Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Nat Genet ; 54(4): 363, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1795717
2.
J Cardiovasc Pharmacol ; 79(4): 431-443, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1778958

ABSTRACT

ABSTRACT: The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has significant implications in patients with concomitant cardiovascular disease (CVD) because they are the population at the greatest risk of death. The treatment of such patients and complications may represent a new challenge for the fields of cardiology and pharmacology. Thus, understanding the involvement of this viral infection in CVD might help to reduce the aggressiveness of SARS-CoV-2 in causing multiorgan infection and damage. SARS-CoV-2 disturbs the host epigenome and several epigenetic processes involved in the pathophysiology of COVID-19 that can directly affect the function and structure of the cardiovascular system (CVS). Hence, it would be relevant to identify epigenetic alterations that directly impact CVS physiology after SARS-CoV-2 infection. This could contribute to the view of this virus-induced CVS injury and direct forthcoming tackles for COVID-19 treatment to reduce mortality in patients with CVD. Targeting epigenetic marks could offer strong evidence for the development of novel antiviral therapies, especially in the context of COVID-19-related CVS damage. In this review, we address some of the main signaling pathways that are currently known as being involved in COVID-19 pathophysiology and the importance of this glint on epigenetics and some of its modifiers (epidrugs) to control the unregulated epitope activity in the context of SARS-CoV-2 infection, COVID-19, and underlying CVD.


Subject(s)
COVID-19 , Cardiovascular Diseases , COVID-19/drug therapy , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Epigenesis, Genetic , Humans , SARS-CoV-2
3.
Am J Physiol Cell Physiol ; 322(4): C787-C793, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1745645

ABSTRACT

Similar to epigenetic DNA modification, RNA can be methylated and altered for stability and processing. RNA modifications, namely, epitranscriptomes, involve the following three functions: writing, erasing, and reading of marks. Methods for measurement and position detection are useful for the assessment of cellular function and human disease biomarkers. After pyrimidine 5-methylcytosine was reported for the first time a hundred years ago, numerous techniques have been developed for studying nucleotide modifications, including RNAs. Recent studies have focused on high-throughput and direct measurements for investigating the precise function of epitranscriptomes, including the characterization of severe acute respiratory syndrome coronavirus 2. The current study presents an overview of the development of detection techniques for epitranscriptomic marks and briefs about the recent progress in this field.


Subject(s)
COVID-19 , Transcriptome , Epigenesis, Genetic , Humans , RNA/genetics , RNA/metabolism , RNA Processing, Post-Transcriptional , Transcriptome/genetics
4.
J Immunol Res ; 2022: 1433323, 2022.
Article in English | MEDLINE | ID: covidwho-1697599

ABSTRACT

We performed a database mining on 102 transcriptomic datasets for the expressions of 29 m6A-RNA methylation (epitranscriptomic) regulators (m6A-RMRs) in 41 diseases and cancers and made significant findings: (1) a few m6A-RMRs were upregulated; and most m6A-RMRs were downregulated in sepsis, acute respiratory distress syndrome, shock, and trauma; (2) half of 29 m6A-RMRs were downregulated in atherosclerosis; (3) inflammatory bowel disease and rheumatoid arthritis modulated m6A-RMRs more than lupus and psoriasis; (4) some organ failures shared eight upregulated m6A-RMRs; end-stage renal failure (ESRF) downregulated 85% of m6A-RMRs; (5) Middle-East respiratory syndrome coronavirus infections modulated m6A-RMRs the most among viral infections; (6) proinflammatory oxPAPC modulated m6A-RMRs more than DAMP stimulation including LPS and oxLDL; (7) upregulated m6A-RMRs were more than downregulated m6A-RMRs in cancer types; five types of cancers upregulated ≥10 m6A-RMRs; (8) proinflammatory M1 macrophages upregulated seven m6A-RMRs; (9) 86% of m6A-RMRs were differentially expressed in the six clusters of CD4+Foxp3+ immunosuppressive Treg, and 8 out of 12 Treg signatures regulated m6A-RMRs; (10) immune checkpoint receptors TIM3, TIGIT, PD-L2, and CTLA4 modulated m6A-RMRs, and inhibition of CD40 upregulated m6A-RMRs; (11) cytokines and interferons modulated m6A-RMRs; (12) NF-κB and JAK/STAT pathways upregulated more than downregulated m6A-RMRs whereas TP53, PTEN, and APC did the opposite; (13) methionine-homocysteine-methyl cycle enzyme Mthfd1 downregulated more than upregulated m6A-RMRs; (14) m6A writer RBM15 and one m6A eraser FTO, H3K4 methyltransferase MLL1, and DNA methyltransferase, DNMT1, regulated m6A-RMRs; and (15) 40 out of 165 ROS regulators were modulated by m6A eraser FTO and two m6A writers METTL3 and WTAP. Our findings shed new light on the functions of upregulated m6A-RMRs in 41 diseases and cancers, nine cellular and molecular mechanisms, novel therapeutic targets for inflammatory disorders, metabolic cardiovascular diseases, autoimmune diseases, organ failures, and cancers.


Subject(s)
Atherosclerosis/genetics , Epigenesis, Genetic , Neoplasms/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Autoimmune Diseases/genetics , Datasets as Topic , Gene Expression Profiling , Humans , Inflammation/genetics , Metabolic Diseases/genetics , Methylation
5.
Elife ; 112022 01 13.
Article in English | MEDLINE | ID: covidwho-1677761

ABSTRACT

Protein biomarkers have been identified across many age-related morbidities. However, characterising epigenetic influences could further inform disease predictions. Here, we leverage epigenome-wide data to study links between the DNA methylation (DNAm) signatures of the circulating proteome and incident diseases. Using data from four cohorts, we trained and tested epigenetic scores (EpiScores) for 953 plasma proteins, identifying 109 scores that explained between 1% and 58% of the variance in protein levels after adjusting for known protein quantitative trait loci (pQTL) genetic effects. By projecting these EpiScores into an independent sample (Generation Scotland; n = 9537) and relating them to incident morbidities over a follow-up of 14 years, we uncovered 137 EpiScore-disease associations. These associations were largely independent of immune cell proportions, common lifestyle and health factors, and biological aging. Notably, we found that our diabetes-associated EpiScores highlighted previous top biomarker associations from proteome-wide assessments of diabetes. These EpiScores for protein levels can therefore be a valuable resource for disease prediction and risk stratification.


Although our genetic code does not change throughout our lives, our genes can be turned on and off as a result of epigenetics. Epigenetics can track how the environment and even certain behaviors add or remove small chemical markers to the DNA that makes up the genome. The type and location of these markers may affect whether genes are active or silent, this is, whether the protein coded for by that gene is being produced or not. One common epigenetic marker is known as DNA methylation. DNA methylation has been linked to the levels of a range of proteins in our cells and the risk people have of developing chronic diseases. Blood samples can be used to determine the epigenetic markers a person has on their genome and to study the abundance of many proteins. Gadd, Hillary, McCartney, Zaghlool et al. studied the relationships between DNA methylation and the abundance of 953 different proteins in blood samples from individuals in the German KORA cohort and the Scottish Lothian Birth Cohort 1936. They then used machine learning to analyze the relationship between epigenetic markers found in people's blood and the abundance of proteins, obtaining epigenetic scores or 'EpiScores' for each protein. They found 109 proteins for which DNA methylation patterns explained between at least 1% and up to 58% of the variation in protein levels. Integrating the 'EpiScores' with 14 years of medical records for more than 9000 individuals from the Generation Scotland study revealed 137 connections between EpiScores for proteins and a future diagnosis of common adverse health outcomes. These included diabetes, stroke, depression, Alzheimer's dementia, various cancers, and inflammatory conditions such as rheumatoid arthritis and inflammatory bowel disease. Age-related chronic diseases are a growing issue worldwide and place pressure on healthcare systems. They also severely reduce quality of life for individuals over many years. This work shows how epigenetic scores based on protein levels in the blood could predict a person's risk of several of these diseases. In the case of type 2 diabetes, the EpiScore results replicated previous research linking protein levels in the blood to future diagnosis of diabetes. Protein EpiScores could therefore allow researchers to identify people with the highest risk of disease, making it possible to intervene early and prevent these people from developing chronic conditions as they age.


Subject(s)
Cardiovascular Diseases/diagnosis , DNA Methylation/genetics , Diabetes Mellitus/diagnosis , Epigenomics/methods , Neoplasms/diagnosis , Proteome/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Aging , Biomarkers , Epigenesis, Genetic , Female , Humans , Life Style , Male , Middle Aged , Risk Factors , Scotland , Young Adult
6.
Cells ; 11(3)2022 01 29.
Article in English | MEDLINE | ID: covidwho-1667056

ABSTRACT

Epigenetic alterations pose one major hallmark of organismal aging. Here, we provide an overview on recent findings describing the epigenetic changes that arise during aging and in related maladies such as neurodegeneration and cancer. Specifically, we focus on alterations of histone modifications and DNA methylation and illustrate the link with metabolic pathways. Age-related epigenetic, transcriptional and metabolic deregulations are highly interconnected, which renders dissociating cause and effect complicated. However, growing amounts of evidence support the notion that aging is not only accompanied by epigenetic alterations, but also at least in part induced by those. DNA methylation clocks emerged as a tool to objectively determine biological aging and turned out as a valuable source in search of factors positively and negatively impacting human life span. Moreover, specific epigenetic signatures can be used as biomarkers for age-associated disorders or even as targets for therapeutic approaches, as will be covered in this review. Finally, we summarize recent potential intervention strategies that target epigenetic mechanisms to extend healthy life span and provide an outlook on future developments in the field of longevity research.


Subject(s)
Epigenomics , Longevity , Aging/genetics , DNA Methylation/genetics , Epigenesis, Genetic , Humans , Longevity/genetics
7.
Oxid Med Cell Longev ; 2022: 2523066, 2022.
Article in English | MEDLINE | ID: covidwho-1662340

ABSTRACT

Pneumoconiosis is one of the most common occupational diseases in the world, and specific treatment methods of pneumoconiosis are lacking at present, so it carries great social and economic burdens. Pneumoconiosis, coronavirus disease 2019, and idiopathic pulmonary fibrosis all have similar typical pathological changes-pulmonary fibrosis. Pulmonary fibrosis is a chronic lung disease characterized by excessive deposition of the extracellular matrix and remodeling of the lung tissue structure. Clarifying the pathogenesis of pneumoconiosis plays an important guiding role in its treatment. The occurrence and development of pneumoconiosis are accompanied by epigenetic factors (e.g., DNA methylation and noncoding RNA) changes, which in turn can promote or inhibit the process of pneumoconiosis. Here, we summarize epigenetic changes and functions in the several kinds of evidence classification (epidemiological investigation, in vivo, and in vitro experiments) and main types of cells (macrophages, fibroblasts, and alveolar epithelial cells) to provide some clues for finding specific therapeutic targets for pneumoconiosis and even for pulmonary fibrosis.


Subject(s)
Epigenesis, Genetic , Pneumoconiosis/genetics , COVID-19/genetics , COVID-19/pathology , DNA Methylation , Humans , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/pathology , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Pneumoconiosis/pathology , RNA, Untranslated/metabolism , SARS-CoV-2/isolation & purification
8.
Front Immunol ; 12: 780804, 2021.
Article in English | MEDLINE | ID: covidwho-1648493

ABSTRACT

Objectives: Currently, cardiovascular risk associated with COVID-19 has been brought to people's attention, but the mechanism is not clear. The aim of this study is to elucidate the mechanisms based on multiple omics data. Methodology: Weighted gene co-expression network analysis (WGCNA) was used to identify key pathways. Combination analysis with aneurysm and atherosclerosis related pathways, hypoxia induced factor-1 (HIF-1) signaling were identified as key pathways of the increased cardiovascular risk associated with COVID-19. ScMLnet algorithm based on scRNA-seq was used to explore the regulation of HIF-1 pathway by intercellular communication. Proteomic analysis was used to detect the regulatory mechanisms between IL18 and HIF-1 signaling pathway. Pseudo time locus analysis was used to study the regulation of HIF1 signaling pathway in macrophages and vascular smooth muscle cells (VSMC) phenotypic transformation. The Virtual Inference of protein-activity by Enriched Regulon (VIPER) analysis was used to study the activity of regulatory proteins. Epigenetic analysis based on methylation revealed epigenetic changes in PBMC after SARS-CoV-2 infection. Potential therapeutic compounds were explored by using Cmap algorithm. Results: HIF-1 signaling pathway is a common key pathway for aneurysms, atherosclerosis and SARS-CoV-2 infection. Intercellular communication analysis showed that macrophage-derived interleukin-18 (IL-18) activates the HIF-1 signaling pathway through IL18R1. Proteomic analysis showed that IL18/IL18R1 promote NF-κB entry into the nucleus, and activated the HIF-1 signaling pathway. Macrophage-derived IL18 promoted the M1 polarization of macrophages and the syntactic phenotype transformation of VSMCs. MAP2K1 mediates the functional regulation of HIF-1 signaling pathway in various cell types. Epigenetic changes in PBMC after COVID-19 infection are characterized by activation of the type I interferon pathway. MEK inhibitors are the promising compounds for the treatment of HIF-1 overactivation. Conclusions: The IL18/IL18R1/HIF1A axis is expected to be an therapeutic target for cardiovascular protection after SARS-CoV-2 infection. MEK inhibitors may be an choice for cardiovascular protection after SARS-COV-2 infection.


Subject(s)
Aneurysm/etiology , Aneurysm/metabolism , Atherosclerosis/etiology , Atherosclerosis/metabolism , COVID-19/blood , COVID-19/complications , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Interleukin-18 Receptor alpha Subunit/metabolism , Interleukin-18/metabolism , SARS-CoV-2 , Signal Transduction , Aneurysm/pathology , Atherosclerosis/pathology , COVID-19/virology , Case-Control Studies , Cells, Cultured , Epigenesis, Genetic , Humans , Interferon Type I/metabolism , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , Myocytes, Smooth Muscle/metabolism , NF-kappa B/metabolism , Proteomics/methods , RNA-Seq/methods , Risk Factors , Single-Cell Analysis/methods
9.
Epigenomics ; 14(3): 153-162, 2022 02.
Article in English | MEDLINE | ID: covidwho-1622527

ABSTRACT

Smoking could predispose individuals to a more severe COVID-19 by upregulating a particular gene known as mdig, which is mediated through a number of well-known histone modifications. Smoking might regulate the transcription-activating H3K4me3 mark, along with the transcription-repressing H3K9me3 and H3K27me3 marks, in a way to favor SARS-CoV-2 entry by enhancing the expression of ACE2, NRP1 and NRP2, AT1R, CTSD and CTSL, PGE2 receptors 2-4, SLC6A20 and IL-6, all of which interact either directly or indirectly with important receptors, facilitating viral entry in COVID-19.


Lay abstract The role of smoking in development of several respiratory diseases has been clearly established. A significant proportion of these deleterious effects is mediated through epigenetic mechanisms, particularly histone modifications. Recent evidence indicates that smoking induces the expression of a mediator known as mdig, which in turn alters the transcription of several key proteins that have been implicated in development of COVID-19.


Subject(s)
COVID-19/genetics , Dioxygenases/genetics , Epigenesis, Genetic , Histone Demethylases/genetics , Histones/genetics , Nuclear Proteins/genetics , Protein Processing, Post-Translational , Smoking/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/diagnosis , COVID-19/metabolism , COVID-19/virology , Cathepsin D/genetics , Cathepsin D/metabolism , Cathepsin L/genetics , Cathepsin L/metabolism , Dioxygenases/metabolism , Histone Demethylases/metabolism , Histones/metabolism , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Methylation , Neuropilin-1/genetics , Neuropilin-1/metabolism , Neuropilin-2/genetics , Neuropilin-2/metabolism , Nuclear Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Receptors, Prostaglandin E/genetics , Receptors, Prostaglandin E/metabolism , Risk Factors , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , Smoking/metabolism , Smoking/pathology , Virus Internalization
10.
Bioessays ; 44(2): e2100239, 2022 02.
Article in English | MEDLINE | ID: covidwho-1606656

ABSTRACT

Throughout evolution, there has been interaction and exchange between RNA pools in the environment, and DNA and RNA pools of eukaryotic organisms. Metagenomic and metatranscriptomic sequencing of invertebrate hosts and their microbiota has revealed a rich evolutionary history of RNA virus shuttling between species. Horizontal transfer adapted the RNA pool for successful future interactions which lead to zoonotic transmission and detrimental RNA viral pandemics like SARS-CoV2. In eukaryotes, noncoding RNA (ncRNA) is an established mechanism derived from prokaryotes to defend against viral attack through innate immunity and regulation of host-derived mRNA. Transgenerational inheritance of ncRNA is evidence for feedforward adaptive immunity and epigenetically encoded environmental change across generations, which may explain the ''missing heritability'' of common disease. Causal graph theory and the Price Equation can model epigenetic inheritance involving dynamic internal and external RNA pools. Experimental designs should include metatranscriptomic analyses to understand how ncRNA responds to rapidly changing environmental conditions, within and between organisms, and across generations.


Subject(s)
COVID-19 , Epigenesis, Genetic , DNA , Epigenesis, Genetic/genetics , Humans , RNA, Viral , Repetitive Sequences, Nucleic Acid , SARS-CoV-2
11.
J Leukoc Biol ; 110(1): 21-26, 2021 07.
Article in English | MEDLINE | ID: covidwho-1574077

ABSTRACT

The global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly pathogenic RNA virus causing coronavirus disease 2019 (COVID-19) in humans. Although most patients with COVID-19 have mild illness and may be asymptomatic, some will develop severe pneumonia, acute respiratory distress syndrome, multi-organ failure, and death. RNA viruses such as SARS-CoV-2 are capable of hijacking the epigenetic landscape of host immune cells to evade antiviral defense. Yet, there remain considerable gaps in our understanding of immune cell epigenetic changes associated with severe SARS-CoV-2 infection pathology. Here, we examined genome-wide DNA methylation (DNAm) profiles of peripheral blood mononuclear cells from 9 terminally-ill, critical COVID-19 patients with confirmed SARS-CoV-2 plasma viremia compared with uninfected, hospitalized influenza, untreated primary HIV infection, and mild/moderate COVID-19 HIV coinfected individuals. Cell-type deconvolution analyses confirmed lymphopenia in severe COVID-19 and revealed a high percentage of estimated neutrophils suggesting perturbations to DNAm associated with granulopoiesis. We observed a distinct DNAm signature of severe COVID-19 characterized by hypermethylation of IFN-related genes and hypomethylation of inflammatory genes, reinforcing observations in infection models and single-cell transcriptional studies of severe COVID-19. Epigenetic clock analyses revealed severe COVID-19 was associated with an increased DNAm age and elevated mortality risk according to GrimAge, further validating the epigenetic clock as a predictor of disease and mortality risk. Our epigenetic results reveal a discovery DNAm signature of severe COVID-19 in blood potentially useful for corroborating clinical assessments, informing pathogenic mechanisms, and revealing new therapeutic targets against SARS-CoV-2.


Subject(s)
COVID-19/genetics , DNA Methylation/genetics , Epigenesis, Genetic , Genome, Human , COVID-19/virology , HIV Infections/genetics , Humans , Influenza, Human/genetics , SARS-CoV-2/physiology
12.
Gene ; 811: 146069, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1536570

ABSTRACT

Within the past several decades, the emergence and spread of infectious diseases with pandemic potential have endangered human lives. Coronavirus disease 2019 (COVID-19) outbreak represents an unprecedented threat for all health systems worldwide. The clinical spectrum of COVID-19 is highly heterogeneous, ranging from asymptomatic and mild upper respiratory tract illness to severe interstitial pneumonia with respiratory failure and even death. Highly age-dependent patterns of immune response potentially explain the higher rates of the severe forms of COVID-19 in elderly patients. However, genetic and epigenetic architecture can influence multiple biological processes during the lifespan, therefore as far as our knowledge shows, vulnerability to viral infection concerning telomere length and epigenetic signature is not a new idea. This review aims is to summarize the current understanding of the role of telomere length and epigenetic mechanisms on the severity of COVID-19. The current knowledge highlights the significant association between the shorter telomere length and the higher risk of developing severe COVID-19. Differential DNA methylation patterns and miRNA expression profiles imply that these hallmarks can play a pivotal role in COVID- 19 pathogenesis. Understanding the causes of inter-individual variations in COVID-19 outcomes could provide clues to the development of the personalized therapeutic intervention.


Subject(s)
COVID-19/genetics , COVID-19/immunology , COVID-19/metabolism , Epigenesis, Genetic , Epigenomics , Severity of Illness Index , Telomere/genetics , COVID-19/virology , DNA Methylation , Genetic Predisposition to Disease , Humans , Immunity , MicroRNAs/metabolism , SARS-CoV-2/immunology
13.
Clin Epigenetics ; 13(1): 210, 2021 11 24.
Article in English | MEDLINE | ID: covidwho-1533277

ABSTRACT

BACKGROUND: The thymic microenvironment is mainly comprised of thymic epithelial cells, the cytokines, exosomes, surface molecules, and hormones from the cells, and plays a vital role in the development, differentiation, maturation and homeostasis of T lymphocytes. However, the thymus begins to degenerate as early as the second year of life and continues through aging in human beings, leading to a decreased output of naïve T cells, the limited TCR diversity and an expansion of monoclonal memory T cells in the periphery organs. These alternations will reduce the adaptive immune response to tumors and emerging infectious diseases, such as COVID-19, also it is easier to suffer from autoimmune diseases in older people. In the context of global aging, it is important to investigate and clarify the causes and mechanisms of thymus involution. MAIN BODY: Epigenetics include histone modification, DNA methylation, non-coding RNA effects, and chromatin remodeling. In this review, we discuss how senescent thymic epithelial cells determine and control age-related thymic atrophy, how this process is altered by epigenetic modification. How the thymus adipose influences the dysfunctions of the thymic epithelial cells, and the prospects of targeting thymic epithelial cells for the treatment of thymus atrophy. CONCLUSION: Epigenetic modifications are emerging as key regulators in governing the development and senescence of thymic epithelial cells. It is beneficial to re-establish effective thymopoiesis, identify the potential therapeutic strategy and rejuvenate the immune function in the elderly.


Subject(s)
Aging/physiology , Epigenesis, Genetic/physiology , Epithelial Cells/pathology , Thymus Gland/pathology , Atrophy , Humans
14.
Biochim Biophys Acta Mol Basis Dis ; 1868(2): 166291, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1525693

ABSTRACT

OBJECTIVES: To investigate in silico the presence of nucleotide sequence complementarity between the RNA genome of Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) and human non-coding (nc)RNA genes. METHODS: The FASTA sequence (NC_045512.2) of each of the 11 SARS-CoV-2 isolate Wuhan-Hu-1 genes was retrieved from NCBI.nlm.nih.gov/gene and the Ensembl.org library interrogated for any base-pair match with human ncRNA genes. SARS-CoV-2 gene-matched human ncRNAs were screened for functional activity using bioinformatic analysis. Finally, associations between identified ncRNAs and human diseases were searched in GWAS databases. RESULTS: A total of 252 matches were found between the nucleotide sequence of SARS-CoV-2 genes and human ncRNAs. With the exception of two small nuclear RNAs, all of them were long non-coding (lnc)RNAs expressed mainly in testis and central nervous system under physiological conditions. The percentage of alignment ranged from 91.30% to 100% with a mean nucleotide alignment length of 17.5 ± 2.4. Thirty-three (13.09%) of them contained predicted R-loop forming sequences, but none of these intersected the complementary sequences of SARS-CoV-2. However, in 31 cases matches fell on ncRNA regulatory sites, whose adjacent coding genes are mostly involved in cancer, immunological and neurological pathways. Similarly, several polymorphic variants of detected non-coding genes have been associated with neuropsychiatric and proliferative disorders. CONCLUSION: This pivotal in silico study shows that SARS-CoV-2 genes have Watson-Crick nucleotide complementarity to human ncRNA sequences, potentially disrupting ncRNA epigenetic control of target genes. It remains to be elucidated whether this could result in the development of human disease in the long term.


Subject(s)
COVID-19/genetics , COVID-19/virology , RNA, Untranslated/genetics , SARS-CoV-2/genetics , Base Sequence , Epigenesis, Genetic , Genes, Viral , Humans , Neoplasms/genetics , RNA, Long Noncoding/genetics , Sequence Alignment , Sequence Homology, Nucleic Acid
15.
Clin Epigenetics ; 13(1): 187, 2021 10 11.
Article in English | MEDLINE | ID: covidwho-1526657

ABSTRACT

BACKGROUND: SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) receptors for entry into cells, and the serine protease TMPRSS2 for S protein priming. Inhibition of protease activity or the engagement with ACE2 and NRP1 receptors has been shown to be an effective strategy for blocking infectivity and viral spreading. Valproic acid (VPA; 2-propylpentanoic acid) is an epigenetic drug approved for clinical use. It produces potent antiviral and anti-inflammatory effects through its function as a histone deacetylase (HDAC) inhibitor. Here, we propose VPA as a potential candidate to tackle COVID-19, in which rapid viral spread and replication, and hyperinflammation are crucial elements. RESULTS: We used diverse cell lines (HK-2, Huh-7, HUVEC, Caco-2, and BEAS-2B) to analyze the effect of VPA and other HDAC inhibitors on the expression of the ACE-2 and NRP-1 receptors and their ability to inhibit infectivity, viral production, and the inflammatory response. Treatment with VPA significantly reduced expression of the ACE2 and NRP1 host proteins in all cell lines through a mechanism mediated by its HDAC inhibitory activity. The effect is maintained after SARS-CoV-2 infection. Consequently, the treatment of cells with VPA before infection impairs production of SARS-CoV-2 infectious viruses, but not that of other ACE2- and NRP1-independent viruses (VSV and HCoV-229E). Moreover, the addition of VPA 1 h post-infection with SARS-CoV-2 reduces the production of infectious viruses in a dose-dependent manner without significantly modifying the genomic and subgenomic messenger RNAs (gRNA and sg mRNAs) or protein levels of N protein. The production of inflammatory cytokines (TNF-α and IL-6) induced by TNF-α and SARS-CoV-2 infection is diminished in the presence of VPA. CONCLUSIONS: Our data showed that VPA blocks three essential processes determining the severity of COVID-19. It downregulates the expression of ACE2 and NRP1, reducing the infectivity of SARS-CoV-2; it decreases viral yields, probably because it affects virus budding or virions stability; and it dampens the triggered inflammatory response. Thus, administering VPA could be considered a safe treatment for COVID-19 patients until vaccines have been rolled out across the world.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/prevention & control , Epigenesis, Genetic/physiology , Neuropilin-1/genetics , Receptors, Virus/drug effects , Valproic Acid/pharmacology , Angiotensin-Converting Enzyme 2/drug effects , Antiviral Agents/pharmacology , Cells, Cultured , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/genetics , Humans , Neuropilin-1/drug effects , SARS-CoV-2
16.
Cells ; 10(11)2021 11 07.
Article in English | MEDLINE | ID: covidwho-1512135

ABSTRACT

The bronchial vascular endothelial network plays important roles in pulmonary pathology during respiratory viral infections, including respiratory syncytial virus (RSV), influenza A(H1N1) and importantly SARS-Cov-2. All of these infections can be severe and even lethal in patients with underlying risk factors.A major obstacle in disease prevention is the lack of appropriate efficacious vaccine(s) due to continuous changes in the encoding capacity of the viral genome, exuberant responsiveness of the host immune system and lack of effective antiviral drugs. Current management of these severe respiratory viral infections is limited to supportive clinical care. The primary cause of morbidity and mortality is respiratory failure, partially due to endothelial pulmonary complications, including edema. The latter is induced by the loss of alveolar epithelium integrity and by pathological changes in the endothelial vascular network that regulates blood flow, blood fluidity, exchange of fluids, electrolytes, various macromolecules and responses to signals triggered by oxygenation, and controls trafficking of leukocyte immune cells. This overview outlines the latest understanding of the implications of pulmonary vascular endothelium involvement in respiratory distress syndrome secondary to viral infections. In addition, the roles of infection-induced cytokines, growth factors, and epigenetic reprogramming in endothelial permeability, as well as emerging treatment options to decrease disease burden, are discussed.


Subject(s)
Endothelial Cells/pathology , Oxidative Stress , Respiratory Distress Syndrome/pathology , Virus Diseases/pathology , Epigenesis, Genetic , Humans , Influenza A Virus, H1N1 Subtype/physiology , Pulmonary Edema/genetics , Pulmonary Edema/pathology , Pulmonary Edema/virology , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/virology , Respiratory Syncytial Viruses/pathogenicity , SARS-CoV-2/pathogenicity , Virus Diseases/genetics , Virus Diseases/virology
17.
Recent Pat Anticancer Drug Discov ; 16(2): 136-160, 2021.
Article in English | MEDLINE | ID: covidwho-1496784

ABSTRACT

BACKGROUND: Cancer is a multistep process involving genetic and epigenetic changes in the somatic genome. Genetic mutations as well as environmental factors lead to the initiation, promotion, and progression of cancer. Metastasis allows cancer cells to spread via circulatory and lymphatic systems; secondary tumorigenesis typically leads to a fatal outcome. Recent experimental evidence suggests that Cancer Stem Cells (CSCs) play a pivotal role in tumor progression. A tumor is heterogeneous and composed of different cell types. CSCs are a subpopulation of tumor cells possessing abilities to self-renew and differentiate. OBJECTIVE: The aim of this study was to present repurposed drugs, and potential candidates, that can serve as anticancer medications intended to target resistant cancer cells, i.e. CSCs. METHODS: Research publications, FDA filings, and patents have been reviewed for repurposed drugs or drug combinations that can act to improve cancer treatment and care. RESULTS: Drugs that act against CSCs include ones approved for treatment of diabetes (metformin & thiazolidinediones), parasitic diseases (chloroquine, niclosamide, mebendazole & pyrvinium), psychotic disorders (thioridazine, clomipramine & phenothiazines), alcoholism (disulfiram), lipid disorder (statins), inflammatory diseases (tranilast, auranofin, acetaminophen & celecoxib), antibiotics (azithromycin), and other disorders. Current research findings advocate the existence of beneficial effects by combining these repurposed drugs, and also through their complementary use with conventional cancer therapies. CONCLUSION: Repurposing FDA-approved medications towards cancer care, by targeting the resistant CSCs, will allow for a quicker, cheaper development and approval process. A larger drug library available to physicians will allow for increased efficacy during both first-line and recurrent cancer treatments.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Neoplastic Stem Cells/drug effects , Animals , Drug Repositioning , Drug Resistance, Neoplasm , Epigenesis, Genetic , Humans , Mutation , Neoplasms/genetics , Neoplasms/pathology , Patents as Topic
18.
Front Immunol ; 12: 752380, 2021.
Article in English | MEDLINE | ID: covidwho-1485056

ABSTRACT

The progression of coronavirus disease 2019 (COVID-19), resulting from a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, may be influenced by both genetic and environmental factors. Several viruses hijack the host genome machinery for their own advantage and survival, and similar phenomena might occur upon SARS-CoV-2 infection. Severe cases of COVID-19 may be driven by metabolic and epigenetic driven mechanisms, including DNA methylation and histone/chromatin alterations. These epigenetic phenomena may respond to enhanced viral replication and mediate persistent long-term infection and clinical phenotypes associated with severe COVID-19 cases and fatalities. Understanding the epigenetic events involved, and their clinical significance, may provide novel insights valuable for the therapeutic control and management of the COVID-19 pandemic. This review highlights different epigenetic marks potentially associated with COVID-19 development, clinical manifestation, and progression.


Subject(s)
COVID-19/immunology , DNA Methylation/immunology , Epigenesis, Genetic/immunology , SARS-CoV-2/immunology , COVID-19/genetics , Humans , Organ Specificity , Pandemics
20.
Eur J Immunol ; 51(7): 1641-1651, 2021 07.
Article in English | MEDLINE | ID: covidwho-1473829

ABSTRACT

Emerging life-threatening viruses have posed great challenges to public health. It is now increasingly clear that epigenetics plays a role in shaping host-virus interactions and there is a great need for a more thorough understanding of these intricate interactions through the epigenetic lens, which may represent potential therapeutic opportunities in the clinic. In this review, we highlight the current understanding of the roles of key epigenetic regulators - chromatin remodeling and histone modification - in modulating chromatin openness during host defense against virus. We also discuss how the RNA modification m6A (N6-methyladenosine) affects fundamental aspects of host-virus interactions. We conclude with future directions for uncovering more detailed functions that epigenetic regulation exerts on both host cells and viruses during infection.


Subject(s)
Antiviral Agents/immunology , Epigenesis, Genetic/genetics , Epigenesis, Genetic/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , Animals , Chromatin/genetics , Chromatin/immunology , Histones/genetics , Histones/immunology , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , RNA Processing, Post-Transcriptional/genetics , RNA Processing, Post-Transcriptional/immunology
SELECTION OF CITATIONS
SEARCH DETAIL