Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 210
Filter
2.
Influenza Other Respir Viruses ; 16(3): 542-551, 2022 05.
Article in English | MEDLINE | ID: covidwho-1784668

ABSTRACT

BACKGROUND: Zanamivir is a neuraminidase inhibitor effective against influenza A and B viruses. In 2009, GlaxoSmithKline (GSK) began clinical development of intravenous (IV) zanamivir and initiated a global Compassionate Use Program (CUP) in response to the evolving H1N1 global pandemic. The goal of the CUP was to provide zanamivir to critically ill patients with limited treatment options. METHODS: Zanamivir was administered to patients with suspected or confirmed influenza infection who were not suitable for other approved antiviral treatments. Reporting of serious adverse events (SAEs) was mandatory and recorded in the GSK safety database. A master summary tracking sheet captured requests and patient characteristics. A case report form was available for detailing medical conditions, dosing, treatment duration, and clinical outcomes. RESULTS: In total, 4,033 requests were made for zanamivir treatment of hospitalized patients from 38 countries between 2009 and 2019; ≥95% patients received zanamivir via the IV route. Europe had the highest number of requests (n = 3,051) followed by North America (n = 713). At least 20 patients were aged ≤6 months, of whom 12 were born prematurely. The GSK safety database included 466 patients with ≥1 SAE, of whom 374 (80%) had a fatal outcome. Drug-related SAEs were reported in 41 (11%) patients, including hepatic failure (n = 6 [2%]) and acute kidney injury (n = 5 [1%)]. CONCLUSIONS: The CUP facilitated global access to zanamivir prior to product approval. No new safety concerns were identified in the CUP compared with IV zanamivir clinical studies.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Antiviral Agents/adverse effects , Compassionate Use Trials , Enzyme Inhibitors/adverse effects , Humans , Infant , Influenza, Human/drug therapy , Neuraminidase , Oseltamivir/therapeutic use , Zanamivir/adverse effects
4.
Molecules ; 27(7)2022 Mar 31.
Article in English | MEDLINE | ID: covidwho-1785838

ABSTRACT

Obesity is the most common nutritional disorder in the developed world and is associated with important comorbidities. Pancreatic lipase (PL) inhibitors play a key role in the metabolism of human fat. A series of novel epoxyketones peptide derivatives were investigated for their pancreatic lipase inhibitory activity. The epoxyketone moiety is a well-known reactive electrophile group that has been used as part of proteasome inhibitors in cancer therapy, and it is widely believed that these are very selective for targeting the proteasome active site. Here we investigated various peptide derivatives with an epoxide warhead for their anti-lipase activity. The assessment of these novel epoxyketones was performed by an in-house method that we developed for rapid screening and identification of lipase inhibitors using GC-FID. Herein, we present a novel anti-lipase pharmacophore based on epoxyketone peptide derivatives that showed potent anti-lipase activity. Many of these derivatives had comparable or more potent activity than the clinically used lipase inhibitors such as orlistat. In addition, the lipase appears to be inhibited by a wide range of epoxyketone analogues regardless of the configuration of the epoxide in the epoxyketone moiety. The presented data in this study shows the first example of the use of epoxyketone peptides as novel lipase inhibitors.


Subject(s)
Peptides , Proteasome Inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Epoxy Compounds/pharmacology , Humans , Lipase , Peptides/chemistry , Peptides/pharmacology , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/chemistry
5.
Int J Environ Res Public Health ; 19(5)2022 03 04.
Article in English | MEDLINE | ID: covidwho-1736922

ABSTRACT

Flu is a serious health, medical, and economic problem, but no therapy is yet available that has satisfactory results and reduces the occurrence of these problems. Nearly 20 years after the registration of the previous therapy, baloxavir marboxil, a drug with a new mechanism of action, recently appeared on the market. This is a promising step in the fight against the influenza virus. This article presents the possibilities of using all available antiviral drugs specific for influenza A and B. We compare all currently recommended anti-influenza medications, considering their mechanisms of action, administration, indications, target groups, effectiveness, and safety profiles. We demonstrate that baloxavir marboxil presents a similar safety and efficacy profile to those of drugs already used in the treatment of influenza. Further research on combination therapy is highly recommended and may have promising results.


Subject(s)
Influenza, Human , Antiviral Agents/therapeutic use , Enzyme Inhibitors , Humans , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Neuraminidase/therapeutic use , Pyridones
6.
Int J Mol Sci ; 23(3)2022 Feb 08.
Article in English | MEDLINE | ID: covidwho-1674674

ABSTRACT

Preventing the cytokine storm observed in COVID-19 is a crucial goal for reducing the occurrence of severe acute respiratory failure and improving outcomes. Here, we identify Aldo-Keto Reductase 1B10 (AKR1B10) as a key enzyme involved in the expression of pro-inflammatory cytokines. The analysis of transcriptomic data from lung samples of patients who died from COVID-19 demonstrates an increased expression of the gene encoding AKR1B10. Measurements of the AKR1B10 protein in sera from hospitalised COVID-19 patients suggests a significant link between AKR1B10 levels and the severity of the disease. In macrophages and lung cells, the over-expression of AKR1B10 induces the expression of the pro-inflammatory cytokines Interleukin-6 (IL-6), Interleukin-1ß (IL-1ß) and Tumor Necrosis Factor a (TNFα), supporting the biological plausibility of an AKR1B10 involvement in the COVID-19-related cytokine storm. When macrophages were stressed by lipopolysaccharides (LPS) exposure and treated by Zopolrestat, an AKR1B10 inhibitor, the LPS-induced production of IL-6, IL-1ß, and TNFα is significantly reduced, reinforcing the hypothesis that the pro-inflammatory expression of cytokines is AKR1B10-dependant. Finally, we also show that AKR1B10 can be secreted and transferred via extracellular vesicles between different cell types, suggesting that this protein may also contribute to the multi-organ systemic impact of COVID-19. These experiments highlight a relationship between AKR1B10 production and severe forms of COVID-19. Our data indicate that AKR1B10 participates in the activation of cytokines production and suggest that modulation of AKR1B10 activity might be an actionable pharmacological target in COVID-19 management.


Subject(s)
Aldo-Keto Reductases/physiology , COVID-19/genetics , Cytokine Release Syndrome/genetics , Respiratory Distress Syndrome/genetics , Aldo-Keto Reductases/antagonists & inhibitors , Aldo-Keto Reductases/genetics , Animals , COVID-19/complications , COVID-19/metabolism , COVID-19/pathology , Case-Control Studies , Cells, Cultured , Cytokine Release Syndrome/metabolism , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Cytokines/metabolism , Enzyme Inhibitors/pharmacology , Humans , Macrophages/drug effects , Macrophages/metabolism , Mice , Patient Acuity , RAW 264.7 Cells , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , SARS-CoV-2/physiology , Transcriptome
7.
Nat Commun ; 13(1): 621, 2022 02 02.
Article in English | MEDLINE | ID: covidwho-1671551

ABSTRACT

The guanosine analog AT-527 represents a promising candidate against Severe Acute Respiratory Syndrome coronavirus type 2 (SARS-CoV-2). AT-527 recently entered phase III clinical trials for the treatment of COVID-19. Once in cells, AT-527 is converted into its triphosphate form, AT-9010, that presumably targets the viral RNA-dependent RNA polymerase (RdRp, nsp12), for incorporation into viral RNA. Here we report a 2.98 Å cryo-EM structure of the SARS-CoV-2 nsp12-nsp7-nsp82-RNA complex, showing AT-9010 bound at three sites of nsp12. In the RdRp active-site, one AT-9010 is incorporated at the 3' end of the RNA product strand. Its modified ribose group (2'-fluoro, 2'-methyl) prevents correct alignment of the incoming NTP, in this case a second AT-9010, causing immediate termination of RNA synthesis. The third AT-9010 is bound to the N-terminal domain of nsp12 - known as the NiRAN. In contrast to native NTPs, AT-9010 is in a flipped orientation in the active-site, with its guanine base unexpectedly occupying a previously unnoticed cavity. AT-9010 outcompetes all native nucleotides for NiRAN binding, inhibiting its nucleotidyltransferase activity. The dual mechanism of action of AT-527 at both RdRp and NiRAN active sites represents a promising research avenue against COVID-19.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Guanosine Monophosphate/analogs & derivatives , Phosphoramides/chemistry , Phosphoramides/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/enzymology , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism , COVID-19/virology , Cryoelectron Microscopy , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Guanosine Monophosphate/chemistry , Guanosine Monophosphate/pharmacology , Humans , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Viral Proteins/genetics
8.
J Microbiol ; 60(3): 347-354, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1652455

ABSTRACT

Coronavirus disease (COVID-19) can cause critical conditions that require efficient therapeutics. Several medicines are derived from plants, and researchers are seeking natural compounds to ameliorate the symptoms of COVID-19. Viral enzymes are popular targets of antiviral medicines; the genome of coronaviruses encodes several enzymes, including RNA-dependent RNA polymerase and viral proteases. Various screening systems have been developed to identify potential inhibitors. In this review, we describe the natural compounds that have been shown to exert inhibitory effects on coronavirus enzymes. Although computer-aided molecular structural studies have predicted several antiviral compound candidates, the current review focuses on experimentally proven natural compounds.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 , Enzyme Inhibitors , Phytochemicals/pharmacology , COVID-19/drug therapy , Enzyme Inhibitors/pharmacology , Humans , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
9.
Am J Physiol Heart Circ Physiol ; 322(2): H319-H327, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1613119

ABSTRACT

Vascular dysfunction has been reported in adults who have recovered from COVID-19. To date, no studies have investigated the underlying mechanisms of persistent COVID-19-associated vascular dysfunction. Our purpose was to quantify nitric oxide (NO)-mediated vasodilation in healthy adults who have recovered from SARS-CoV-2 infection. We hypothesized that COVID-19-recovered adults would have impaired NO-mediated vasodilation compared with adults who have not had COVID-19. In methods, we performed a cross-sectional study including 10 (5 men/5 women, 24 ± 4 yr) healthy control (HC) adults who were unvaccinated for COVID-19, 11 (4 men/7 women, 25 ± 6 yr) healthy vaccinated (HV) adults, and 12 (5 men/7 women, 22 ± 3 yr) post-COVID-19 (PC, 19 ± 14 wk) adults. COVID-19 symptoms severity (survey) was assessed. A standardized 39°C local heating protocol was used to assess NO-dependent vasodilation via perfusion (intradermal microdialysis) of 15 mM NG-nitro-l-arginine methyl ester during the plateau of the heating response. Red blood cell flux was measured (laser-Doppler flowmetry) and cutaneous vascular conductance (CVC = flux/mmHg) was expressed as a percentage of maximum (28 mM sodium nitroprusside + 43°C). In results, the local heating plateau (HC: 61 ± 20%, HV: 60 ± 19%, PC: 67 ± 19%, P = 0.80) and NO-dependent vasodilation (HC: 77 ± 9%, HV: 71 ± 7%, PC: 70 ± 10%, P = 0.36) were not different among groups. Neither symptom severity (25 ± 12 AU) nor time since diagnosis correlated with the NO-dependent vasodilation (r = 0.46, P = 0.13; r = 0.41, P = 0.19, respectively). In conclusion, healthy adults who have had mild-to-moderate COVID-19 do not have altered NO-mediated cutaneous microvascular function.NEW & NOTEWORTHY Healthy young adults who have had mild-to-moderate COVID-19 do not display alterations in nitric oxide-mediated cutaneous microvascular function. In addition, healthy young adults who have COVID-19 antibodies from the COVID-19 vaccinations do not display alterations in nitric oxide-mediated cutaneous microvascular function.


Subject(s)
COVID-19/physiopathology , Microcirculation/physiology , Skin/blood supply , Vasodilation/physiology , Adult , COVID-19/metabolism , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Case-Control Studies , Enzyme Inhibitors/pharmacology , Female , Humans , Laser-Doppler Flowmetry , Male , Microcirculation/drug effects , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , SARS-CoV-2 , Severity of Illness Index , Vasodilation/drug effects , Young Adult
10.
Science ; 372(6547): 1169-1175, 2021 06 11.
Article in English | MEDLINE | ID: covidwho-1583231

ABSTRACT

Emergent resistance to all clinical antibiotics calls for the next generation of therapeutics. Here we report an effective antimicrobial strategy targeting the bacterial hydrogen sulfide (H2S)-mediated defense system. We identified cystathionine γ-lyase (CSE) as the primary generator of H2S in two major human pathogens, Staphylococcus aureus and Pseudomonas aeruginosa, and discovered small molecules that inhibit bacterial CSE. These inhibitors potentiate bactericidal antibiotics against both pathogens in vitro and in mouse models of infection. CSE inhibitors also suppress bacterial tolerance, disrupting biofilm formation and substantially reducing the number of persister bacteria that survive antibiotic treatment. Our results establish bacterial H2S as a multifunctional defense factor and CSE as a drug target for versatile antibiotic enhancers.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cystathionine gamma-Lyase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Hydrogen Sulfide/metabolism , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Biofilms , Crystallography, X-Ray , Cystathionine gamma-Lyase/chemistry , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Drug Discovery , Drug Resistance, Bacterial , Drug Synergism , Drug Tolerance , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/enzymology , Staphylococcus aureus/genetics , Staphylococcus aureus/growth & development
11.
Neuropharmacology ; 207: 108935, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1586929

ABSTRACT

AIMS: Acetaminophen or paracetamol (PAR), the recommended antipyretic in COVID-19 and clinically used to alleviate stroke-associated hyperthermia interestingly activates cannabinoid receptor (CB1) through its AM404 metabolite, however, to date, no study reports the in vivo activation of PAR/AM404/CB1 axis in stroke. The current study deciphers the neuroprotective effect off PAR in cerebral ischemia/reperfusion (IR) rat model and unmasks its link with AM404/CB1/PI3K/Akt axis. MATERIALS AND METHODS: Animals were allocated into 5 groups: (I) sham-operated (SO), (II) IR, (III) IR + PAR (100 mg/kg), (IV) IR + PAR (100 mg/kg) + URB597; anandamide degradation inhibitor (0.3 mg/kg) and (V) IR + PAR (100 mg/kg) + AM4113; CB1 Blocker (5 mg/kg). All drugs were intraperitoneally administered at the inception of the reperfusion period. KEY FINDINGS: PAR administration alleviated the cognitive impairment in the Morris Water Maze as well as hippocampal histopathological and immunohistochemical examination of GFAP. The PAR signaling was associated with elevation of anandamide level, CB1 receptor expression and survival proteins as pS473-Akt. P(tyr202/thr204)-ERK1/2 and pS9-GSK3ß. Simultaneously, PAR increased hippocampal BDNF and ß-arrestin1 levels and decreased glutamate level. PAR restores the deranged redox milieu induced by IR Injury, by reducing lipid peroxides, myeloperoxidase activity and NF-κB and increasing NPSH, total antioxidant capacity, nitric oxide and Nrf2 levels. The pre-administration of AM4113 reversed PAR effects, while URB597 potentiated them. SIGNIFICANCE: PAR poses a significant neuroprotective effect which may be mediated, at least in part, via activation of anandamide/CB1/PI3K/Akt pathway in the IR rat model.


Subject(s)
Acetaminophen/pharmacology , Antipyretics/pharmacology , Benzamides/pharmacology , Carbamates/pharmacology , Enzyme Inhibitors/pharmacology , Hippocampus/drug effects , Phosphatidylinositol 3-Kinases/drug effects , Proto-Oncogene Proteins c-akt/drug effects , Receptor, Cannabinoid, CB1/metabolism , Reperfusion Injury/metabolism , Amidohydrolases/antagonists & inhibitors , Animals , Arachidonic Acids/metabolism , Cannabinoid Receptor Antagonists/pharmacology , Endocannabinoids/metabolism , Hippocampus/blood supply , Hippocampus/metabolism , Hippocampus/physiopathology , Phosphatidylinositol 3-Kinases/metabolism , Polyunsaturated Alkamides/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Reperfusion Injury/physiopathology
12.
J Am Chem Soc ; 143(49): 20697-20709, 2021 12 15.
Article in English | MEDLINE | ID: covidwho-1550253

ABSTRACT

The main protease (Mpro) is a validated antiviral drug target of SARS-CoV-2. A number of Mpro inhibitors have now advanced to animal model study and human clinical trials. However, one issue yet to be addressed is the target selectivity over host proteases such as cathepsin L. In this study we describe the rational design of covalent SARS-CoV-2 Mpro inhibitors with novel cysteine reactive warheads including dichloroacetamide, dibromoacetamide, tribromoacetamide, 2-bromo-2,2-dichloroacetamide, and 2-chloro-2,2-dibromoacetamide. The promising lead candidates Jun9-62-2R (dichloroacetamide) and Jun9-88-6R (tribromoacetamide) had not only potent enzymatic inhibition and antiviral activity but also significantly improved target specificity over caplain and cathepsins. Compared to GC-376, these new compounds did not inhibit the host cysteine proteases including calpain I, cathepsin B, cathepsin K, cathepsin L, and caspase-3. To the best of our knowledge, they are among the most selective covalent Mpro inhibitors reported thus far. The cocrystal structures of SARS-CoV-2 Mpro with Jun9-62-2R and Jun9-57-3R reaffirmed our design hypothesis, showing that both compounds form a covalent adduct with the catalytic C145. Overall, these novel compounds represent valuable chemical probes for target validation and drug candidates for further development as SARS-CoV-2 antivirals.


Subject(s)
Acetamides/pharmacology , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Cathepsin L/antagonists & inhibitors , Drug Design , Drug Discovery , Enzyme Inhibitors/pharmacology , Humans , Models, Molecular , Molecular Dynamics Simulation , Structure-Activity Relationship , Substrate Specificity
13.
Xenobiotica ; 52(2): 152-164, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1541325

ABSTRACT

Emvododstat was identified as a potent inhibitor of dihydroorotate dehydrogenase and is now in clinical development for the treatment of acute myeloid leukaemia and COVID-19. The objective of this paper is to evaluate the metabolism, pharmacokinetics, and drug interaction potentials of emvododstat.Emvododstat showed high binding to plasma protein with minimal distribution into blood cells in mouse, rat, dog, monkey, and human whole blood.O-Demethylation followed by glucuronidation appeared to be the major metabolic pathway in rat, dog, monkey, and human hepatocytes. CYP2C8, 2C19, 2D6, and 3A4 were involved in O-desmethyl emvododstat metabolite formation. Both emvododstat and O-desmethyl emvododstat inhibited CYP2D6 activity and induced CYP expression to different extents in vitro.Emvododstat and O-desmethyl emvododstat inhibited BCRP transporter activity but did not inhibit bile salt transporters and other efflux or uptake transporters. Neither emvododstat nor O-desmethyl emvododstat was a substrate for common efflux or uptake transporters investigated.Emvododstat is bioavailable in mice, rats, dogs, and monkeys following a single oral dose. The absorption was generally slow with the mean plasma Tmax ranging from 2 to 5 h; plasma exposure of O-desmethyl emvododstat was lower in rodents, but relatively higher in dogs and monkeys.


Subject(s)
COVID-19 , Microsomes, Liver , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Animals , Carbamates , Carbazoles , Dogs , Drug Interactions , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Membrane Transport Proteins/metabolism , Mice , Microsomes, Liver/metabolism , Neoplasm Proteins/metabolism , Rats
14.
Pharmacol Res ; 172: 105820, 2021 10.
Article in English | MEDLINE | ID: covidwho-1531713

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which enter the host cells through the interaction between its receptor binding domain (RBD) of spike glycoprotein with angiotensin-converting enzyme 2 (ACE2) receptor on the plasma membrane of host cell. Neutralizing antibodies and peptide binders of RBD can block viral infection, however, the concern of accessibility and affordability of viral infection inhibitors has been raised. Here, we report the identification of natural compounds as potential SARS-CoV-2 entry inhibitors using the molecular docking-based virtual screening coupled with bilayer interferometry (BLI). From a library of 1871 natural compounds, epigallocatechin gallate (EGCG), 20(R)-ginsenoside Rg3 (RRg3), 20(S)-ginsenoside Rg3 (SRg3), isobavachalcone (Ibvc), isochlorogenic A (IscA) and bakuchiol (Bkc) effectively inhibited pseudovirus entry at concentrations up to 100 µM. Among these compounds, four compounds, EGCG, Ibvc, salvianolic acid A (SalA), and isoliensinine (Isl), were effective in inhibiting SARS-CoV-2-induced cytopathic effect and plaque formation in Vero E6 cells. The EGCG was further validated with no observable animal toxicity and certain antiviral effect against SARS-CoV-2 pseudovirus mutants (D614G, N501Y, N439K & Y453F). Interestingly, EGCG, Bkc and Ibvc bind to ACE2 receptor in BLI assay, suggesting a dual binding to RBD and ACE2. Current findings shed some insight into identifications and validations of SARS-CoV-2 entry inhibitors from natural compounds.


Subject(s)
Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Antiviral Agents/chemistry , Biological Products/chemistry , COVID-19/drug therapy , Enzyme Inhibitors/chemistry , SARS-CoV-2/enzymology , Spike Glycoprotein, Coronavirus/metabolism , Animals , Antiviral Agents/pharmacology , Binding, Competitive , Biological Products/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Chalcones/pharmacology , Chlorogenic Acid/analogs & derivatives , Chlorogenic Acid/pharmacology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Ginsenosides/pharmacology , Humans , Interferometry , Mice, Inbred C57BL , Molecular Dynamics Simulation , Phenols/pharmacology , Protein Binding
15.
Mol Cell ; 82(1): 15-29, 2022 01 06.
Article in English | MEDLINE | ID: covidwho-1525902

ABSTRACT

Deubiquitinases (DUBs) are specialized proteases that remove ubiquitin from substrates or cleave within ubiquitin chains to regulate ubiquitylation and therefore play important roles in eukaryotic biology. Dysregulation of DUBs is implicated in several human diseases, highlighting the importance of DUB function. In addition, many pathogenic bacteria and viruses encode and deploy DUBs to manipulate host immune responses and establish infectious diseases in humans and animals. Hence, therapeutic targeting of DUBs is an increasingly explored area that requires an in-depth mechanistic understanding of human and pathogenic DUBs. In this review, we summarize the multiple layers of regulation that control autoinhibition, activation, and substrate specificity of DUBs. We discuss different strategies to inhibit DUBs and the progress in developing selective small-molecule DUB inhibitors. Finally, we propose a classification system of DUB inhibitors based on their mode of action.


Subject(s)
COVID-19 , Deubiquitinating Enzymes , Enzyme Inhibitors/therapeutic use , SARS-CoV-2 , Ubiquitination/drug effects , COVID-19/drug therapy , COVID-19/enzymology , Deubiquitinating Enzymes/antagonists & inhibitors , Deubiquitinating Enzymes/metabolism , Humans
16.
Clin Epigenetics ; 13(1): 187, 2021 10 11.
Article in English | MEDLINE | ID: covidwho-1526657

ABSTRACT

BACKGROUND: SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) receptors for entry into cells, and the serine protease TMPRSS2 for S protein priming. Inhibition of protease activity or the engagement with ACE2 and NRP1 receptors has been shown to be an effective strategy for blocking infectivity and viral spreading. Valproic acid (VPA; 2-propylpentanoic acid) is an epigenetic drug approved for clinical use. It produces potent antiviral and anti-inflammatory effects through its function as a histone deacetylase (HDAC) inhibitor. Here, we propose VPA as a potential candidate to tackle COVID-19, in which rapid viral spread and replication, and hyperinflammation are crucial elements. RESULTS: We used diverse cell lines (HK-2, Huh-7, HUVEC, Caco-2, and BEAS-2B) to analyze the effect of VPA and other HDAC inhibitors on the expression of the ACE-2 and NRP-1 receptors and their ability to inhibit infectivity, viral production, and the inflammatory response. Treatment with VPA significantly reduced expression of the ACE2 and NRP1 host proteins in all cell lines through a mechanism mediated by its HDAC inhibitory activity. The effect is maintained after SARS-CoV-2 infection. Consequently, the treatment of cells with VPA before infection impairs production of SARS-CoV-2 infectious viruses, but not that of other ACE2- and NRP1-independent viruses (VSV and HCoV-229E). Moreover, the addition of VPA 1 h post-infection with SARS-CoV-2 reduces the production of infectious viruses in a dose-dependent manner without significantly modifying the genomic and subgenomic messenger RNAs (gRNA and sg mRNAs) or protein levels of N protein. The production of inflammatory cytokines (TNF-α and IL-6) induced by TNF-α and SARS-CoV-2 infection is diminished in the presence of VPA. CONCLUSIONS: Our data showed that VPA blocks three essential processes determining the severity of COVID-19. It downregulates the expression of ACE2 and NRP1, reducing the infectivity of SARS-CoV-2; it decreases viral yields, probably because it affects virus budding or virions stability; and it dampens the triggered inflammatory response. Thus, administering VPA could be considered a safe treatment for COVID-19 patients until vaccines have been rolled out across the world.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/prevention & control , Epigenesis, Genetic/physiology , Neuropilin-1/genetics , Receptors, Virus/drug effects , Valproic Acid/pharmacology , Angiotensin-Converting Enzyme 2/drug effects , Antiviral Agents/pharmacology , Cells, Cultured , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/genetics , Humans , Neuropilin-1/drug effects , SARS-CoV-2
17.
Int J Mol Sci ; 22(20)2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1470891

ABSTRACT

SARS-CoV-2, or severe acute respiratory syndrome coronavirus 2, represents a new pathogen from the family of Coronaviridae that caused a global pandemic of COVID-19 disease. In the absence of effective antiviral drugs, research of novel therapeutic targets such as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) becomes essential. This viral protein is without a human counterpart and thus represents a unique prospective drug target. However, in vitro biological evaluation testing on RdRp remains difficult and is not widely available. Therefore, we prepared a database of commercial small-molecule compounds and performed an in silico high-throughput virtual screening on the active site of the SARS-CoV-2 RdRp using ensemble docking. We identified a novel thioether-amide or guanidine-linker class of potential RdRp inhibitors and calculated favorable binding free energies of representative hits by molecular dynamics simulations coupled with Linear Interaction Energy calculations. This innovative procedure maximized the respective phase-space sampling and yielded non-covalent inhibitors representing small optimizable molecules that are synthetically readily accessible, commercially available as well as suitable for further biological evaluation and mode of action studies.


Subject(s)
Antiviral Agents/chemistry , Enzyme Inhibitors/chemistry , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/enzymology , Viral Proteins/antagonists & inhibitors , Amides/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Binding Sites , COVID-19/drug therapy , COVID-19/virology , Catalytic Domain , Databases, Chemical , Drug Design , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/therapeutic use , Guanidine/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , RNA-Dependent RNA Polymerase/metabolism , SARS-CoV-2/isolation & purification , Structure-Activity Relationship , Sulfides/chemistry , Thermodynamics , Viral Proteins/metabolism
18.
Eur J Pharmacol ; 911: 174560, 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1458663

ABSTRACT

The global incidence of respiratory diseases and complications is increasing. Therefore, new methods of treatment, as well as prevention, need to be investigated. A group of compounds that should be considered for use in respiratory diseases is cannabinoids. There are three groups of cannabinoids - plant-derived phytocannabinoids, synthetic cannabinoids, and endogenous endocannabinoids including the enzymes responsible for their synthesis and degradation. All cannabinoids exert their biological effects through either type 1 cannabinoid receptors (CB1) and/or type 2 cannabinoid receptors (CB2). In numerous studies (in vitro and in vivo), cannabinoids and inhibitors of endocannabinoid degradation have shown beneficial anti-inflammatory, antioxidant, anti-cancer, and anti-fibrotic properties. Although in the respiratory system, most of the studies have focused on the positive properties of cannabinoids and inhibitors of endocannabinoid degradation. There are few research reports discussing the negative impact of these compounds. This review summarizes the properties and mechanisms of action of cannabinoids and inhibitors of endocannabinoid degradation in various models of respiratory diseases. A short description of the effects selected cannabinoids have on the human respiratory system and their possible use in the fight against COVID-19 is also presented. Additionally, a brief summary is provided of cannabinoid receptors properties and their expression in the respiratory system and cells of the immune system.


Subject(s)
Cannabinoids/pharmacology , Endocannabinoids/metabolism , Respiratory Tract Diseases/drug therapy , Animals , COVID-19/drug therapy , Cannabinoids/administration & dosage , Enzyme Inhibitors/pharmacology , Humans , Models, Biological , Receptors, Cannabinoid/immunology , Receptors, Cannabinoid/metabolism , Respiratory Tract Diseases/metabolism
19.
Elife ; 102021 10 07.
Article in English | MEDLINE | ID: covidwho-1456505

ABSTRACT

The absence of 'shovel-ready' anti-coronavirus drugs during vaccine development has exceedingly worsened the SARS-CoV-2 pandemic. Furthermore, new vaccine-resistant variants and coronavirus outbreaks may occur in the near future, and we must be ready to face this possibility. However, efficient antiviral drugs are still lacking to this day, due to our poor understanding of the mode of incorporation and mechanism of action of nucleotides analogs that target the coronavirus polymerase to impair its essential activity. Here, we characterize the impact of remdesivir (RDV, the only FDA-approved anti-coronavirus drug) and other nucleotide analogs (NAs) on RNA synthesis by the coronavirus polymerase using a high-throughput, single-molecule, magnetic-tweezers platform. We reveal that the location of the modification in the ribose or in the base dictates the catalytic pathway(s) used for its incorporation. We show that RDV incorporation does not terminate viral RNA synthesis, but leads the polymerase into backtrack as far as 30 nt, which may appear as termination in traditional ensemble assays. SARS-CoV-2 is able to evade the endogenously synthesized product of the viperin antiviral protein, ddhCTP, though the polymerase incorporates this NA well. This experimental paradigm is essential to the discovery and development of therapeutics targeting viral polymerases.


To multiply and spread from cell to cell, the virus responsible for COVID-19 (also known as SARS-CoV-2) must first replicate its genetic information. This process involves a 'polymerase' protein complex making a faithful copy by assembling a precise sequence of building blocks, or nucleotides. The only drug approved against SARS-CoV-2 by the US Food and Drug Administration (FDA), remdesivir, consists of a nucleotide analog, a molecule whose structure is similar to the actual building blocks needed for replication. If the polymerase recognizes and integrates these analogs into the growing genetic sequence, the replication mechanism is disrupted, and the virus cannot multiply. Most approaches to study this process seem to indicate that remdesivir works by stopping the polymerase and terminating replication altogether. Yet, exactly how remdesivir and other analogs impair the synthesis of new copies of the virus remains uncertain. To explore this question, Seifert, Bera et al. employed an approach called magnetic tweezers which uses a magnetic field to manipulate micro-particles with great precision. Unlike other methods, this technique allows analogs to be integrated under conditions similar to those found in cells, and to be examined at the level of a single molecule. The results show that contrary to previous assumptions, remdesivir does not terminate replication; instead, it causes the polymerase to pause and backtrack (which may appear as termination in other techniques). The same approach was then applied to other nucleotide analogs, some of which were also found to target the SARS-CoV-2 polymerase. However, these analogs are incorporated differently to remdesivir and with less efficiency. They also obstruct the polymerase in distinct ways. Taken together, the results by Seifert, Bera et al. suggest that magnetic tweezers can be a powerful approach to reveal how analogs interfere with replication. This information could be used to improve currently available analogs as well as develop new antiviral drugs that are more effective against SARS-CoV-2. This knowledge will be key at a time when treatments against COVID-19 are still lacking, and may be needed to protect against new variants and future outbreaks.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/drug therapy , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Nucleotides/pharmacology , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Cell Line , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays/methods , Humans , Models, Theoretical , Nucleotides/metabolism , RNA, Viral , SARS-CoV-2/enzymology , Stochastic Processes , Virus Replication/drug effects
20.
Int J Mol Sci ; 22(19)2021 Oct 02.
Article in English | MEDLINE | ID: covidwho-1444233

ABSTRACT

Considering the current dramatic and fatal situation due to the high spreading of SARS-CoV-2 infection, there is an urgent unmet medical need to identify novel and effective approaches for prevention and treatment of Coronavirus disease (COVID 19) by re-evaluating and repurposing of known drugs. For this, tomatidine and patchouli alcohol have been selected as potential drugs for combating the virus. The hit compounds were subsequently docked into the active site and molecular docking analyses revealed that both drugs can bind the active site of SARS-CoV-2 3CLpro, PLpro, NSP15, COX-2 and PLA2 targets with a number of important binding interactions. To further validate the interactions of promising compound tomatidine, Molecular dynamics study of 100 ns was carried out towards 3CLpro, NSP15 and COX-2. This indicated that the protein-ligand complex was stable throughout the simulation period, and minimal backbone fluctuations have ensued in the system. Post dynamic MM-GBSA analysis of molecular dynamics data showed promising mean binding free energy 47.4633 ± 9.28, 51.8064 ± 8.91 and 54.8918 ± 7.55 kcal/mol, respectively. Likewise, in silico ADMET studies of the selected ligands showed excellent pharmacokinetic properties with good absorption, bioavailability and devoid of toxicity. Therefore, patchouli alcohol and especially, tomatidine may provide prospect treatment options against SARS-CoV-2 infection by potentially inhibiting virus duplication though more research is guaranteed and secured.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Endoribonucleases/antagonists & inhibitors , SARS-CoV-2/enzymology , Sesquiterpenes/pharmacology , Tomatine/analogs & derivatives , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , COVID-19/drug therapy , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/metabolism , Endoribonucleases/metabolism , Enzyme Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/drug effects , Tomatine/pharmacology , Viral Nonstructural Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL