Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Sci Total Environ ; 820: 153261, 2022 May 10.
Article in English | MEDLINE | ID: covidwho-1799732

ABSTRACT

Personal protective equipment (PPE) pollution has become one of the most pending environmental challenges resulting from the pandemic. While various studies investigated PPE pollution in the marine environment, freshwater bodies have been largely overlooked. In the present study, PPE monitoring was carried out in the vicinity of Lake Tana, the largest lake in Ethiopia. PPE density, types, and chemical composition (FTIR spectroscopy) were reported. A total of 221 PPEs were identified with a density ranging from 1.22 × 10-5 PPE m-2 (control site S1) to 2.88× 10-4 PPE m-2 with a mean density of 1.54 × 10-4 ± 2.58 × 10-5 PPE m-2. Mismanaged PPE waste was found in all the sampling sites, mostly consisting of surgical face masks (93.7%). Statistical analyzes revealed significantly higher PPE densities in sites where several recreational, touristic, and commercial activities take place, thus, revealing the main sources of PPE pollution. Furthermore, polypropylene and polyester fabrics were identified as the main components of surgical and reusable cloth masks, respectively. Given the hazard that PPEs represent to aquatic biota (e.g., entanglement, ingestion) and their ability to release microplastics (MPs), it is necessary to implement sufficient solid waste management plans and infrastructure where lake activities take place. Additionally, local authorities must promote and ensure sustainable tourism in order to maintain the ecosystems in Lake Tana. Prospective research priorities regarding the colonization and degradation of PPE, as well as the release of toxic chemicals, were identified and discussed.


Subject(s)
COVID-19 , Personal Protective Equipment , Refuse Disposal , Water Pollution , Ecosystem , Environmental Pollution , Ethiopia , Humans , Lakes , Pandemics , Plastics , Prospective Studies , SARS-CoV-2
2.
Front Public Health ; 10: 776850, 2022.
Article in English | MEDLINE | ID: covidwho-1775980

ABSTRACT

Objective: The purpose of this study is to empirically examine the impact of environmental information disclosure on the health of middle-aged and old residents and investigate whether such disclosure can improve the health of middle-aged and old residents. Methods: This study matches the data of the Pollution Information Transparency Index (PITI) and China Health and Retirement Longitudinal Study in 2018 and uses the ordered logistic regression model to assess the impact of environmental information disclosure on the health of middle-aged and old residents. Furthermore, stepwise regression, ordinary least square, and ordered probit regression models are used for robustness tests. The IV-Ordered probit regression model solves the endogenous problem. Results: Environmental information disclosure has a significant positive correlation with the health level of middle-aged and old residents. After the robustness test and endogenous problem handling, this conclusion still holds. Estimation results show that when PITI increases by 1 unit, the probability of improving the self-reported health level and actual health level of middle-aged and old residents increases by 1 and 0.87%, respectively. The impact of environmental information disclosure on the health of middle-aged and old residents also has significant regional heterogeneity. Specifically, the impact is mainly reflected in the central region of China. Conclusion: Environmental information disclosure can improve the health of middle-aged and old residents. To improve the health of middle-aged and old residents, it is necessary to implement and enhance the environmental information disclosure system continuously. The anti-driving effect of environmental information disclosure on the treatment of environmental pollution must be intensified further, particularly focusing on the central region of China, where is more polluted and more concentrated than other regions.


Subject(s)
Disclosure , Environmental Pollution , Health Status , Aged , China , Humans , Longitudinal Studies , Middle Aged
3.
Sci Med Footb ; 5(sup1): 8-12, 2021 11.
Article in English | MEDLINE | ID: covidwho-1655983

ABSTRACT

Background: We assessed SARS-CoV-2 contamination of random surfaces in football training facilities in an environment with a high prevalence of infections.Methods: In six clubs of the Qatar Stars League, surfaces of random locations (high-touch areas, ventilation systems, toilets, cleaning tools, freezers, pantries) in routinely cleaned training facilities, locker rooms, medical and administrative areas were swabbed for SARS-CoV-2. The swabs were screened for the presence of viral RNA using a SARS-CoV-2 qPCR Probe Assay.Results: None of the 103 swabs reached a cycle threshold (cT) value ≤30 (strong viral presence, suggestive of potential surface transmission). Four samples showed cT values >30 and <35 (low quantity of virus) and 16 swabs returned a cT value ≥35 and <40 (inactive virus remnants). The remaining 83 samples were negative (cT value ≥40). Most samples with viral or viral remnant presence originated from high-touch areas.Conclusion: We did not find evidence for potential surface transmission in football club facilities when routine cleaning procedures are in place despite the presence of infected subjects.


Subject(s)
COVID-19 , Football , Environmental Pollution , Humans , RNA, Viral , SARS-CoV-2
4.
Environ Res ; 209: 112848, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1654414

ABSTRACT

The emergence of a new coronavirus (COVID-19) has become a major global concern that has damaged human health and disturbing environmental quality. Some researchers have identified a positive relationship between air pollution (fine particulate matter PM2.5) and COVID-19. Nonetheless, no inclusive investigation has comprehensively examined this relationship for a tropical climate such as India. This study aims to address this knowledge gap by investigating the nexus between air pollution and COVID-19 in the ten most affected Indian states using daily observations from 9th March to September 20, 2020. The study has used the newly developed Hidden Panel Cointegration test and Nonlinear Panel Autoregressive Distributed Lag (NPARDL) model for asymmetric analysis. Empirical results illustrate an asymmetric relationship between PM2.5 and COVID-19 cases. More precisely, a 1% change in the positive shocks of PM2.5 increases the COVID-19 cases by 0.439%. Besides, the estimates of individual states expose the heterogeneous effects of PM2.5 on COVID-19. The asymmetric causality test of Hatemi-J's (2011) also suggests that the positive shocks on PM2.5 Granger-cause positive shocks on COVID19 cases. Research findings indicate that air pollution is the root cause of this outbreak; thus, the government should recognize this channel and implement robust policy guidelines to control the spread of environmental pollution.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Air Pollution/analysis , COVID-19/complications , COVID-19/epidemiology , Environmental Pollution/adverse effects , Humans , India/epidemiology , Particulate Matter/analysis , Particulate Matter/toxicity
5.
PLoS One ; 17(1): e0259207, 2022.
Article in English | MEDLINE | ID: covidwho-1648363

ABSTRACT

COVID-19 greatly challenges the human health sector, and has resulted in a large amount of medical waste that poses various potential threats to the environment. In this study, we compiled relevant data released by official agencies and the media, and conducted data supplementation based on earlier studies to calculate the net value of medical waste produced in the Hubei Province due to COVID-19 with the help of a neural network model. Next, we reviewed the data related to the environmental impact of medical waste per unit and designed four scenarios to estimate the environmental impact of new medical waste generated during the pandemic. The results showed that a medical waste generation rate of 0.5 kg/bed/day due to COVID-19 resulted in a net increase of medical waste volume by about 3366.99 tons in the Hubei Province. In the four scenario assumptions, i.e., if the medical waste resulting from COVID-19 is completely incinerated, it will have a large impact on the air quality. If it is disposed by distillation sterilization, it will produce a large amount of wastewater and waste residue. Based on the results of the study, we propose three policy recommendations: strict control of medical wastewater discharge, reduction and transformation of the emitted acidic gases, and attention to the emission of metallic nickel in exhaust gas and chloride in soil. These policy recommendations provide a scientific basis for controlling medical waste pollution.


Subject(s)
Air Pollution/prevention & control , COVID-19/epidemiology , Environmental Pollution/prevention & control , Medical Waste/analysis , Neural Networks, Computer , Waste Management/methods , Waste Water/analysis , Air Pollution/analysis , COVID-19/economics , China/epidemiology , Chlorides/analysis , Environment , Environmental Pollution/analysis , Gases/analysis , Humans , Incineration/methods , SARS-CoV-2/pathogenicity , Waste Management/statistics & numerical data
6.
Int J Environ Res Public Health ; 19(2)2022 Jan 08.
Article in English | MEDLINE | ID: covidwho-1613792

ABSTRACT

COVID-19 has caused an unprecedented crisis, resulting in a global pandemic with millions infected and dying. Given the importance given to sustainability and the reduction in pollutant gases in recent years, the main objective of this study was to determine whether pollutant emissions are associated with an increased number of COVID-19 cases in Europe. Other demographic variables that may have an impact on the number of coronavirus cases, such as population density, average age or the level of restrictive policies implemented by governments, are also included. It has been shown that the emission of carbon monoxide pollutant gases and pollutant emissions from transport positively affect the incidence of COVID-19, so that the sustainable policy implemented in recent years in Europe should be reinforced, and tougher sanctions and measures should be imposed when pollution thresholds are exceeded.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring , Environmental Pollution , Europe/epidemiology , Humans , Particulate Matter/analysis , SARS-CoV-2
7.
Circ Res ; 128(7): 808-826, 2021 04 02.
Article in English | MEDLINE | ID: covidwho-1597870

ABSTRACT

In recent decades low- and middle-income countries (LMICs) have been witnessing a significant shift toward raised blood pressure; yet in LMICs, only 1 in 3 are aware of their hypertension status, and ≈8% have their blood pressure controlled. This rising burden widens the inequality gap, contributes to massive economic hardships of patients and carers, and increases costs to the health system, facing challenges such as low physician-to-patient ratios and lack of access to medicines. Established risk factors include unhealthy diet (high salt and low fruit and vegetable intake), physical inactivity, tobacco and alcohol use, and obesity. Emerging risk factors include pollution (air, water, noise, and light), urbanization, and a loss of green space. Risk factors that require further in-depth research are low birth weight and social and commercial determinants of health. Global actions include the HEARTS technical package and the push for universal health care. Promising research efforts highlight that successful interventions are feasible in LMICs. These include creation of health-promoting environments by introducing salt-reduction policies and sugar and alcohol tax; implementing cost-effective screening and simplified treatment protocols to mitigate treatment inertia; pooled procurement of low-cost single-pill combination therapy to improve adherence; increasing access to telehealth and mHealth (mobile health); and training health care staff, including community health workers, to strengthen team-based care. As the blood pressure trajectory continues creeping upward in LMICs, contextual research on effective, safe, and cost-effective interventions is urgent. New emergent risk factors require novel solutions. Lowering blood pressure in LMICs requires urgent global political and scientific priority and action.


Subject(s)
Developing Countries , Hypertension , Alcohol Drinking/adverse effects , Blood Pressure Monitors/standards , Blood Pressure Monitors/supply & distribution , COVID-19/complications , COVID-19/epidemiology , Cardiovascular Physiological Phenomena , Developing Countries/statistics & numerical data , Diet/adverse effects , Environment , Environmental Pollution/adverse effects , Health Behavior , Heart Diseases/mortality , Humans , Hypertension/drug therapy , Hypertension/epidemiology , Hypertension/etiology , Life Style , Nurses/supply & distribution , Obesity/complications , Physicians/supply & distribution , Prevalence , Research , Risk Factors , Sedentary Behavior , Social Determinants of Health , Stroke/mortality , Tobacco Use/adverse effects , Urbanization
8.
Environ Monit Assess ; 194(2): 49, 2022 Jan 03.
Article in English | MEDLINE | ID: covidwho-1595788

ABSTRACT

Originating from China, COVID-19 became the first-ever coronavirus pandemic, wreaking havoc in 218 nations. The lack of a potential treatment exacerbated by the inability of the healthcare infrastructure to contain the viral trajectory led to a worldwide lockdown. The anthropogenic halt presented an unprecedented background to quantify the effect of the anthroposphere on environmental pollution. Consequently, we analyzed the variations in the air (PM10, PM2.5, NO2, SO2) and water pollutants (BOD, COD, DO, coliform) using real-time monitoring data in the majorly hit Indian metropolitan states during the lockdown in contrast to 2019 levels. The overall AQI (air quality index) de-escalated by -31.35%, -34.35%, -32.63%, -29.25% in Delhi, Tamil Nadu, West Bengal, and Karnataka, respectively, from the 2019 levels. The daily concentrations of NO2, PM2.5, and PM10 plunged tremendously. The exact pre-disposing factors responsible for higher COVID-19 transmission in some geographical centers remain elusive. Investigations have corroborated putative links between air pollutants and COVID-19 mortalities. Therefore, we further mapped PM2.5, PM10, NO2, and SO2 to co-relate with COVID-19 infectivity and mortality across the study states. Significant (P < 0.001) positive correlation between COVID-19 transmission was established for all pollutants with maximum co-relation with AQI followed by NO2. River Ganga water in Uttarakhand was deemed "fit for drinking" for the first time in two decades. An aggregate of -71.94, -61.32, and -77.94 decrease in BOD, COD, total coliform levels, and an 11.75 rise in the average DO levels from 2019 data. This study will better assist the future framework of health and environment restoration policies.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , Communicable Disease Control , Environmental Monitoring , Environmental Pollution , Humans , India , Particulate Matter/analysis , SARS-CoV-2
9.
Int J Environ Res Public Health ; 19(1)2021 12 28.
Article in English | MEDLINE | ID: covidwho-1580801

ABSTRACT

Sustainable Urban Mobility Plans (SUMP) are increasingly popular planning tools in cities with environmental issues where numerous actions are usually proposed to reduce pollution from urban transport. However, the diagnosis and implementation of these processes requires broad consensus from all stakeholders and the ability to fit them into urban planning in such a way that it allows the proposals to become realistic actions. In this study, a review of the sustainable urban mobility plans of 47 cities in Spain during the last 15 years has been carried out, analyzing both the diagnosis and proposal of solutions and their subsequent implementation. From the results obtained, a new framework based on a structured hybrid methodology is proposed to aid decision-making for the evaluation of alternatives in the implementation of proposals in SUMP. This hybrid methodology considers experts' and stakeholders' opinion and applies two different multi-criteria decision making (MCDM) methods in different phases to present two rankings of best alternatives. From that experience, an analysis based on the MCDM methods called 'Sequential Interactive Modelling for Urban Systems (SIMUS)' and weighted sum method (WSM) was applied to a case study of the city of Cartagena, a southeastern middle-size city in Spain. This analytic proposal has been transferred to the practical field in the SUMP of Cartagena, the first instrument of this nature developed after COVID-19 in Spain for a relevant city. The results show how this framework, based on a hybrid methodology, allows the development of complex decision mapping processes using these instruments without obviating the need to generate planning tools that can be transferred from the theoretical framework of urban reality.


Subject(s)
COVID-19 , Cities , City Planning , Environmental Pollution , Humans , SARS-CoV-2
10.
Sci Total Environ ; 809: 151657, 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1521525

ABSTRACT

The impacts of COVID-19 on global environmental pollution since its onset in December 2019 require special attention. The rapid spread of COVID-19 globally has led countries to lock down cities, restrict traffic travel and impose strict safety measures, all of which have implications on the environment. This review aims to systematically and comprehensively present and analyze the positive and negative impacts of COVID-19 on global environmental pollution and carbon emissions. It also aims to propose strategies to prolong the beneficial, while minimize the adverse environmental impacts of COVID-19. It systematically and comprehensively reviewed more than 100 peer-reviewed papers and publications related to the impacts of COVID-19 on air, water and soil pollution, carbon emissions as well as the sustainable strategies forward. It revealed that PM2.5, PM10, NO2, and CO levels reduced in most regions globally but SO2 and O3 levels increased or did not show significant changes. Surface water, coastal water and groundwater quality improved globally during COVID-19 lockdown except few reservoirs and coastal areas. Soil contamination worsened mainly due to waste from the use of personal protective equipment particularly masks and the packaging, besides household waste. Carbon emissions were reduced primarily due to travel restrictions and less usage of utilities though emissions from certain ships did not change significantly to maintain supply of the essentials. Sustainable strategies post-COVID-19 include the development and adoption of nanomaterial adsorption and microbial remediation technologies, integrated waste management measures, "sterilization wave" technology and energy-efficient technologies. This review provides important insight and novel coverage of the environmental implications of COVID-19 in more than 25 countries across different global regions to permit formulation of specific pollution control and sustainability strategies in the COVID-19 and post-COVID-19 eras for better environmental quality and human health.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Air Pollution/prevention & control , Carbon , Cities , Communicable Disease Control , Environmental Monitoring , Environmental Pollution , Humans , Particulate Matter/analysis , SARS-CoV-2
11.
Int J Environ Res Public Health ; 18(21)2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1497261

ABSTRACT

The artificial light at night (ALAN) present in many cities and towns has a negative impact on numerous organisms that live alongside humans, including bats. Therefore, we investigated if the artificial illumination of the historic Wisloujscie Fortress in Gdansk, Poland (part of the Natura 2000 network), during nighttime events, which included an outdoor electronic dance music (EDM) festival, might be responsible for increased light pollution and the decline in recent years of the pond bat (Myotis dasycneme). An assessment of light pollution levels was made using the methods of geographical information system (GIS) and free-of-charge satellite remote sensing (SRS) technology. Moreover, this paper reviewed the most important approaches for environmental protection of bats in the context of ecological light pollution, including International, European, and Polish regulatory frameworks. The analysis of this interdisciplinary study confirmed the complexity of the problem and highlighted, too, the need for better control of artificial illumination in such sensitive areas. It also revealed that SRS was not the best light pollution assessment method for this particular case study due to several reasons listed in this paper. As a result, the authors' proposal for improvements also involved practical recommendations for devising suitable strategies for lighting research and practice in the Natura 2000 Wisloujscie Fortress site located adjacent to urban areas to reduce the potential negative impact of ALAN on bats and their natural habitats.


Subject(s)
Chiroptera , Animals , Conservation of Natural Resources , Ecosystem , Environmental Pollution , Humans , Lighting , Poland
12.
J Am Geriatr Soc ; 70(1): 29-39, 2022 01.
Article in English | MEDLINE | ID: covidwho-1480181

ABSTRACT

BACKGROUND: SARS-CoV-2 outbreaks in nursing homes (NHs) have been devastating and have led to the creation of coronavirus disease 2019 (COVID-19) units within NHs to care for affected patients. Frequency and persistence of SARS-CoV-2 environmental contamination in these units have not been studied. METHODS: A prospective cohort study was conducted between October 2020 and January 2021 in four Michigan NHs. Swabs from high-touch surfaces in COVID-19-infected patient rooms were obtained at enrollment and follow-up. Demographic and clinical data were collected from clinical records. Primary outcome of interest was the probability of SARS-CoV-2 RNA detection from specific environmental surfaces in COVID-19 patient rooms. We used multivariable logistic regression to assess patient risk factors for SARS-CoV-2 contamination. Pairwise Phi coefficients were calculated to measure correlation of site-specific environmental detection upon enrollment and during follow-up. RESULTS: One hundred and four patients with COVID-19 were enrolled (61.5% >80 years; 67.3% female; 89.4% non-Hispanic White; 51% short stay) and followed up for 241 visits. The study population had significant disabilities in activities of daily living (ADL; 81.7% dependent in four or more ADLs) and comorbidities, including dementia (55.8%), diabetes (40.4%), and heart failure (32.7%). Over the 3-month study period, 2087 swab specimens were collected (1896 COVID-19 patient rooms, 191 common areas). SARS-CoV-2 positivity was 28.4% (538/1896 swabs) on patient room surfaces and 3.7% (7/191 swabs) on common area surfaces. Nearly 90% (93/104) of patients had SARS-CoV-2 contamination in their room at least once. Environmental contamination upon enrollment correlated with contamination of the same site during follow-up. Functional independence increased the odds of proximate contamination. CONCLUSIONS: Environmental detection of viral RNA from surfaces in the rooms of COVID-19 patients is nearly universal and persistent; more investigation is needed to determine the implications of this for infectiousness. Patients with greater independence are more likely than fully dependent patients to contaminate their immediate environment.


Subject(s)
COVID-19 , Environmental Pollution/adverse effects , Infection Control , RNA, Viral , SARS-CoV-2/isolation & purification , Aged , Aged, 80 and over , COVID-19/prevention & control , COVID-19/therapy , Decontamination , Female , Humans , Male , Michigan , Nursing Homes , Prospective Studies , RNA, Viral/analysis
13.
BMC Public Health ; 21(1): 1694, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1477372

ABSTRACT

BACKGROUND: The COVID-19 pandemic has highlighted the need for the betterment of health status, while also considering health expenditure, energy, and environmental issues. This paper examines the nexus between health status and health expenditure (both public and private), energy consumption and environmental pollution in the SAARC-BIMSTEC region. METHODS: We utilized the panel autoregressive distributed lag (ARDL) model, the heterogeneous panel causality test, the cross sectional dependence test, the cointegration test and the Pesaran cross sectional dependent (CADF) unit root test for obtaining estimated results from data over 16 years (2002-2017). RESULTS: Our results authorize the cointegration among the variables used, where the coefficients of energy consumption, public and private health expenditures, and economic growth are 0.027, 0.014, 0.030, and 0.029, respectively, and indicating positive and statistically significant effects. The coefficient of environmental pollution is - 0.085, implying significant negative effect on the health status of these regions in the long-run. However, no panel wise significant impact is found in the short-run. Bidirectional and unidirectional causal links between the studied variables and the health status are also identified.. CONCLUSIONS: The improved health status in the SAARC-BIMSTEC region needs to be protected by articulating the effective policies. The attained results are theoretically and empirically consistent, and have important policy implications in the health sector.


Subject(s)
COVID-19 , Health Expenditures , Carbon Dioxide/analysis , Cross-Sectional Studies , Economic Development , Energy Metabolism , Environmental Pollution/analysis , Health Status , Humans , Pandemics , SARS-CoV-2
15.
PLoS Med ; 18(7): e1003699, 2021 07.
Article in English | MEDLINE | ID: covidwho-1457769

ABSTRACT

Modern medicine makes it possible for many people to live with multiple chronic diseases for decades, but this has enormous social, financial, and environmental consequences. Preclinical, epidemiological, and clinical trial data have shown that many of the most common chronic diseases are largely preventable with nutritional and lifestyle interventions that are targeting well-characterized signaling pathways and the symbiotic relationship with our microbiome. Most of the research priorities and spending for health are focused on finding new molecular targets for the development of biotech and pharmaceutical products. Very little is invested in mechanism-based preventive science, medicine, and education. We believe that overly enthusiastic expectations regarding the benefits of pharmacological research for disease treatment have the potential to impact and distort not only medical research and practice but also environmental health and sustainable economic growth. Transitioning from a primarily disease-centered medical system to a balanced preventive and personalized treatment healthcare system is key to reduce social disparities in health and achieve financially sustainable, universal health coverage for all. In this Perspective article, we discuss a range of science-based strategies, policies, and structural reforms to design an entire new disease prevention-centered science, educational, and healthcare system that maximizes both human and environmental health.


Subject(s)
Chronic Disease/prevention & control , Health Promotion , Interdisciplinary Research , Life Style , Delivery of Health Care , Environmental Pollution , Farms , Humans , Investments , Science/economics
16.
Eur J Clin Invest ; 51(12): e13682, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1434681

ABSTRACT

BACKGROUND: COVID-19 is generating clinical challenges, lifestyle changes, economic consequences. The pandemic imposes to familiarize with concepts as prevention, vulnerability and resilience. METHODS: We analysed and reviewed the most relevant papers in the MEDLINE database on syndemic, noncommunicable diseases, pandemic, climate changes, pollution, resilience, vulnerability, health costs, COVID-19. RESULTS: We discuss that comprehensive strategies must face multifactorial consequences since the pandemic becomes syndemic due to interactions with noncommunicable diseases, climate changes and iniquities. The lockdown experience, on the other hand, demonstrates that it is rapidly possible to reverse epidemiologic trends and to reduce pollution. The worst outcome is evident in eight highly industrialized nations, where 12% of the world population experienced about one-third of all COVID-19-deaths worldwide. Thus, a great economic power has not been fully protective, and a change of policy is obviously needed to avoid irreversible consequences. CONCLUSIONS: We are accumulating unhealthy populations living in unhealthy environments and generating unhealthy offspring. The winning policy should tackle structural inequities through a syndemic approach, to protect vulnerable populations from present and future harms.


Subject(s)
COVID-19/epidemiology , Climate Change , Environmental Pollution , Noncommunicable Diseases/epidemiology , Public Policy , Socioeconomic Factors , Syndemic , COVID-19/mortality , Disease Susceptibility , Environmental Policy , Health Care Costs , Health Policy , Humans , Noncommunicable Diseases/mortality , Quarantine , SARS-CoV-2
17.
Environ Res ; 202: 111763, 2021 11.
Article in English | MEDLINE | ID: covidwho-1330805

ABSTRACT

Environmental contamination caused by COVID-19 patients could be a medium of transmission. Previous reports of SARS-CoV-2 in environmental surfaces were about short-term contamination. This study investigated SARS-CoV-2 RNA existence in room-temperature and low-temperature environments long after exposure (>28 days). A department store, where a COVID-19 outbreak was occurred in January 2020 (the epicenter of 43 COVID-19 patients), and a patient's apartment were included as room-temperature environments after being blocked for 57 days and 48 days, respectively. Seven cold storages and imported frozen foods inside were included as low-temperature environments (under -18 °C). Twenty food markets with potential contamination of imported frozen foods were also included to study the consecutive contamination. Information about temperature, relative humidity, and the number of days of environmental samples since the last exposure was collected and analyzed. In sum, 11,808 swab samples were collected before disinfection, of which 35 samples were positive. Persistent contamination of SARS-CoV-2 RNA was identified in the apartment (6/19), the department store (3/50), food packages in cold storages (23/1360), environmental surfaces of cold storages (2/345), and a package in the food market (1/10,034). Two positive samples were isolated from the bathroom of the apartment (66.7 %, 2/3), and doorknobs were proved with contamination in the apartment (40 %, 2/5) and cold storage (33.3 %, 1/3). The epidemiology information and environmental contamination results of an imported frozen food related COVID-19 case (138th COVID-19 patient in Tianjin) were analyzed. Based on the Ct values, the number of copies of two target genes was calculated by standard curves and linear regressions. In conclusion, SARS-CoV-2 RNA can be detected in room-temperature environments at least 57 days after the last exposure, much longer than previous reports. Based on the results of this study and previous studies, infectious SARS-CoV-2 could exist for at least 60 days on the surface of cold-chain food packages. Doorknobs and toilets (bathrooms) were important positions in COVID-19 control. High-risk populations of cold-chain-related logistic operations, such as porters, require strict prevention and high-level personal protection.


Subject(s)
COVID-19 , SARS-CoV-2 , Disinfection , Environmental Pollution , Humans , RNA, Viral
18.
Sci Rep ; 11(1): 11119, 2021 05 27.
Article in English | MEDLINE | ID: covidwho-1328852

ABSTRACT

To analyse the cause of the atmospheric PM2.5 pollution that occurred during the COVID-19 lockdown in Nanning, Guangxi, China, a single particulate aerosol mass spectrometer, aethalometer, and particulate Lidar coupled with monitoring near-surface gaseous pollutants, meteorological conditions, remote fire spot sensing by satellite and backward trajectory models were utilized during 18-24 February 2020. Three haze stages were identified: the pre-pollution period (PPP), pollution accumulation period (PAP) and pollution dissipation period (PDP). The dominant source of PM2.5 in the PPP was biomass burning (BB) (40.4%), followed by secondary inorganic sources (28.1%) and motor vehicle exhaust (11.7%). The PAP was characterized by a large abundance of secondary inorganic sources, which contributed 56.1% of the total PM2.5 concentration, followed by BB (17.4%). The absorption Ångström exponent (2.2) in the PPP was higher than that in the other two periods. Analysis of fire spots monitored by remote satellite sensing indicated that open BB in regions around Nanning City could be one of the main factors. A planetary boundary layer-relative humidity-secondary particle matter-particulate matter positive feedback mechanism was employed to elucidate the atmospheric processes in this study. This study highlights the importance of understanding the role of BB, secondary inorganic sources and meteorology in air pollution formation and calls for policies for emission control strategies.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Gases/analysis , Particulate Matter/analysis , Biomass , COVID-19 , China , Dust/analysis , Environmental Monitoring/instrumentation , Environmental Pollution/analysis , Mass Spectrometry/instrumentation , Meteorology , Vehicle Emissions/analysis
19.
Sci Rep ; 11(1): 15110, 2021 07 23.
Article in English | MEDLINE | ID: covidwho-1322504

ABSTRACT

The lockdown measures that were taken to combat the COVID-19 pandemic minimized anthropogenic activities and created natural laboratory conditions for studying air quality. Both observations and WRF-Chem simulations show a 20-50% reduction (compared to pre-lockdown and same period of previous year) in the concentrations of most aerosols and trace gases over Northwest India, the Indo Gangetic Plain (IGP), and the Northeast Indian regions. It is shown that this was mainly due to a 70-80% increase in the height of the boundary layer and the low emissions during lockdown. However, a 60-70% increase in the pollutants levels was observed over Central and South India including the Arabian sea and Bay of Bengal during this period, which is attributed to natural processes. Elevated (dust) aerosol layers are transported from the Middle East and Africa via long-range transport, and a decrease in the wind speed (20-40%) caused these aerosols to stagnate, enhancing the aerosol levels over Central and Southern India. A 40-60% increase in relative humidity further amplified aerosol concentrations. The results of this study suggest that besides emissions, natural processes including background meteorology and dynamics, play a crucial role in the pollution concentrations over the Indian sub-continent.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Vehicle Emissions/analysis , Aerosols/analysis , Africa , Bays , COVID-19 , Communicable Disease Control , Correlation of Data , Dust/analysis , Environmental Pollution/analysis , Humans , India , Meteorology , Middle East , Oceans and Seas , Pandemics
20.
Environ Sci Pollut Res Int ; 28(34): 46085-46088, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1310604

ABSTRACT

INTRODUCTION: In the developing countries, the pace of change-in vital technologies, in scientific research, in economic fundamentals, in the living environment, and in pursuing quality of life-is accelerating every day, propelled by continuous changes in technology innovation, human activities, and the rapidly evolving demands of the COVID-19 pandemic. This special issue (SI) of Environmental Science and Pollution Research (ESPR) collected 17 peer-reviewed articles relating to green buildings research, the impact of climate change on the extreme weather events, forward osmosis membranes for water reuse, the impacts of human activities to fragile water environments and economy, air pollution control and carbon emission reduction, risk assessment of pollution hazard and water resources, adsorption reaction of antibiotic pollution in subsurface, synthesized novel adsorptive materials in response to nitrogen and phosphorus, dye, and toluene pollution. All selected papers were relevance to the theme of this SI and formally presented at the 2020 5th International Conference on Advances in Energy and Environment Research (ICAEER 2020) on September 18th-20th, 2020, Shanghai, China. For the safety of the participants, ICAEER 2020 was held via online presentation because of the coronavirus pandemic sweeping across all over the world. As an annually held conference, the upcoming 6th ICAEER 2021 is scheduled held in Shanghai from September 10 to 12, 2021 ( http://www.icaeer.org/index.html ). The guest editor (GE) of this SI welcomes you all to participate in this conference.


Subject(s)
Air Pollution , COVID-19 , Air Pollution/analysis , China , Developing Countries , Environmental Pollution , Humans , Pandemics , Quality of Life , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL