Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Nanobiotechnology ; 20(1): 41, 2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1643157

ABSTRACT

Early detection of viral pathogens by DNA-sensors in clinical samples, contaminated foods, soil or water can dramatically improve clinical outcomes and reduce the socioeconomic impact of diseases such as COVID-19. Clustered regularly interspaced short palindromic repeat (CRISPR) and its associated protein Cas12a (previously known as CRISPR-Cpf1) technology is an innovative new-generation genomic engineering tool, also known as 'genetic scissors', that has demonstrated the accuracy and has recently been effectively applied as appropriate (E-CRISPR) DNA-sensor to detect the nucleic acid of interest. The CRISPR-Cas12a from Prevotella and Francisella 1 are guided by a short CRISPR RNA (gRNA). The unique simultaneous cis- and trans- DNA cleavage after target sequence recognition at the PAM site, sticky-end (5-7 bp) employment, and ssDNA/dsDNA hybrid cleavage strategies to manipulate the attractive nature of CRISPR-Cas12a are reviewed. DNA-sensors based on the CRISPR-Cas12a technology for rapid, robust, sensitive, inexpensive, and selective detection of virus DNA without additional sample purification, amplification, fluorescent-agent- and/or quencher-labeling are relevant and becoming increasingly important in industrial and medical applications. In addition, CRISPR-Cas12a system shows great potential in the field of E-CRISPR-based bioassay research technologies. Therefore, we are highlighting insights in this research direction.


Subject(s)
CRISPR-Cas Systems/physiology , DNA, Viral/isolation & purification , Nucleic Acid Amplification Techniques , Animals , Biosensing Techniques/methods , Biosensing Techniques/trends , COVID-19/virology , DNA, Viral/analysis , Environmental Pollutants/analysis , Environmental Pollutants/isolation & purification , Food Contamination/analysis , Humans , Molecular Typing/methods , Molecular Typing/trends , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/trends , SARS-CoV-2/genetics , Virology/methods , Virology/trends , Virus Diseases/classification , Virus Diseases/diagnosis , Virus Diseases/virology
2.
Environ Health ; 20(1): 65, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1496182

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) and other dementias currently represent the fifth most common cause of death in the world, according to the World Health Organization, with a projected future increase as the proportion of the elderly in the population is growing. Air pollution has emerged as a plausible risk factor for AD, but studies estimating dementia cases attributable to exposure to fine particulate matter (PM2.5) air pollution and resulting monetary estimates are lacking. METHODS: We used data on average population-weighted exposure to ambient PM2.5 for the entire population of Sweden above 30 years of age. To estimate the annual number of dementia cases attributable to air pollution in the Swedish population above 60 years of age, we used the latest concentration response functions (CRF) between PM2.5 exposure and dementia incidence, based on ten longitudinal cohort studies, for the population above 60 years of age. To estimate the monetary burden of attributable cases, we calculated total costs related to dementia, including direct and indirect lifetime costs and intangible costs by including quality-adjusted life years (QALYs) lost. Two different monetary valuations of QALYs in Sweden were used to estimate the monetary value of reduced quality-of-life from two different payer perspectives. RESULTS: The annual number of dementia cases attributable to PM2.5 exposure was estimated to be 820, which represents 5% of the annual dementia cases in Sweden. Direct and indirect lifetime average cost per dementia case was estimated to correspond € 213,000. A reduction of PM2.5 by 1 µg/m3 was estimated to yield 101 fewer cases of dementia incidences annually, resulting in an estimated monetary benefit ranging up to 0.01% of the Swedish GDP in 2019. CONCLUSION: This study estimated that 5% of annual dementia cases could be attributed to PM2.5 exposure, and that the resulting monetary burden is substantial. These findings suggest the need to consider airborne toxic pollutants associated with dementia incidence in public health policy decisions.


Subject(s)
Dementia , Environmental Exposure , Environmental Pollutants , Particulate Matter , Aged , Aged, 80 and over , Cost of Illness , Dementia/economics , Dementia/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Environmental Exposure/economics , Environmental Pollutants/adverse effects , Environmental Pollutants/analysis , Environmental Pollutants/economics , Humans , Incidence , Middle Aged , Particulate Matter/adverse effects , Particulate Matter/analysis , Particulate Matter/economics , Quality of Life , Sweden/epidemiology
3.
Environ Sci Pollut Res Int ; 29(2): 1696-1711, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1482274

ABSTRACT

Cemetery leachate generated by the process of cadaveric decomposition is a significant contaminant of several matrices in the cemetery environment (soil, groundwater, and surface water). The biogenic amines cadaverine and putrescine stand out among the cemetery leachate contaminants, since they are potentially carcinogenic compounds. This review article presents a discussion of possible environmental impacts caused by the increase in deaths resulting from COVID-19 as its central theme. The study also aims to demonstrate the importance of considering, in this context, some climatic factors that can alter both the time of bodily decomposition and the longevity of the virus in the environment. Additionally, some evidence for the transmission of the virus to health professionals and family members after the patient's death and environmental contamination after the burial of the bodies will also be presented. Several sources were consulted, such as scientific electronic databases (NCBI), publications by government agencies (e.g., ARPEN, Brazil) and internationally recognized health and environmental agencies (e.g., WHO, OurWorldInData.org), as well as information published on reliable websites available for free (e.g., CNN) and scientific journals related to the topic. The data from this study sounds the alarm on the fact that an increase in the number of deaths from the complications of COVID-19 has generated serious environmental problems, resulting from Cemetery leachate.


Subject(s)
COVID-19 , Environment , Environmental Pollutants/analysis , Groundwater , Cemeteries , Humans , Pandemics , SARS-CoV-2
4.
Sci Total Environ ; 787: 147550, 2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-1458278

ABSTRACT

Chemical industries and oil refineries are known emission sources of environmental contaminants, such as metals/metalloids, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), among others. Based on the toxicological potential of these pollutants, harmful health effects can be expected for the population living near these facilities. One of the largest chemical/petrochemical complexes in Europe is located in Tarragona County (Catalonia, Spain). In the last two decades, a number of investigations aimed at assessing the environmental impact of air pollutants potentially emitted by this industrial complex have been carried out. The present paper is a review of the available scientific information on the levels of air pollutants related with the activities of this chemical/petrochemical complex. Although there are currently some data on the environmental burdens of metals/metalloids, PAHs, VOCs and PCDD/Fs, there is an evident lack of specific biological monitoring studies on human health. Taking into account the amount of chemicals released to air and their toxicity, it is essential to perform an in-depth analysis of the current health status of the population living in Tarragona County.


Subject(s)
Air Pollutants , Environmental Pollutants , Polychlorinated Dibenzodioxins , Air Pollutants/analysis , Dibenzofurans , Dibenzofurans, Polychlorinated , Environment , Environmental Monitoring , Environmental Pollutants/analysis , Europe , Humans , Polychlorinated Dibenzodioxins/analysis , Spain
5.
Int J Hyg Environ Health ; 237: 113830, 2021 08.
Article in English | MEDLINE | ID: covidwho-1375960

ABSTRACT

Perfluorobutanoic acid (PFBA) belongs to the complex group of synthetic perfluoroalkyl substances (PFAS) which have led to ubiquitous environmental contamination. While some of the long-chain compounds accumulate in the human body, the short-chain compound PFBA was found to have a relatively short half-life in blood of a few days, in agreement with relatively low PFBA serum/plasma levels of roughly 0.01 ng/ml in European studies. Surprisingly, very high median levels of PFBA of 807 and 263 ng/g tissue for human lung and kidney autopsy samples, respectively, were reported in a paper of Pérez et al. (2013). This would question the concept of PFAS blood analysis reflecting the body burden of these compounds. To verify the results of high PFBA tissue accumulation in humans, we have analyzed PFBA in a set of 7 lung and 9 kidney samples from tumor patients with a different method of quantification, using high-resolution mass spectrometry with the accurate mass as analytical parameter. The only human sample with a quantifiable amount of PFBA (peak area more than twice above the analytical background signals) contained approximately 0.17 ng/g lung tissue. In the light of our results and considering the analytical problems with the short-chain compound PFBA exhibiting only one mass fragmentation, it appears to be likely that PFBA is not accumulating on a high level in human lung and kidney tissue. In general, the analysis of short-chain PFAS in complex matrices like food or tissue is very challenging with respect to instrumental quantification and possible sample contamination.


Subject(s)
Environmental Pollutants/analysis , Fluorocarbons/analysis , Kidney/chemistry , Lung/chemistry , Aged , Aged, 80 and over , Chromatography, High Pressure Liquid , Female , Humans , Male , Mass Spectrometry/methods , Middle Aged
6.
Sci Rep ; 11(1): 8363, 2021 04 16.
Article in English | MEDLINE | ID: covidwho-1189289

ABSTRACT

The new COVID-19 coronavirus disease has emerged as a global threat and not just to human health but also the global economy. Due to the pandemic, most countries affected have therefore imposed periods of full or partial lockdowns to restrict community transmission. This has had the welcome but unexpected side effect that existing levels of atmospheric pollutants, particularly in cities, have temporarily declined. As found by several authors, air quality can inherently exacerbate the risks linked to respiratory diseases, including COVID-19. In this study, we explore patterns of air pollution for ten of the most affected countries in the world, in the context of the 2020 development of the COVID-19 pandemic. We find that the concentrations of some of the principal atmospheric pollutants were temporarily reduced during the extensive lockdowns in the spring. Secondly, we show that the seasonality of the atmospheric pollutants is not significantly affected by these temporary changes, indicating that observed variations in COVID-19 conditions are likely to be linked to air quality. On this background, we confirm that air pollution may be a good predictor for the local and national severity of COVID-19 infections.


Subject(s)
COVID-19/pathology , Environmental Pollutants/analysis , Air Pollutants/analysis , COVID-19/epidemiology , COVID-19/virology , Humans , Models, Theoretical , Nitric Oxide/analysis , Ozone/analysis , Pandemics , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index , Sulfur Dioxide/analysis
7.
Sci Total Environ ; 783: 146951, 2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1171923

ABSTRACT

The Lagoon of Venice is a continuously evolving ecosystem that rapidly responds to anthropic stressors. The UNESCO World Heritage site "Venice and its Lagoon", is one of the top tourist destinations in the world. Mass tourism increases marine litter, water traffic emissions, solid waste, and sewage release. Plastic marine litter is not only a major aesthetic problem diminishing tourists experience of Venice, it also leaches contaminants into the seawater. Since there is a dearth in the literature regarding microplastic leachable compounds and overtourism related pollutants, the project studied the Head Space-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) molecular fingerprint of volatile lagoon water pollutants, to gain insight into the extent of this phenomenon in August 2019. The chromatographic analyses enabled the identification of 40 analytes related to the presence of polymers in seawater, water traffic, and tourists habits. In Italy, on the 10th March 2020, the lockdown restrictions were enforced to control the spread of the SARS-CoV-2 infection; the ordinary urban water traffic around Venice came to a halt, and the ever-growing presence of tourists suddenly ceased. This situation provided a unique opportunity to analyze the environmental effects of restrictions on VOCs load in the Lagoon. 17 contaminants became not detectable after the lockdown period. The statistical analysis indicated that the amounts of many other contaminants significantly dropped. The presence of 9 analytes was not statistically influenced by the lockdown restrictions, probably because of their stronger persistence or continuous input in the environment from diverse sources. Results signify a sharp and encouraging pollution decrease at the molecular level, concomitant with the anthropogenic stress release, even if it is not possible to attribute quantitatively the VOCs load variations to specific sources (e.g., tourists' habits, urban water traffic, plastic pollution).


Subject(s)
COVID-19 , Environmental Pollutants , Volatile Organic Compounds , Water Pollutants, Chemical , Communicable Disease Control , Ecosystem , Environmental Monitoring , Environmental Pollutants/analysis , Humans , Italy , Microplastics , Plastics , SARS-CoV-2 , Seawater , Tourism , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL