Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1625839

ABSTRACT

The global urgency to uncover medical countermeasures to combat the COVID-19 pandemic caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has revealed an unmet need for robust tissue culture models that faithfully recapitulate key features of human tissues and disease. Infection of the nose is considered the dominant initial site for SARS-CoV-2 infection and models that replicate this entry portal offer the greatest potential for examining and demonstrating the effectiveness of countermeasures designed to prevent or manage this highly communicable disease. Here, we test an air-liquid-interface (ALI) differentiated human nasal epithelium (HNE) culture system as a model of authentic SARS-CoV-2 infection. Progenitor cells (basal cells) were isolated from nasal turbinate brushings, expanded under conditionally reprogrammed cell (CRC) culture conditions and differentiated at ALI. Differentiated cells were inoculated with different SARS-CoV-2 clinical isolates. Infectious virus release into apical washes was determined by TCID50, while infected cells were visualized by immunofluorescence and confocal microscopy. We demonstrate robust, reproducible SARS-CoV-2 infection of ALI-HNE established from different donors. Viral entry and release occurred from the apical surface, and infection was primarily observed in ciliated cells. In contrast to the ancestral clinical isolate, the Delta variant caused considerable cell damage. Successful establishment of ALI-HNE is donor dependent. ALI-HNE recapitulate key features of human SARS-CoV-2 infection of the nose and can serve as a pre-clinical model without the need for invasive collection of human respiratory tissue samples.


Subject(s)
COVID-19/virology , Nasal Mucosa/cytology , Nasal Mucosa/virology , Tissue Culture Techniques/methods , Adolescent , Adult , Angiotensin-Converting Enzyme 2/metabolism , Cell Culture Techniques , Cell Differentiation , Epithelial Cells/cytology , Epithelial Cells/virology , Female , Humans , Male , Middle Aged , Models, Biological , SARS-CoV-2 , Virus Internalization
2.
Nature ; 602(7896): 321-327, 2022 02.
Article in English | MEDLINE | ID: covidwho-1585831

ABSTRACT

It is not fully understood why COVID-19 is typically milder in children1-3. Here, to examine the differences between children and adults in their response to SARS-CoV-2 infection, we analysed paediatric and adult patients with COVID-19 as well as healthy control individuals (total n = 93) using single-cell multi-omic profiling of matched nasal, tracheal, bronchial and blood samples. In the airways of healthy paediatric individuals, we observed cells that were already in an interferon-activated state, which after SARS-CoV-2 infection was further induced especially in airway immune cells. We postulate that higher paediatric innate interferon responses restrict viral replication and disease progression. The systemic response in children was characterized by increases in naive lymphocytes and a depletion of natural killer cells, whereas, in adults, cytotoxic T cells and interferon-stimulated subpopulations were significantly increased. We provide evidence that dendritic cells initiate interferon signalling in early infection, and identify epithelial cell states associated with COVID-19 and age. Our matching nasal and blood data show a strong interferon response in the airways with the induction of systemic interferon-stimulated populations, which were substantially reduced in paediatric patients. Together, we provide several mechanisms that explain the milder clinical syndrome observed in children.


Subject(s)
COVID-19/blood , COVID-19/immunology , Dendritic Cells/immunology , Interferons/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , T-Lymphocytes, Cytotoxic/immunology , Adult , Bronchi/immunology , Bronchi/virology , COVID-19/pathology , Chicago , Cohort Studies , Disease Progression , Epithelial Cells/cytology , Epithelial Cells/immunology , Epithelial Cells/virology , Female , Humans , Immunity, Innate , London , Male , Nasal Mucosa/immunology , Nasal Mucosa/virology , SARS-CoV-2/growth & development , Single-Cell Analysis , Trachea/virology , Young Adult
3.
Sci Rep ; 11(1): 23928, 2021 12 14.
Article in English | MEDLINE | ID: covidwho-1585797

ABSTRACT

Identification of transcriptional regulatory mechanisms and signaling networks involved in the response of host cells to infection by SARS-CoV-2 is a powerful approach that provides a systems biology view of gene expression programs involved in COVID-19 and may enable the identification of novel therapeutic targets and strategies to mitigate the impact of this disease. In this study, our goal was to identify a transcriptional regulatory network that is associated with gene expression changes between samples infected by SARS-CoV-2 and those that are infected by other respiratory viruses to narrow the results on those enriched or specific to SARS-CoV-2. We combined a series of recently developed computational tools to identify transcriptional regulatory mechanisms involved in the response of epithelial cells to infection by SARS-CoV-2, and particularly regulatory mechanisms that are specific to this virus when compared to other viruses. In addition, using network-guided analyses, we identified kinases associated with this network. The results identified pathways associated with regulation of inflammation (MAPK14) and immunity (BTK, MBX) that may contribute to exacerbate organ damage linked with complications of COVID-19. The regulatory network identified herein reflects a combination of known hits and novel candidate pathways supporting the novel computational pipeline presented herein to quickly narrow down promising avenues of investigation when facing an emerging and novel disease such as COVID-19.


Subject(s)
COVID-19/genetics , Gene Expression Profiling/methods , SARS-CoV-2/pathogenicity , Sequence Analysis, RNA/methods , A549 Cells , Cell Line , Epithelial Cells/chemistry , Epithelial Cells/cytology , Epithelial Cells/virology , Gene Expression Regulation , Humans , Models, Biological , Systems Biology
4.
Nat Commun ; 12(1): 7092, 2021 12 07.
Article in English | MEDLINE | ID: covidwho-1561304

ABSTRACT

The nasal epithelium is a plausible entry point for SARS-CoV-2, a site of pathogenesis and transmission, and may initiate the host response to SARS-CoV-2. Antiviral interferon (IFN) responses are critical to outcome of SARS-CoV-2. Yet little is known about the interaction between SARS-CoV-2 and innate immunity in this tissue. Here we apply single-cell RNA sequencing and proteomics to a primary cell model of human nasal epithelium differentiated at air-liquid interface. SARS-CoV-2 demonstrates widespread tropism for nasal epithelial cell types. The host response is dominated by type I and III IFNs and interferon-stimulated gene products. This response is notably delayed in onset relative to viral gene expression and compared to other respiratory viruses. Nevertheless, once established, the paracrine IFN response begins to impact on SARS-CoV-2 replication. When provided prior to infection, recombinant IFNß or IFNλ1 induces an efficient antiviral state that potently restricts SARS-CoV-2 viral replication, preserving epithelial barrier integrity. These data imply that the IFN-I/III response to SARS-CoV-2 initiates in the nasal airway and suggest nasal delivery of recombinant IFNs to be a potential chemoprophylactic strategy.


Subject(s)
Epithelial Cells/virology , Interferon Type I/immunology , Interferons/immunology , Nasal Mucosa/virology , SARS-CoV-2/physiology , Antiviral Agents/immunology , Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/immunology , Humans , Immunity, Innate , Kinetics , Nasal Mucosa/cytology , Nasal Mucosa/immunology , SARS-CoV-2/drug effects , Signal Transduction/drug effects , Viral Tropism , Virus Replication/drug effects
5.
Physiol Rep ; 9(21): e15061, 2021 11.
Article in English | MEDLINE | ID: covidwho-1513250

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) and transmembrane proteases (TMPRSS) are multifunctional proteins required for SARS-CoV-2 infection or for amino acid (AA) transport, and are abundantly expressed in mammalian small intestine, but the identity of the intestinal cell type(s) and sites of expression are unclear. Here we determined expression of SARS-CoV-2 entry factors in different cell types and then compared it to that of representative AA, electrolyte, and mineral transporters. We tested the hypothesis that SARS-CoV-2, AA, electrolyte, and mineral transporters are expressed heterogeneously in different intestinal cell types by making mouse enteroids enriched in enterocytes (ENT), goblet (GOB), Paneth (PAN), or stem (ISC) cells. Interestingly, the expression of ACE2 was apical and modestly greater in ENT, the same pattern observed for its associated AA transporters B0 AT1 and SIT1. TMPRSS2 and TMPRSS4 were more highly expressed in crypt-residing ISC. Expression of electrolyte transporters was dramatically heterogeneous. DRA, NBCe1, and NHE3 were greatest in ENT, while those of CFTR and NKCC1 that play important roles in secretory diarrhea, were mainly expressed in ISC and PAN that also displayed immunohistochemically abundant basolateral NKCC1. Intestinal iron transporters were generally expressed higher in ENT and GOB, while calcium transporters were expressed mainly in PAN. Heterogeneous expression of its entry factors suggests that the ability of SARS-CoV-2 to infect the intestine may vary with cell type. Parallel cell-type expression patterns of ACE2 with B0 AT1 and SIT1 provides further evidence of ACE2's multifunctional properties and importance in AA absorption.


Subject(s)
COVID-19/virology , Electrolytes/metabolism , Epithelial Cells/metabolism , Intestines/physiology , Membrane Transport Proteins/metabolism , Minerals/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/pathology , COVID-19/transmission , Epithelial Cells/cytology , Epithelial Cells/virology , Immunohistochemistry , Intestines/cytology , Intestines/virology , Male , Membrane Proteins/metabolism , Mice , SARS-CoV-2/isolation & purification , Serine Endopeptidases/metabolism
6.
Nat Protoc ; 16(11): 5171-5192, 2021 11.
Article in English | MEDLINE | ID: covidwho-1500485

ABSTRACT

Human epithelial organoids-3D spheroids derived from adult tissue stem cells-enable investigation of epithelial physiology and disease and host interactions with microorganisms, viruses and bioactive molecules. One challenge in using organoids is the difficulty in accessing the apical, or luminal, surface of the epithelium, which is enclosed within the organoid interior. This protocol describes a method we previously developed to control human and mouse organoid polarity in suspension culture such that the apical surface faces outward to the medium (apical-out organoids). Our protocol establishes apical-out polarity rapidly (24-48 h), preserves epithelial integrity, maintains secretory and absorptive functions and allows regulation of differentiation. Here, we provide a detailed description of the organoid polarity reversal method, compatible characterization assays and an example of an application of the technology-specifically the impact of host-microbe interactions on epithelial function. Control of organoid polarity expands the possibilities of organoid use in gastrointestinal and respiratory health and disease research.


Subject(s)
Cell Differentiation , Gastrointestinal Tract , Organoids , Animals , Cell Culture Techniques , Epithelial Cells/cytology , Mice
7.
Cells ; 10(10)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470800

ABSTRACT

Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.


Subject(s)
COVID-19/immunology , Epithelium/immunology , Idiopathic Pulmonary Fibrosis/immunology , Lung/immunology , Alarmins , Animals , Cellular Senescence , Coculture Techniques , Epithelial Cells/cytology , Epithelial Cells/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Fibrosis/metabolism , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Immunity , Inflammation/metabolism , Ligands , Necroptosis , Necrosis/pathology , Pulmonary Disease, Chronic Obstructive , SARS-CoV-2 , Signal Transduction
8.
Front Immunol ; 12: 705646, 2021.
Article in English | MEDLINE | ID: covidwho-1450806

ABSTRACT

COVID-19 is a disease with a spectrum of clinical responses ranging from moderate to critical. To study and control its effects, a large number of researchers are focused on two substantial aims. On the one hand, the discovery of diverse biomarkers to classify and potentially anticipate the disease severity of patients. These biomarkers could serve as a medical criterion to prioritize attention to those patients with higher prone to severe responses. On the other hand, understanding how the immune system orchestrates its responses in this spectrum of disease severities is a fundamental issue required to design new and optimized therapeutic strategies. In this work, using single-cell RNAseq of bronchoalveolar lavage fluid of nine patients with COVID-19 and three healthy controls, we contribute to both aspects. First, we presented computational supervised machine-learning models with high accuracy in classifying the disease severity (moderate and severe) in patients with COVID-19 starting from single-cell data from bronchoalveolar lavage fluid. Second, we identified regulatory mechanisms from the heterogeneous cell populations in the lungs microenvironment that correlated with different clinical responses. Given the results, patients with moderate COVID-19 symptoms showed an activation/inactivation profile for their analyzed cells leading to a sequential and innocuous immune response. In comparison, severe patients might be promoting cytotoxic and pro-inflammatory responses in a systemic fashion involving epithelial and immune cells without the possibility to develop viral clearance and immune memory. Consequently, we present an in-depth landscape analysis of how transcriptional factors and pathways from these heterogeneous populations can regulate their expression to promote or restrain an effective immune response directly linked to the patients prognosis.


Subject(s)
Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/pathology , Lung/cytology , SARS-CoV-2/immunology , B-Lymphocytes/immunology , Biomarkers , Bronchoalveolar Lavage Fluid/chemistry , Dendritic Cells/immunology , Epithelial Cells/cytology , Epithelial Cells/virology , Humans , Killer Cells, Natural/immunology , Lung/chemistry , Machine Learning , Macrophages/immunology , Monocytes/immunology , Neutrophils/immunology , RNA, Viral/genetics , Sequence Analysis, RNA , Severity of Illness Index , Single-Cell Analysis , T-Lymphocytes/immunology
9.
PLoS Pathog ; 17(9): e1009878, 2021 09.
Article in English | MEDLINE | ID: covidwho-1394563

ABSTRACT

SARS-CoV-2 fine-tunes the interferon (IFN)-induced antiviral responses, which play a key role in preventing coronavirus disease 2019 (COVID-19) progression. Indeed, critically ill patients show an impaired type I IFN response accompanied by elevated inflammatory cytokine and chemokine levels, responsible for cell and tissue damage and associated multi-organ failure. Here, the early interaction between SARS-CoV-2 and immune cells was investigated by interrogating an in vitro human peripheral blood mononuclear cell (PBMC)-based experimental model. We found that, even in absence of a productive viral replication, the virus mediates a vigorous TLR7/8-dependent production of both type I and III IFNs and inflammatory cytokines and chemokines, known to contribute to the cytokine storm observed in COVID-19. Interestingly, we observed how virus-induced type I IFN secreted by PBMC enhances anti-viral response in infected lung epithelial cells, thus, inhibiting viral replication. This type I IFN was released by plasmacytoid dendritic cells (pDC) via an ACE-2-indipendent but Neuropilin-1-dependent mechanism. Viral sensing regulates pDC phenotype by inducing cell surface expression of PD-L1 marker, a feature of type I IFN producing cells. Coherently to what observed in vitro, asymptomatic SARS-CoV-2 infected subjects displayed a similar pDC phenotype associated to a very high serum type I IFN level and induction of anti-viral IFN-stimulated genes in PBMC. Conversely, hospitalized patients with severe COVID-19 display very low frequency of circulating pDC with an inflammatory phenotype and high levels of chemokines and pro-inflammatory cytokines in serum. This study further shed light on the early events resulting from the interaction between SARS-CoV-2 and immune cells occurring in vitro and confirmed ex vivo. These observations can improve our understanding on the contribution of pDC/type I IFN axis in the regulation of the anti-viral state in asymptomatic and severe COVID-19 patients.


Subject(s)
COVID-19/immunology , Dendritic Cells/classification , Interferon Type I/metabolism , SARS-CoV-2/immunology , Adult , Aged, 80 and over , Asymptomatic Infections , Cell Line, Tumor , Dendritic Cells/immunology , Dendritic Cells/virology , Epithelial Cells/cytology , Female , Hospitalization , Humans , Interferon Type I/immunology , Lung/cytology , Male , Middle Aged , Neuropilin-1/metabolism , Phenotype , Severity of Illness Index , Toll-Like Receptor 7/metabolism
10.
Elife ; 102021 04 09.
Article in English | MEDLINE | ID: covidwho-1389777

ABSTRACT

Virus propagation methods generally use transformed cell lines to grow viruses from clinical specimens, which may force viruses to rapidly adapt to cell culture conditions, a process facilitated by high viral mutation rates. Upon propagation in VeroE6 cells, SARS-CoV-2 may mutate or delete the multibasic cleavage site (MBCS) in the spike protein. Previously, we showed that the MBCS facilitates serine protease-mediated entry into human airway cells (Mykytyn et al., 2021). Here, we report that propagating SARS-CoV-2 on the human airway cell line Calu-3 - that expresses serine proteases - prevents cell culture adaptations in the MBCS and directly adjacent to the MBCS (S686G). Similar results were obtained using a human airway organoid-based culture system for SARS-CoV-2 propagation. Thus, in-depth knowledge on the biology of a virus can be used to establish methods to prevent cell culture adaptation.


Subject(s)
Epithelial Cells , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Virus Cultivation/methods , Virus Internalization , Animals , Cell Line , Chlorocebus aethiops , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/virology , Humans , Proteolysis , Respiratory System/cytology , Respiratory System/virology , Serine Proteases/metabolism
11.
Sci Rep ; 11(1): 6621, 2021 03 23.
Article in English | MEDLINE | ID: covidwho-1387468

ABSTRACT

The human bronchial epithelium is the first line of defense against atmospheric particles, pollutants, and respiratory pathogens such as the novel SARS-CoV-2. The epithelial cells form a tight barrier and secrete proteins that are major components of the mucosal immune response. Functional in vitro models of the human lung are essential for screening the epithelial response and assessing the toxicity and barrier crossing of drugs, inhaled particles, and pollutants. However, there is a lack of models to investigate the effect of chronic exposure without resorting to animal testing. Here, we developed a 3D model of the human bronchial epithelium using Calu-3 cell line and demonstrated its viability and functionality for 21 days without subculturing. We investigated the effect of reduced Fetal Bovine Serum supplementation in the basal medium and defined the minimal supplementation needed to maintain a functional epithelium, so that the amount of exogenous serum proteins could be reduced during drug testing. The long-term evolution of the epithelial cell secretome was fully characterized by quantitative mass spectrometry in two preclinical models using Calu-3 or primary NHBE cells. 408 common secreted proteins were identified while significant differences in protein abundance were observed with time, suggesting that 7-10 days are necessary to establish a mature secretome in the Calu-3 model. The associated Reactome pathways highlight the role of the secreted proteins in the immune response of the bronchial epithelium. We suggest this preclinical 3D model can be used to evaluate the long-term toxicity of drugs or particles on the human bronchial epithelium, and subsequently to investigate their effect on the epithelial cell secretions.


Subject(s)
Epithelial Cells/metabolism , Proteome/analysis , Proteomics/methods , Angiotensin-Converting Enzyme 2/metabolism , Bronchi/cytology , COVID-19/pathology , COVID-19/virology , Cell Culture Techniques , Cell Line , Culture Media/chemistry , Epithelial Cells/cytology , Humans , Mass Spectrometry , Models, Biological , Principal Component Analysis , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology
12.
Virol Sin ; 35(3): 280-289, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-1384632

ABSTRACT

Cancer cell lines have been used widely in cancer biology, and as biological or functional cell systems in many biomedical research fields. These cells are usually defective for many normal activities or functions due to significant genetic and epigenetic changes. Normal primary cell yields and viability from any original tissue specimens are usually relatively low or highly variable. These normal cells cease after a few passages or population doublings due to very limited proliferative capacity. Animal models (ferret, mouse, etc.) are often used to study virus-host interaction. However, viruses usually need to be adapted to the animals by several passages due to tropism restrictions including viral receptors and intracellular restrictions. Here we summarize applications of conditionally reprogrammed cells (CRCs), long-term cultures of normal airway epithelial cells from human nose to lung generated by conditional cell reprogramming (CR) technology, as an ex vivo model in studies of emerging viruses. CR allows to robustly propagate cells from non-invasive or minimally invasive specimens, for example, nasal or endobronchial brushing. This process is rapid (2 days) and conditional. The CRCs maintain their differentiation potential and lineage functions, and have been used for studies of adenovirus, rhinovirus, respiratory syncytial virus, influenza viruses, parvovirus, and SARS-CoV. The CRCs can be easily used for air-liquid interface (ALI) polarized 3D cultures, and these coupled CRC/ALI cultures mimic physiological conditions and are suitable for studies of viral entry including receptor binding and internalization, innate immune responses, viral replications, and drug discovery as an ex vivo model for emerging viruses.


Subject(s)
Cellular Reprogramming Techniques , Models, Biological , Respiratory Mucosa/cytology , Respiratory Mucosa/virology , Betacoronavirus/physiology , COVID-19 , Cell Differentiation , Cell Lineage , Cells, Cultured , Coronavirus Infections/immunology , Coronavirus Infections/virology , Epithelial Cells/cytology , Epithelial Cells/virology , Humans , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2
13.
PLoS One ; 16(6): e0253458, 2021.
Article in English | MEDLINE | ID: covidwho-1286869

ABSTRACT

L-Dopa decarboxylase (DDC) is the most significantly co-expressed gene with ACE2, which encodes for the SARS-CoV-2 receptor angiotensin-converting enzyme 2 and the interferon-inducible truncated isoform dACE2. Our group previously showed the importance of DDC in viral infections. We hereby aimed to investigate DDC expression in COVID-19 patients and cultured SARS-CoV-2-infected cells, also in association with ACE2 and dACE2. We concurrently evaluated the expression of the viral infection- and interferon-stimulated gene ISG56 and the immune-modulatory, hypoxia-regulated gene EPO. Viral load and mRNA levels of DDC, ACE2, dACE2, ISG56 and EPO were quantified by RT-qPCR in nasopharyngeal swab samples from COVID-19 patients, showing no or mild symptoms, and from non-infected individuals. Samples from influenza-infected patients were analyzed in comparison. SARS-CoV-2-mediated effects in host gene expression were validated in cultured virus-permissive epithelial cells. We found substantially higher gene expression of DDC in COVID-19 patients (7.6-fold; p = 1.2e-13) but not in influenza-infected ones, compared to non-infected subjects. dACE2 was more elevated (2.9-fold; p = 1.02e-16) than ACE2 (1.7-fold; p = 0.0005) in SARS-CoV-2-infected individuals. ISG56 (2.5-fold; p = 3.01e-6) and EPO (2.6-fold; p = 2.1e-13) were also increased. Detected differences were not attributed to enrichment of specific cell populations in nasopharyngeal tissue. While SARS-CoV-2 virus load was positively associated with ACE2 expression (r≥0.8, p<0.001), it negatively correlated with DDC, dACE2 (r≤-0.7, p<0.001) and EPO (r≤-0.5, p<0.05). Moreover, a statistically significant correlation between DDC and dACE2 expression was observed in nasopharyngeal swab and whole blood samples of both COVID-19 and non-infected individuals (r≥0.7). In VeroE6 cells, SARS-CoV-2 negatively affected DDC, ACE2, dACE2 and EPO mRNA levels, and induced cell death, while ISG56 was enhanced at early hours post-infection. Thus, the regulation of DDC, dACE2 and EPO expression in the SARS-CoV-2-infected nasopharyngeal tissue is possibly related with an orchestrated antiviral response of the infected host as the virus suppresses these genes to favor its propagation.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , Dopa Decarboxylase/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Area Under Curve , Aromatic-L-Amino-Acid Decarboxylases , COVID-19/virology , Dopa Decarboxylase/genetics , Down-Regulation , Epithelial Cells/cytology , Epithelial Cells/metabolism , Erythropoietin/genetics , Erythropoietin/metabolism , Female , Humans , Male , Middle Aged , Nasopharynx/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , ROC Curve , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Up-Regulation , Viral Load
14.
Mol Med Rep ; 24(2)2021 Aug.
Article in English | MEDLINE | ID: covidwho-1271003

ABSTRACT

Coronavirus disease 2019 (COVID­19), caused by the severe acute respiratory syndrome coronavirus­2 (SARS­CoV­2), led to an outbreak of viral pneumonia in December 2019. The present study aimed to investigate the host inflammatory response signature­caused by SARS­CoV­2 in human corneal epithelial cells (HCECs). The expression level of angiotensin­converting enzyme 2 (ACE2) in the human cornea was determined via immunofluorescence. In vitro experiments were performed in HCECs stimulated with the SARS­CoV­2 spike protein. Moreover, the expression levels of ACE2, IL­8, TNF­α, IL­6, gasdermin D (GSDMD) and IL­1ß in HCECs were detected using reverse transcription­quantitative PCR and/or western blotting. It was identified that ACE2 was expressed in normal human corneal epithelium and HCECs cultured in vitro. Furthermore, the expression levels of IL­8, TNF­α and IL­6 in HCECs were decreased following SARS­CoV­2 spike protein stimulation, while the expression levels of GSDMD and IL­1ß were increased. In conclusion, the present results demonstrated that the SARS­CoV­2 spike protein suppressed the host inflammatory response and induced pyroptosis in HCECs. Therefore, blocking the ACE2 receptor in HCECs may reduce the infection rate of COVID­19.


Subject(s)
Epithelium, Corneal/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Adult , Aged , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Cells, Cultured , Cornea/cytology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/virology , Epithelium, Corneal/virology , Female , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Middle Aged , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Pyroptosis , Spike Glycoprotein, Coronavirus/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation
15.
Cell ; 184(15): 4090-4104.e15, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1267621

ABSTRACT

The oral mucosa remains an understudied barrier tissue. This is a site of rich exposure to antigens and commensals, and a tissue susceptible to one of the most prevalent human inflammatory diseases, periodontitis. To aid in understanding tissue-specific pathophysiology, we compile a single-cell transcriptome atlas of human oral mucosa in healthy individuals and patients with periodontitis. We uncover the complex cellular landscape of oral mucosal tissues and identify epithelial and stromal cell populations with inflammatory signatures that promote antimicrobial defenses and neutrophil recruitment. Our findings link exaggerated stromal cell responsiveness with enhanced neutrophil and leukocyte infiltration in periodontitis. Our work provides a resource characterizing the role of tissue stroma in regulating mucosal tissue homeostasis and disease pathogenesis.


Subject(s)
Immunity, Mucosal , Mouth Mucosa/cytology , Mouth Mucosa/immunology , Neutrophils/cytology , Adult , Epithelial Cells/cytology , Gene Expression Regulation , Genetic Predisposition to Disease , Gingiva/pathology , Humans , Inflammation/immunology , Inflammation/pathology , Microbiota , Myeloid Cells/cytology , Periodontitis/genetics , Periodontitis/immunology , Periodontitis/pathology , Single-Cell Analysis , Stromal Cells/cytology , T-Lymphocytes/cytology
16.
J Enzyme Inhib Med Chem ; 36(1): 659-668, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1109085

ABSTRACT

Human intestinal epithelial cell line-6 (HIEC-6) cells and primary human hepatocytes (PHHs) were treated with 3-amidinophenylalanine-derived inhibitors of trypsin-like serine proteases for 24 hours. It was proven that treatment with MI-1900 and MI-1907 was tolerated up to 50 µM in HIEC-6. These inhibitors did not cause elevations in extracellular H2O2 levels and in the concentrations of interleukin (IL)-6 and IL-8 and did not alter occludin distribution in HIEC-6. It was also found that MI-1900 and MI-1907 up to 50 µM did not affect cell viability, IL-6 and IL-8 and occludin levels of PHH. Based on our findings, these inhibitors could be safely applicable at 50 µM in HIEC-6 and in PHH; however, redox status was disturbed in case of PHH. Moreover, it has recently been demonstrated that MI-1900 prevents the replication and spread of the new SARS-CoV-2 in infected Calu-3 cells, most-likely via an inhibition of the membrane-bound host protease TMPRSS2.


Subject(s)
Antiviral Agents/pharmacology , Epithelial Cells/drug effects , Hepatocytes/drug effects , Phenylalanine/pharmacology , Protease Inhibitors/pharmacology , Serine Endopeptidases/metabolism , Cell Line , Cell Survival/drug effects , Epithelial Cells/cytology , Epithelial Cells/enzymology , Gene Expression Regulation/drug effects , Hepatocytes/cytology , Hepatocytes/enzymology , Humans , Hydrogen Peroxide/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Intestinal Mucosa/enzymology , Occludin/genetics , Occludin/metabolism , Oxidation-Reduction/drug effects , Phenylalanine/analogs & derivatives , Primary Cell Culture , Serine Endopeptidases/genetics
17.
Methods Mol Biol ; 2273: 131-138, 2021.
Article in English | MEDLINE | ID: covidwho-1092090

ABSTRACT

The current coronavirus disease-19 (COVID-19) pandemic, caused by "severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2), underscores the threat posed by newly emerging viruses. The understanding of the mechanisms driving early infection events, that are crucial for the exponential spread of the disease, is mandatory and can be significantly implemented generating 3D in vitro models as experimental platforms to investigate the infection substrates and how the virus invades and ravages the tissues.We here describe a protocol for the creation of a synthetic hydrogel-based 3D culture system that mimics in vitro the complex architectures and mechanical cues distinctive of the upper airway epithelia. We then expose the in vitro generated 3D nasal and tracheal epithelia to gold nanoparticles (AuNPs) that display the typical shape and size distinctive of SARS-CoV-2 and of the majority of Coronaviridae presently known.The infection platform here described provides an efficient and highly physiological in vitro model that reproduces the host-pathogen early interactions, using virus-mimicking nanoparticles, and offers a flexible tool to study virus entry into the cell. At the same time, it reduces the risk of accidental infection/spillovers for researchers, which represents a crucial aspect when dealing with a virus that is highly contagious, virulent, and even deadly.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Cell Culture Techniques/methods , Epithelial Cells/cytology , Nanoparticles/metabolism , Respiratory Mucosa/cytology , Animals , Cell Line , Chlorocebus aethiops , Epithelial Cells/virology , Gold , Humans , Metal Nanoparticles/chemistry , Molecular Mimicry/immunology , Nose/virology , Respiratory Mucosa/virology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Trachea/virology , Vero Cells , Virus Internalization
18.
Am J Physiol Lung Cell Mol Physiol ; 320(2): L246-L253, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-1088311

ABSTRACT

The COVID-19 pandemic is an ongoing threat to public health. Since the identification of COVID-19, the disease caused by SARS-CoV-2, no drugs have been developed to specifically target SARS-CoV-2. To develop effective and safe treatment options, a better understanding of cellular mechanisms underlying SARS-CoV-2 infection is required. To fill this knowledge gap, researchers require reliable experimental systems that express the host factor proteins necessary for the cellular entry of SARS-CoV-2. These proteins include the viral receptor, angiotensin-converting enzyme 2 (ACE2), and the proteases, transmembrane serine protease 2 (TMPRSS2) and furin. A number of studies have reported cell-type-specific expression of the genes encoding these molecules. However, less is known about the protein expression of these molecules. We assessed the suitability of primary human bronchial epithelial (HBE) cells maintained in an air-liquid interface (ALI) as an experimental system for studying SARS-CoV-2 infection in vitro. During cellular differentiation, we measured the expression of ACE2, TMPRSS2, and furin over progressive ALI days by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence staining. We also explored the effect of the fibrotic cytokine TGF-ß on the expression of these proteins in well-differentiated HBE cells. Like ACE2, TMPRSS2 and furin proteins are localized in differentiated ciliated cells, as confirmed by immunofluorescence staining. These data suggest that well-differentiated HBE cells maintained in ALI are a reliable in vitro system for investigating cellular mechanisms of SARS-CoV-2 infection. We further identified that the profibrotic mediators, TGF-ß1 and TGF-ß2, increase the expression of furin, which is a protease required for the cellular entry of SARS-CoV-2.


Subject(s)
Bronchi/metabolism , COVID-19/etiology , Furin/metabolism , SARS-CoV-2 , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Bronchi/cytology , Bronchi/drug effects , Cell Differentiation , Cells, Cultured , Disease Susceptibility , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Furin/genetics , Gene Expression/drug effects , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Models, Biological , Pandemics , RNA, Messenger/genetics , RNA, Messenger/metabolism , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Transforming Growth Factor beta1/pharmacology , Transforming Growth Factor beta2/pharmacology , Virus Internalization
19.
STAR Protoc ; 2(1): 100356, 2021 03 19.
Article in English | MEDLINE | ID: covidwho-1062653

ABSTRACT

This protocol enables the testing of drugs against infection of epithelial cells with SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), using pseudo-typed replication deficient vesicular stomatitis virus particles (pp-VSV) presenting the SARS-CoV-2 spike protein. After treating human volunteers with amitriptyline, an approved antidepressant and inhibitor of the acid sphingomyelinase, freshly isolated nasal epithelial cells were infected ex vivo and infection levels were quantified. This protocol offers the possibility to rapidly test the efficacy of potential drugs in the fight against COVID-19. For complete details on the use and execution of this protocol, please refer to Carpinteiro et al. (2020).


Subject(s)
Antiviral Agents/pharmacology , COVID-19/prevention & control , Drug Evaluation, Preclinical/methods , SARS-CoV-2/drug effects , Sphingolipids/metabolism , Cell Culture Techniques , Cells, Cultured , Epithelial Cells/cytology , Humans , Nasal Mucosa/cytology , Spike Glycoprotein, Coronavirus , Vesicular stomatitis Indiana virus
20.
Int J Mol Sci ; 22(3)2021 Jan 29.
Article in English | MEDLINE | ID: covidwho-1055071

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global public health emergency. Periodontitis, the most prevalent disease that leads to tooth loss, is caused by infection by periodontopathic bacteria. Periodontitis is also a risk factor for pneumonia and the exacerbation of chronic obstructive pulmonary disease, presumably because of the aspiration of saliva contaminated with periodontopathic bacteria into the lower respiratory tract. Patients with these diseases have increased rates of COVID-19 aggravation and mortality. Because periodontopathic bacteria have been isolated from the bronchoalveolar lavage fluid of patients with COVID-19, periodontitis may be a risk factor for COVID-19 aggravation. However, the molecular links between periodontitis and COVID-19 have not been clarified. In this study, we found that the culture supernatant of the periodontopathic bacterium Fusobacterium nucleatum (CSF) upregulated the SARS-CoV-2 receptor angiotensin-converting enzyme 2 in A549 alveolar epithelial cells. In addition, CSF induced interleukin (IL)-6 and IL-8 production by both A549 and primary alveolar epithelial cells. CSF also strongly induced IL-6 and IL-8 expression by BEAS-2B bronchial epithelial cells and Detroit 562 pharyngeal epithelial cells. These results suggest that when patients with mild COVID-19 frequently aspirate periodontopathic bacteria, SARS-CoV-2 infection is promoted, and inflammation in the lower respiratory tract may become severe in the presence of viral pneumonia.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Culture Media, Conditioned/chemistry , Cytokines/metabolism , Fusobacterium nucleatum/metabolism , Angiotensin-Converting Enzyme 2/genetics , COVID-19/pathology , COVID-19/virology , Cell Line , Culture Media, Conditioned/pharmacology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , SARS-CoV-2/isolation & purification , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL