP-induced endothelial activation. Our results provide insights on SARS-CoV-2-induced vasculopathy and coagulopathy, and suggests that simvastatin, an FDA-approved lipid-lowering drug, may benefit to prevent the pathogenesis and improve the outcome of COVID-19 patients.


Subject(s)
Coronavirus Nucleocapsid Proteins/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/virology , SARS-CoV-2 , Signal Transduction , Simvastatin/pharmacology , COVID-19/virology , Cell Line , Human Umbilical Vein Endothelial Cells , Humans , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 2/metabolism
7.
Viruses ; 13(9)2021 09 21.
Article in English | MEDLINE | ID: covidwho-1430982

ABSTRACT

Evidence is emerging that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect various organs of the body, including cardiomyocytes and cardiac endothelial cells in the heart. This review focuses on the effects of SARS-CoV-2 in the heart after direct infection that can lead to myocarditis and an outline of potential treatment options. The main points are: (1) Viral entry: SARS-CoV-2 uses specific receptors and proteases for docking and priming in cardiac cells. Thus, different receptors or protease inhibitors might be effective in SARS-CoV-2-infected cardiac cells. (2) Viral replication: SARS-CoV-2 uses RNA-dependent RNA polymerase for replication. Drugs acting against ssRNA(+) viral replication for cardiac cells can be effective. (3) Autophagy and double-membrane vesicles: SARS-CoV-2 manipulates autophagy to inhibit viral clearance and promote SARS-CoV-2 replication by creating double-membrane vesicles as replication sites. (4) Immune response: Host immune response is manipulated to evade host cell attacks against SARS-CoV-2 and increased inflammation by dysregulating immune cells. Efficiency of immunosuppressive therapy must be elucidated. (5) Programmed cell death: SARS-CoV-2 inhibits programmed cell death in early stages and induces apoptosis, necroptosis, and pyroptosis in later stages. (6) Energy metabolism: SARS-CoV-2 infection leads to disturbed energy metabolism that in turn leads to a decrease in ATP production and ROS production. (7) Viroporins: SARS-CoV-2 creates viroporins that lead to an imbalance of ion homeostasis. This causes apoptosis, altered action potential, and arrhythmia.


Subject(s)
COVID-19/complications , COVID-19/virology , Heart Diseases/etiology , SARS-CoV-2/physiology , Apoptosis , Autophagy , Disease Management , Disease Susceptibility , Endothelial Cells/ultrastructure , Endothelial Cells/virology , Heart Diseases/diagnosis , Heart Diseases/therapy , Host-Pathogen Interactions/immunology , Humans , Myocarditis/diagnosis , Myocarditis/etiology , Myocarditis/therapy , Viroporin Proteins , Virus Replication
8.
Proteomics ; 21(2): e2000246, 2021 01.
Article in English | MEDLINE | ID: covidwho-1384281

ABSTRACT

The genome of coronaviruses, including SARS-CoV-2, encodes for two proteases, a papain like (PLpro ) protease and the so-called main protease (Mpro ), a chymotrypsin-like cysteine protease, also named 3CLpro or non-structural protein 5 (nsp5). Mpro is activated by autoproteolysis and is the main protease responsible for cutting the viral polyprotein into functional units. Aside from this, it is described that Mpro proteases are also capable of processing host proteins, including those involved in the host innate immune response. To identify substrates of the three main proteases from SARS-CoV, SARS-CoV-2, and hCoV-NL63 coronviruses, an LC-MS based N-terminomics in vitro analysis is performed using recombinantly expressed proteases and lung epithelial and endothelial cell lysates as substrate pools. For SARS-CoV-2 Mpro , 445 cleavage events from more than 300 proteins are identified, while 151 and 331 Mpro derived cleavage events are identified for SARS-CoV and hCoV-NL63, respectively. These data enable to better understand the cleavage site specificity of the viral proteases and will help to identify novel substrates in vivo. All data are available via ProteomeXchange with identifier PXD021406.


Subject(s)
COVID-19/virology , Coronavirus 3C Proteases/metabolism , Coronavirus NL63, Human/enzymology , Peptide Fragments/analysis , SARS Virus/enzymology , SARS-CoV-2/enzymology , Viral Proteins/metabolism , COVID-19/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/virology , Epithelial Cells/metabolism , Epithelial Cells/virology , Eukaryotic Initiation Factor-4G/metabolism , Host-Pathogen Interactions , Humans , Lung/metabolism , Lung/virology , Substrate Specificity
9.
Am J Respir Cell Mol Biol ; 65(3): 300-308, 2021 09.
Article in English | MEDLINE | ID: covidwho-1381187

ABSTRACT

Endothelial dysfunction is implicated in the thrombotic events reported in patients with coronavirus disease (COVID-19), but the underlying molecular mechanisms are unknown. Circulating levels of the coagulation cascade activator PAI-1 are substantially higher in patients with COVID-19 with severe respiratory dysfunction than in patients with bacterial sepsis and acute respiratory distress syndrome. Indeed, the elevation of PAI-1 is recognized as an early marker of endothelial dysfunction. Here, we report that the rSARS-CoV-2-S1 (recombinant severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] viral envelope spike) glycoprotein stimulated robust production of PAI-1 by human pulmonary microvascular endothelial cells (HPMECs). We examined the role of protein degradation in this SARS-CoV-2-S1 induction of PAI-1 and found that the proteasomal degradation inhibitor bortezomib inhibited SARS-CoV-2-S1-mediated changes in PAI-1. Our data further show that bortezomib upregulated KLF2, a shear-stress-regulated transcription factor that suppresses PAI-1 expression. Aging and metabolic disorders are known to increase mortality and morbidity in patients with COVID-19. We therefore examined the role of ZMPSTE24 (zinc metallopeptidase STE24), a metalloprotease with a demonstrated role in host defense against RNA viruses that is decreased in older individuals and in metabolic syndrome, in the induction of PAI-1 in HPMECs by SARS-CoV-2-S1. Indeed, overexpression of ZMPSTE24 blunted enhancement of PAI-1 production in spike protein-exposed HPMECs. In addition, we found that membrane expression of the SARS-CoV-2 entry receptor ACE2 was reduced by ZMPSTE24-mediated cleavage and shedding of the ACE2 ectodomain, leading to accumulation of ACE2 decoy fragments that may bind SARS-CoV-2. These data indicate that decreases in ZMPSTE24 with age and comorbidities may increase vulnerability to vascular endothelial injury by SARS-CoV-2 viruses and that enhanced production of endothelial PAI-1 might play role in prothrombotic events in patients with COVID-19.


Subject(s)
COVID-19/virology , Endothelial Cells/pathology , Membrane Proteins/metabolism , Metalloendopeptidases/metabolism , Plasminogen Activator Inhibitor 1/metabolism , Pulmonary Artery/pathology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Aging , COVID-19/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Endothelial Cells/virology , Humans , Membrane Proteins/genetics , Metalloendopeptidases/genetics , Plasminogen Activator Inhibitor 1/genetics , Proteolysis , Pulmonary Artery/metabolism , Pulmonary Artery/virology , Spike Glycoprotein, Coronavirus/genetics
10.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L477-L484, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1376529

ABSTRACT

Acute lung injury (ALI) leading to acute respiratory distress syndrome is the major cause of COVID-19 lethality. Cell entry of SARS-CoV-2 occurs via the interaction between its surface spike protein (SP) and angiotensin-converting enzyme-2 (ACE2). It is unknown if the viral spike protein alone is capable of altering lung vascular permeability in the lungs or producing lung injury in vivo. To that end, we intratracheally instilled the S1 subunit of SARS-CoV-2 spike protein (S1SP) in K18-hACE2 transgenic mice that overexpress human ACE2 and examined signs of COVID-19-associated lung injury 72 h later. Controls included K18-hACE2 mice that received saline or the intact SP and wild-type (WT) mice that received S1SP. K18-hACE2 mice instilled with S1SP exhibited a decline in body weight, dramatically increased white blood cells and protein concentrations in bronchoalveolar lavage fluid (BALF), upregulation of multiple inflammatory cytokines in BALF and serum, histological evidence of lung injury, and activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways in the lung. K18-hACE2 mice that received either saline or SP exhibited little or no evidence of lung injury. WT mice that received S1SP exhibited a milder form of COVID-19 symptoms, compared with the K18-hACE2 mice. Furthermore, S1SP, but not SP, decreased cultured human pulmonary microvascular transendothelial resistance (TER) and barrier function. This is the first demonstration of a COVID-19-like response by an essential virus-encoded protein by SARS-CoV-2 in vivo. This model of COVID-19-induced ALI may assist in the investigation of new therapeutic approaches for the management of COVID-19 and other coronaviruses.


Subject(s)
Acute Lung Injury/pathology , COVID-19/complications , Cell Membrane Permeability , Endothelial Cells/pathology , Lung/pathology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Animals , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/virology , Humans , Lung/metabolism , Lung/virology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Subunits , Spike Glycoprotein, Coronavirus/genetics , Virus Replication
11.
Neuropharmacology ; 198: 108766, 2021 10 15.
Article in English | MEDLINE | ID: covidwho-1376075

ABSTRACT

The coronavirus disease 2019 (Covid-19) pandemic intensified the already catastrophic drug overdose and substance use disorder (SUD) epidemic, signaling a syndemic as social isolation, economic and mental health distress, and disrupted treatment services disproportionally impacted this vulnerable population. Along with these social and societal factors, biological factors triggered by intense stress intertwined with incumbent overactivity of the immune system and the resulting inflammatory outcomes may impact the functional status of the central nervous system (CNS). We review the literature concerning SARS-CoV2 infiltration and infection in the CNS and the prospects of synergy between stress, inflammation, and kynurenine pathway function during illness and recovery from Covid-19. Taken together, inflammation and neuroimmune signaling, a consequence of Covid-19 infection, may dysregulate critical pathways and underlie maladaptive changes in the CNS, to exacerbate the development of neuropsychiatric symptoms and in the vulnerability to develop SUD. This article is part of the special Issue on 'Vulnerabilities to Substance Abuse'.


Subject(s)
COVID-19/epidemiology , Drug Misuse/statistics & numerical data , SARS-CoV-2 , Substance-Related Disorders/epidemiology , Adaptation, Psychological , Angiotensin-Converting Enzyme 2/physiology , Animals , Axons/virology , COVID-19/immunology , COVID-19/physiopathology , COVID-19/psychology , Comorbidity , Disease Susceptibility , Endothelial Cells/virology , Humans , Immunity, Innate , Inflammation/etiology , Kynurenine/metabolism , Neurons/virology , Neurotransmitter Agents/metabolism , Olfactory Mucosa/virology , Pandemics , SARS-CoV-2/physiology , Social Isolation , Stress, Psychological , Substance-Related Disorders/etiology , Substance-Related Disorders/physiopathology , Tryptophan/metabolism , Viral Tropism
12.
J Gen Virol ; 102(8)2021 08.
Article in English | MEDLINE | ID: covidwho-1369239

ABSTRACT

Viruses may exploit the cardiovascular system to facilitate transmission or within-host dissemination, and the symptoms of many viral diseases stem at least in part from a loss of vascular integrity. The microvascular architecture is comprised of an endothelial cell barrier ensheathed by perivascular cells (pericytes). Pericytes are antigen-presenting cells (APCs) and play crucial roles in angiogenesis and the maintenance of microvascular integrity through complex reciprocal contact-mediated and paracrine crosstalk with endothelial cells. We here review the emerging ways that viruses interact with pericytes and pay consideration to how these interactions influence microvascular function and viral pathogenesis. Major outcomes of virus-pericyte interactions include vascular leakage or haemorrhage, organ tropism facilitated by barrier disruption, including viral penetration of the blood-brain barrier and placenta, as well as inflammatory, neurological, cognitive and developmental sequelae. The underlying pathogenic mechanisms may include direct infection of pericytes, pericyte modulation by secreted viral gene products and/or the dysregulation of paracrine signalling from or to pericytes. Viruses we cover include the herpesvirus human cytomegalovirus (HCMV, Human betaherpesvirus 5), the retrovirus human immunodeficiency virus (HIV; causative agent of acquired immunodeficiency syndrome, AIDS, and HIV-associated neurocognitive disorder, HAND), the flaviviruses dengue virus (DENV), Japanese encephalitis virus (JEV) and Zika virus (ZIKV), and the coronavirus severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2; causative agent of coronavirus disease 2019, COVID-19). We touch on promising pericyte-focussed therapies for treating the diseases caused by these important human pathogens, many of which are emerging viruses or are causing new or long-standing global pandemics.


Subject(s)
Cell Physiological Phenomena , Disease Susceptibility , Host-Pathogen Interactions , Pericytes/virology , Virus Diseases/metabolism , Virus Diseases/virology , Animals , Cell Communication , Dengue Virus/physiology , Disease Management , Endothelial Cells/virology , Endothelium/metabolism , Endothelium/virology , HIV/physiology , Humans , Paracrine Communication , SARS-CoV-2/physiology , Virus Diseases/diagnosis , Virus Diseases/therapy , Virus Physiological Phenomena
13.
Int J Mol Sci ; 22(16)2021 Aug 22.
Article in English | MEDLINE | ID: covidwho-1367850

ABSTRACT

SARS-CoV-2 primarily infects epithelial airway cells that express the host entry receptor angiotensin-converting enzyme 2 (ACE2), which binds to the S1 spike protein on the surface of the virus. To delineate the impact of S1 spike protein interaction with the ACE2 receptor, we incubated the S1 spike protein with human pulmonary arterial endothelial cells (HPAEC). HPAEC treatment with the S1 spike protein caused disruption of endothelial barrier function, increased levels of numerous inflammatory molecules (VCAM-1, ICAM-1, IL-1ß, CCL5, CXCL10), elevated mitochondrial reactive oxygen species (ROS), and a mild rise in glycolytic reserve capacity. Because low oxygen tension (hypoxia) is associated with severe cases of COVID-19, we also evaluated treatment with hemoglobin (HbA) as a potential countermeasure in hypoxic and normal oxygen environments in analyses with the S1 spike protein. We found hypoxia downregulated the expression of the ACE2 receptor and increased the critical oxygen homeostatic signaling protein, hypoxia-inducible factor (HIF-1α); however, treatment of the cells with HbA yielded no apparent change in the levels of ACE2 or HIF-1α. Use of quantitative proteomics revealed that S1 spike protein-treated cells have few differentially regulated proteins in hypoxic conditions, consistent with the finding that ACE2 serves as the host viral receptor and is reduced in hypoxia. However, in normoxic conditions, we found perturbed abundance of proteins in signaling pathways related to lysosomes, extracellular matrix receptor interaction, focal adhesion, and pyrimidine metabolism. We conclude that the spike protein alone without the rest of the viral components is sufficient to elicit cell signaling in HPAEC, and that treatment with HbA failed to reverse the vast majority of these spike protein-induced changes.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Endothelial Cells/metabolism , Hemoglobins/metabolism , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/virology , Cell Hypoxia , Cell Survival , Cells, Cultured , Endothelial Cells/virology , Endothelium, Vascular/cytology , Endothelium, Vascular/pathology , Humans , Protein Subunits/metabolism , Pulmonary Artery/cytology , Pulmonary Artery/pathology , Reactive Oxygen Species/metabolism , Recombinant Proteins/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity
14.
Front Immunol ; 12: 697329, 2021.
Article in English | MEDLINE | ID: covidwho-1357529

ABSTRACT

Various neurological symptoms have been associated to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection including headache, fever, anosmia, ageusia, but also, encephalitis, Guillain-Barre syndrome and ischemic stroke. Responsible for the current coronavirus disease (COVID-19) pandemic, SARS-CoV-2 may access and affect the central nervous system (CNS) by several pathways such as axonal retrograde transport or through interaction with the blood-brain barrier (BBB) or blood-cerebrospinal fluid (CSF) barrier. Here, we explored the molecular and cellular effects of direct SARS-CoV-2 infection of human BBB cells. We observed low replication of SARS-CoV-2 that was accompanied by very moderate inflammatory response. Using a human in vitro BBB model, we also described low replication levels without strong inflammatory response or modulation of endothelium integrity. Finally, using serum samples from COVID-19 patients, we highlighted strong concentrations of pro-inflammatory factors that did not perturb BBB integrity after short term exposure. Altogether, our results show that the main mechanism of brain access following SARS-CoV-2 infection does not seem to be directed by brain infection through endothelial cells.


Subject(s)
Blood-Brain Barrier/virology , Brain/virology , Endothelial Cells/virology , SARS-CoV-2/growth & development , Virus Replication/physiology , Animals , COVID-19/pathology , Cell Line, Tumor , Chlorocebus aethiops , Humans , Vero Cells
15.
J Virol ; 95(17): e0079421, 2021 08 10.
Article in English | MEDLINE | ID: covidwho-1350003

ABSTRACT

Increased mortality in COVID-19 cases is often associated with microvascular complications. We have recently shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein promotes an inflammatory cytokine interleukin 6 (IL-6)/IL-6R-induced trans signaling response and alarmin secretion. Virus-infected or spike-transfected human epithelial cells exhibited an increase in senescence, with a release of senescence-associated secretory phenotype (SASP)-related inflammatory molecules. Introduction of the bromodomain-containing protein 4 (BRD4) inhibitor AZD5153 to senescent epithelial cells reversed this effect and reduced SASP-related inflammatory molecule release in TMNK-1 or EAhy926 (representative human endothelial cell lines), when cells were exposed to cell culture medium (CM) derived from A549 cells expressing SARS-CoV-2 spike protein. Cells also exhibited a senescence phenotype with enhanced p16, p21, and senescence-associated ß-galactosidase (SA-ß-Gal) expression and triggered SASP pathways. Inhibition of IL-6 trans signaling by tocilizumab and inhibition of inflammatory receptor signaling by the Bruton's tyrosine kinase (BTK) inhibitor zanubrutinib, prior to exposure of CM to endothelial cells, inhibited p21 and p16 induction. We also observed an increase in reactive oxygen species (ROS) in A549 spike-transfected and endothelial cells exposed to spike-transfected CM. ROS generation in endothelial cell lines was reduced after treatment with tocilizumab and zanubrutinib. Cellular senescence was associated with an increased level of the endothelial adhesion molecules vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), which have in vitro leukocyte attachment potential. Inhibition of senescence or SASP function prevented VCAM-1/ICAM-1 expression and leukocyte attachment. Taken together, we identified that human endothelial cells exposed to cell culture supernatant derived from SARS-CoV-2 spike protein expression displayed cellular senescence markers, leading to enhanced leukocyte adhesion. IMPORTANCE The present study was aimed at examining the underlying mechanism of extrapulmonary manifestations of SARS-CoV-2 spike protein-associated pathogenesis, with the notion that infection of the pulmonary epithelium can lead to mediators that drive endothelial dysfunction. We utilized SARS-CoV-2 spike protein expression in cultured human hepatocytes (Huh7.5) and pneumocytes (A549) to generate conditioned culture medium (CM). Endothelial cell lines (TMNK-1 or EAhy926) treated with CM exhibited an increase in cellular senescence markers by a paracrine mode and led to leukocyte adhesion. Overall, the link between these responses in endothelial cell senescence and a potential contribution to microvascular complication in productively SARS-CoV-2-infected humans is implicated. Furthermore, the use of inhibitors (BTK, IL-6, and BRD4) showed a reverse effect in the senescent cells. These results may support the selection of potential adjunct therapeutic modalities to impede SARS-CoV-2-associated pathogenesis.


Subject(s)
Cellular Senescence , Endothelial Cells/metabolism , Leukocytes/metabolism , Paracrine Communication , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , A549 Cells , Cell Adhesion , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Endothelial Cells/pathology , Endothelial Cells/virology , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Intercellular Adhesion Molecule-1/metabolism , Interleukin-6/metabolism , Leukocytes/pathology , Leukocytes/virology , Piperazines/pharmacology , Pyrazoles , Pyridazines , Reactive Oxygen Species/metabolism , Receptors, Interleukin-6/metabolism , Signal Transduction , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
16.
Theranostics ; 11(16): 8076-8091, 2021.
Article in English | MEDLINE | ID: covidwho-1337802

ABSTRACT

Rationale: Pulmonary vascular endotheliitis, perivascular inflammation, and immune activation are observed in COVID-19 patients. While the initial SARS-CoV-2 infection mainly infects lung epithelial cells, whether it also infects endothelial cells (ECs) and to what extent SARS-CoV-2-mediated pulmonary vascular endotheliitis is associated with immune activation remain to be determined. Methods: To address these questions, we studied SARS-CoV-2-infected K18-hACE2 (K18) mice, a severe COVID-19 mouse model, as well as lung samples from SARS-CoV-2-infected nonhuman primates (NHP) and patient deceased from COVID-19. We used immunostaining, RNAscope, and electron microscopy to analyze the organs collected from animals and patient. We conducted bulk and single cell (sc) RNA-seq analyses, and cytokine profiling of lungs or serum of the severe COVID-19 mice. Results: We show that SARS-CoV-2-infected K18 mice develop severe COVID-19, including progressive body weight loss and fatality at 7 days, severe lung interstitial inflammation, edema, hemorrhage, perivascular inflammation, systemic lymphocytopenia, and eosinopenia. Body weight loss in K18 mice correlated with the severity of pneumonia, but not with brain infection. We also observed endothelial activation and dysfunction in pulmonary vessels evidenced by the up-regulation of VCAM1 and ICAM1 and the downregulation of VE-cadherin. We detected SARS-CoV-2 in capillary ECs, activation and adhesion of platelets and immune cells to the vascular wall of the alveolar septa, and increased complement deposition in the lungs, in both COVID-19-murine and NHP models. We also revealed that pathways of coagulation, complement, K-ras signaling, and genes of ICAM1 and VCAM1 related to EC dysfunction and injury were upregulated, and were associated with massive immune activation in the lung and circulation. Conclusion: Together, our results indicate that SARS-CoV-2 causes endotheliitis via both infection and infection-mediated immune activation, which may contribute to the pathogenesis of severe COVID-19 disease.


Subject(s)
COVID-19/immunology , COVID-19/pathology , Animals , COVID-19/metabolism , Disease Models, Animal , Endothelial Cells/immunology , Endothelial Cells/virology , Epithelial Cells/immunology , Epithelial Cells/virology , Lung/pathology , Mice , Mice, Inbred Strains , Mice, Transgenic , SARS-CoV-2/isolation & purification
17.
Cells ; 10(8)2021 07 27.
Article in English | MEDLINE | ID: covidwho-1335012

ABSTRACT

Multiorgan tropism of SARS-CoV-2 has previously been shown for several major organs. We have comprehensively analyzed 25 different formalin-fixed paraffin-embedded (FFPE) tissues/organs from autopsies of fatal COVID-19 cases (n = 8), using histopathological assessment, detection of SARS-CoV-2 RNA using polymerase chain reaction and RNA in situ hybridization, viral protein using immunohistochemistry, and virus particles using transmission electron microscopy. SARS-CoV-2 RNA was mainly localized in epithelial cells across all organs. Next to lung, trachea, kidney, heart, or liver, viral RNA was also found in tonsils, salivary glands, oropharynx, thyroid, adrenal gland, testicles, prostate, ovaries, small bowel, lymph nodes, skin and skeletal muscle. Viral RNA was predominantly found in cells expressing ACE2, TMPRSS2, or both. The SARS-CoV-2 replicating RNA was also detected in these organs. Immunohistochemistry and electron microscopy were not suitable for reliable and specific SARS-CoV-2 detection in autopsies. These findings were validated using in situ hybridization on external COVID-19 autopsy samples (n = 9). Apart from the lung, correlation of viral detection and histopathological assessment did not reveal any specific alterations that could be attributed to SARS-CoV-2. In summary, SARS-CoV-2 and its replication could be observed across all organ systems, which co-localizes with ACE2 and TMPRSS2 mainly in epithelial but also in mesenchymal and endothelial cells. Apart from the respiratory tract, no specific (histo-)morphologic alterations could be assigned to the SARS-CoV-2 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/metabolism , Endothelial Cells/metabolism , RNA, Viral/analysis , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Aged , Autopsy , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Endothelial Cells/pathology , Endothelial Cells/virology , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Organ Specificity , Tropism
18.
JCI Insight ; 6(14)2021 07 22.
Article in English | MEDLINE | ID: covidwho-1320462

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a pandemic. Severe disease is associated with dysfunction of multiple organs, but some infected cells do not express ACE2, the canonical entry receptor for SARS-CoV-2. Here, we report that the C-type lectin receptor L-SIGN interacted in a Ca2+-dependent manner with high-mannose-type N-glycans on the SARS-CoV-2 spike protein. We found that L-SIGN was highly expressed on human liver sinusoidal endothelial cells (LSECs) and lymph node lymphatic endothelial cells but not on blood endothelial cells. Using high-resolution confocal microscopy imaging, we detected SARS-CoV-2 viral proteins within the LSECs from liver autopsy samples from patients with COVID-19. We found that both pseudo-typed virus enveloped with SARS-CoV-2 spike protein and authentic SARS-CoV-2 virus infected L-SIGN-expressing cells relative to control cells. Moreover, blocking L-SIGN function reduced CoV-2-type infection. These results indicate that L-SIGN is a receptor for SARS-CoV-2 infection. LSECs are major sources of the clotting factors vWF and factor VIII (FVIII). LSECs from liver autopsy samples from patients with COVID-19 expressed substantially higher levels of vWF and FVIII than LSECs from uninfected liver samples. Our data demonstrate that L-SIGN is an endothelial cell receptor for SARS-CoV-2 that may contribute to COVID-19-associated coagulopathy.


Subject(s)
COVID-19 , Capillaries , Cell Adhesion Molecules/metabolism , Endothelial Cells , Lectins, C-Type/metabolism , Liver/blood supply , Lymphatic Vessels , Receptors, Cell Surface/metabolism , SARS-CoV-2/physiology , COVID-19/metabolism , COVID-19/pathology , COVID-19/virology , Capillaries/metabolism , Capillaries/pathology , Capillaries/virology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/virology , Gene Expression Profiling/methods , Humans , Liver/pathology , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Lymphatic Vessels/virology , Spike Glycoprotein, Coronavirus , Virus Internalization
19.
SLAS Discov ; 26(9): 1079-1090, 2021 10.
Article in English | MEDLINE | ID: covidwho-1314244

ABSTRACT

The recent renascence of phenotypic drug discovery (PDD) is catalyzed by its ability to identify first-in-class drugs and deliver results when the exact molecular mechanism is partially obscure. Acute respiratory distress syndrome (ARDS) is a severe, life-threatening condition with a high mortality rate that has increased in frequency due to the COVID-19 pandemic. Despite decades of laboratory and clinical study, no efficient pharmacological therapy for ARDS has been found. An increase in endothelial permeability is the primary event in ARDS onset, causing the development of pulmonary edema that leads to respiratory failure. Currently, the detailed molecular mechanisms regulating endothelial permeability are poorly understood. Therefore, the use of the PDD approach in the search for efficient ARDS treatment can be more productive than classic target-based drug discovery (TDD), but its use requires a new cell-based assay compatible with high-throughput (HTS) and high-content (HCS) screening. Here we report the development of a new plate-based image cytometry method to measure endothelial barrier function. The incorporation of image cytometry in combination with digital image analysis substantially decreases assay variability and increases the signal window. This new method simultaneously allows for rapid measurement of cell monolayer permeability and cytological analysis. The time-course of permeability increase in human pulmonary artery endothelial cells (HPAECs) in response to the thrombin and tumor necrosis factor α treatment correlates with previously published data obtained by transendothelial resistance (TER) measurements. Furthermore, the proposed image cytometry method can be easily adapted for HTS/HCS applications.


Subject(s)
COVID-19/diagnostic imaging , High-Throughput Screening Assays/methods , Image Cytometry/methods , Respiratory Distress Syndrome/diagnostic imaging , COVID-19/diagnosis , COVID-19/virology , Cell Membrane Permeability/genetics , Drug Discovery , Endothelial Cells/ultrastructure , Endothelial Cells/virology , Humans , Image Processing, Computer-Assisted , Pandemics/prevention & control , Phenotype , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/pathology , Pulmonary Artery/virology , Pulmonary Edema/diagnosis , Pulmonary Edema/diagnostic imaging , Pulmonary Edema/virology , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/virology , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/diagnostic imaging , Respiratory Insufficiency/virology , SARS-CoV-2/pathogenicity , Thrombin/pharmacology , Tumor Necrosis Factor-alpha/pharmacology
20.
Front Immunol ; 12: 653110, 2021.
Article in English | MEDLINE | ID: covidwho-1305643

ABSTRACT

To characterize transcriptomic changes in endothelial cells (ECs) infected by coronaviruses, and stimulated by DAMPs, the expressions of 1311 innate immune regulatomic genes (IGs) were examined in 28 EC microarray datasets with 7 monocyte datasets as controls. We made the following findings: The majority of IGs are upregulated in the first 12 hours post-infection (PI), and maintained until 48 hours PI in human microvascular EC infected by middle east respiratory syndrome-coronavirus (MERS-CoV) (an EC model for COVID-19). The expressions of IGs are modulated in 21 human EC transcriptomic datasets by various PAMPs/DAMPs, including LPS, LPC, shear stress, hyperlipidemia and oxLDL. Upregulation of many IGs such as nucleic acid sensors are shared between ECs infected by MERS-CoV and those stimulated by PAMPs and DAMPs. Human heart EC and mouse aortic EC express all four types of coronavirus receptors such as ANPEP, CEACAM1, ACE2, DPP4 and virus entry facilitator TMPRSS2 (heart EC); most of coronavirus replication-transcription protein complexes are expressed in HMEC, which contribute to viremia, thromboembolism, and cardiovascular comorbidities of COVID-19. ECs have novel trained immunity (TI), in which subsequent inflammation is enhanced. Upregulated proinflammatory cytokines such as TNFα, IL6, CSF1 and CSF3 and TI marker IL-32 as well as TI metabolic enzymes and epigenetic enzymes indicate TI function in HMEC infected by MERS-CoV, which may drive cytokine storms. Upregulated CSF1 and CSF3 demonstrate a novel function of ECs in promoting myelopoiesis. Mechanistically, the ER stress and ROS, together with decreased mitochondrial OXPHOS complexes, facilitate a proinflammatory response and TI. Additionally, an increase of the regulators of mitotic catastrophe cell death, apoptosis, ferroptosis, inflammasomes-driven pyroptosis in ECs infected with MERS-CoV and the upregulation of pro-thrombogenic factors increase thromboembolism potential. Finally, NRF2-suppressed ROS regulate innate immune responses, TI, thrombosis, EC inflammation and death. These transcriptomic results provide novel insights on the roles of ECs in coronavirus infections such as COVID-19, cardiovascular diseases (CVD), inflammation, transplantation, autoimmune disease and cancers.


Subject(s)
Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Endothelial Cells/physiology , Inflammation/immunology , Middle East Respiratory Syndrome Coronavirus/physiology , NF-E2-Related Factor 2/metabolism , SARS-CoV-2/physiology , Alarmins/immunology , Animals , Datasets as Topic , Endothelial Cells/virology , Gene Expression Profiling , Humans , Immunity, Innate , Immunization , Mice , Myelopoiesis , Oxidative Stress , Thromboembolism
SELECTION OF CITATIONS
SEARCH DETAIL
...