Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
2.
ACS Appl Mater Interfaces ; 14(9): 11068-11077, 2022 Mar 09.
Article in English | MEDLINE | ID: covidwho-1713108

ABSTRACT

Amidst the COVID-19 pandemic, it is evident that viral spread is mediated through several different transmission pathways. Reduction of these transmission pathways is urgently needed to control the spread of viruses between infected and susceptible individuals. Herein, we report the use of pathogen-repellent plastic wraps (RepelWrap) with engineered surface structures at multiple length scales (nanoscale to microscale) as a means of reducing the indirect contact transmission of viruses through fomites. To quantify viral repellency, we developed a touch-based viral quantification assay to mimic the interaction of a contaminated human touch with a surface through the modification of traditional viral quantification methods (viral plaque and TCID50 assays). These studies demonstrate that RepelWrap reduced contamination with an enveloped DNA virus as well as the human coronavirus 229E (HuCoV-229E) by more than 4 log 10 (>99.99%) compared to a standard commercially available polyethylene plastic wrap. In addition, RepelWrap maintained its repellent properties after repeated 300 touches and did not show an accumulation in viral titer after multiple contacts with contaminated surfaces, while increases were seen on other commonly used surfaces. These findings show the potential use of repellent surfaces in reducing viral contamination on surfaces, which could, in turn, reduce the surface-based spread and transmission.


Subject(s)
COVID-19/prevention & control , Coronavirus 229E, Human/growth & development , Equipment Contamination/prevention & control , Infection Control/instrumentation , Plastics/chemistry , COVID-19/transmission , COVID-19/virology , Humans , Infection Control/methods , SARS-CoV-2/growth & development , Surface Properties
3.
Int J Mol Sci ; 23(3)2022 Feb 08.
Article in English | MEDLINE | ID: covidwho-1686816

ABSTRACT

This Special Issue of the International Journal of Molecular Sciences, entitled "Antimicrobial Materials with Medical Applications", covers a selection of recent research and review articles in the field of antimicrobial materials, as well as their medical applications [...].


Subject(s)
Anti-Infective Agents/pharmacology , Disinfectants/pharmacology , Equipment Contamination/prevention & control , Drug Development , Drug Resistance, Microbial , Humans , Product Packaging
4.
Sci Rep ; 11(1): 22868, 2021 11 24.
Article in English | MEDLINE | ID: covidwho-1532097

ABSTRACT

Transfer of SARS-CoV-2 from solids to fingers is one step in infection via contaminated solids, and the possibility of infection from this route has driven calls for increased frequency of handwashing during the COVID-19 pandemic. To analyze this route of infection, we measured the percentage of SARS-CoV-2 that was transferred from a solid to an artificial finger. A droplet of SARS-CoV-2 suspension (1 µL) was placed on a solid, and then artificial skin was briefly pressed against the solid with a light force (3 N). Transfer from a variety of solids was detected, and transfer from the non-porous solids, glass, stainless steel, and Teflon, was substantial when the droplet was still wet. The viral titer for the finger was 13-16% or 0.8-0.9 log less than for the input droplet. Transfer still occurred after the droplet evaporated, but was smaller, 3-9%. We found a lower level of transfer from porous solids but did not find a significant effect of solid wettability for non-porous solids.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious/prevention & control , SARS-CoV-2/metabolism , COVID-19/metabolism , Equipment Contamination/prevention & control , Equipment Contamination/statistics & numerical data , Humans , SARS-CoV-2/pathogenicity , Skin/virology , Viral Load
5.
J Hosp Infect ; 113: 104-114, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1531580

ABSTRACT

Healthcare-associated infections (HAIs) are the most common adverse outcomes due to delivery of medical care. HAIs increase morbidity and mortality, prolong hospital stay, and are associated with additional healthcare costs. Contaminated surfaces, particularly those that are touched frequently, act as reservoirs for pathogens and contribute towards pathogen transmission. Therefore, healthcare hygiene requires a comprehensive approach whereby different strategies may be implemented together, next to targeted, risk-based approaches, in order to reduce the risk of HAIs for patients. This approach includes hand hygiene in conjunction with environmental cleaning and disinfection of surfaces and clinical equipment. This review focuses on routine environmental cleaning and disinfection including areas with a moderate risk of contamination, such as general wards. As scientific evidence has not yet resulted in universally accepted guidelines nor led to universally accepted practical recommendations pertaining to surface cleaning and disinfection, this review provides expert guidance for healthcare workers in their daily practice. It also covers outbreak situations and suggests practical guidance for clinically relevant pathogens. Key elements of environmental cleaning and disinfection, including a fundamental clinical risk assessment, choice of appropriate disinfectants and cleaning equipment, definitions for standardized cleaning processes and the relevance of structured training, are reviewed in detail with a focus on practical topics and implementation.


Subject(s)
Cross Infection , Disinfectants , Cross Infection/prevention & control , Delivery of Health Care , Disinfection , Equipment Contamination/prevention & control , Humans , Hygiene
6.
Infect Dis Clin North Am ; 35(3): 631-666, 2021 09.
Article in English | MEDLINE | ID: covidwho-1340080

ABSTRACT

Outbreaks and pseudo-outbreaks in health care settings are complex and should be evaluated systematically using epidemiologic and molecular tools. Outbreaks result from failures of infection prevention practices, inadequate staffing, and undertrained or overcommitted health care personnel. Contaminated hands, equipment, supplies, water, ventilation systems, and environment may also contribute. Neonatal intensive care, endoscopy, oncology, and transplant units are areas at particular risk. Procedures, such as bronchoscopy and endoscopy, are sources of infection when cleaning and disinfection processes are inadequate. New types of equipment can be introduced and lead to contamination or equipment and medications can be contaminated at the manufacturing source.


Subject(s)
Cross Infection/prevention & control , Delivery of Health Care/organization & administration , Disease Outbreaks/prevention & control , Disinfection , Equipment Contamination/prevention & control , Infection Control , Health Facilities , Humans , Infant, Newborn
7.
Infect Dis Clin North Am ; 35(3): 575-607, 2021 09.
Article in English | MEDLINE | ID: covidwho-1340079

ABSTRACT

All invasive procedures involve contact by a medical device or surgical instrument with a patient's sterile tissue or mucous membranes. The level of disinfection is dependent on the intended use of the object: critical, semicritical, or noncritical. New issues and practices can affect the risk of infection associated with devices and surfaces. Endoscopes continue to represent a nosocomial hazard. The contaminated surface environment in hospital rooms is important in the transmission of health care-associated pathogens. Thoroughness of cleaning must be monitored and no-touch room decontamination technology should be. In general, emerging pathogens are susceptible to currently available disinfectants.


Subject(s)
Cross Infection/prevention & control , Delivery of Health Care/organization & administration , Disinfectants , Disinfection/methods , Equipment Contamination/prevention & control , Sterilization/methods , Endoscopes , Equipment and Supplies, Hospital , Hospitals , Humans , Temperature
8.
BMJ Glob Health ; 5(10)2020 10.
Article in English | MEDLINE | ID: covidwho-1388494

ABSTRACT

INTRODUCTION: During pandemics, such as the SARS-CoV-2, filtering facepiece respirators plays an essential role in protecting healthcare personnel. The recycling of respirators is possible in case of critical shortage, but it raises the question of the effectiveness of decontamination as well as the performance of the reused respirators. METHOD: Disposable respirators were subjected to ultraviolet germicidal irradiation (UVGI) treatment at single or successive doses of 60 mJ/cm2 after a short drying cycle (30 min, 70°C). The germicidal efficacy of this treatment was tested by spiking respirators with two staphylococcal bacteriophages (vB_HSa_2002 and P66 phages). The respirator performance was investigated by the following parameters: particle penetration (NaCl aerosol, 10-300 nm), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry and mechanical tensile tests. RESULTS: No viable phage particles were recovered from any of the respirators after decontamination (log reduction in virus titre >3), and no reduction in chemical or physical properties (SEM, particle penetrations <5%-6%) were observed. Increasing the UVGI dose 10-fold led to chemical alterations of the respirator filtration media (FTIR) but did not affect the physical properties (particle penetration), which was unaltered even at 3000 mJ/cm2 (50 cycles). When respirators had been used by healthcare workers and undergone decontamination, they had particle penetration significantly greater than never donned respirators. CONCLUSION: This decontamination procedure is an attractive method for respirators in case of shortages during a SARS pandemic. A successful implementation requires a careful design and particle penetration performance control tests over the successive reuse cycles.


Subject(s)
Decontamination/methods , Equipment Contamination/prevention & control , Equipment Reuse , Respiratory Protective Devices , Ultraviolet Rays , Betacoronavirus , COVID-19 , Coronavirus Infections/prevention & control , Equipment Failure Analysis , Humans , Infection Control/methods , Materials Testing , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2
9.
Cytometry A ; 97(9): 882-886, 2020 09.
Article in English | MEDLINE | ID: covidwho-1384154

ABSTRACT

Operating shared resource laboratories (SRLs) in times of pandemic is a challenge for research institutions. In a multiuser, high-turnover working space, the transmission of infectious agents is difficult to control. To address this challenge, imaging core facility managers being members of German BioImaging discussed how shared microscopes could be operated with minimal risk of spreading SARS-CoV-2 between users and staff. Here, we describe the resulting guidelines and explain their rationale, with a focus on separating users in space and time, protective face masks, and keeping surfaces virus-free. These recommendations may prove useful for other types of SRLs. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.


Subject(s)
Betacoronavirus/pathogenicity , Biomedical Research/organization & administration , Coronavirus Infections/prevention & control , Infection Control , Laboratories/organization & administration , Microscopy , Occupational Health , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , COVID-19 , Cooperative Behavior , Coronavirus Infections/transmission , Coronavirus Infections/virology , Decontamination , Equipment Contamination/prevention & control , Germany , Humans , Occupational Exposure/prevention & control , Personal Protective Equipment , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Protective Factors , Research Personnel/organization & administration , Risk Assessment , Risk Factors , SARS-CoV-2 , Workflow
10.
Antimicrob Resist Infect Control ; 10(1): 109, 2021 07 23.
Article in English | MEDLINE | ID: covidwho-1365395

ABSTRACT

BACKGROUND: Laparoscopy is a minimally-invasive surgical procedure that uses long slender instruments that require much smaller incisions than conventional surgery. This leads to faster recovery times, fewer post-surgical wound infections and shorter hospital stays. For these reasons, laparoscopy could be particularly advantageous to patients in low to middle income countries (LMICs). Unfortunately, sterile processing departments in LMIC hospitals are faced with limited access to equipment and trained staff which poses an obstacle to safe surgical care. The reprocessing of laparoscopic devices requires specialised equipment and training. Therefore, when LMIC hospitals invest in laparoscopy, an update of the standard operating procedure in sterile processing is required. Currently, it is unclear whether LMIC hospitals, that already perform laparoscopy, have managed to introduce updated reprocessing methods that minimally invasive equipment requires. The aim of this study was to identify the laparoscopic sterile reprocessing procedures in rural India and to test the effectiveness of the sterilisation equipment. METHODS: We assessed laparoscopic instrument sterilisation capacity in four rural hospitals in different states in India using a mixed-methods approach. As the main form of data collection, we developed a standardised observational checklist based on reprocessing guidelines from several sources. Steam autoclave performance was measured by monitoring the autoclave cycles in two hospitals. Finally, the findings from the checklist data was supported by an interview survey with surgeons and nurses. RESULTS: The checklist data revealed the reprocessing methods the hospitals used in the reprocessing of laparoscopic instruments. It showed that the standard operating procedures had not been updated since the introduction of laparoscopy and the same reprocessing methods for regular surgical instruments were still applied. The interviews confirmed that staff had not received additional training and that they were unaware of the hazardous effects of reprocessing detergents and disinfectants. CONCLUSION: As laparoscopy is becoming more prevalent in LMICs, updated policy is needed to incorporate minimally invasive instrument reprocessing in medical practitioner and staff training programmes. While reprocessing standards improve, it is essential to develop instruments and reprocessing equipment that is more suitable for resource-constrained rural surgical environments.


Subject(s)
Equipment Contamination/prevention & control , Hospitals, Rural , Laparoscopy , Sterilization/methods , Developing Countries , India , Steam , Sterilization/instrumentation
11.
Antimicrob Resist Infect Control ; 10(1): 120, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1365394

ABSTRACT

BACKGROUND: The hospital environment has got more attention as evidence as source for bacterial transmission and subsequent hospital-acquired infection increased. Regular cleaning and disinfection have been proposed to lower the risk of infection, in particular for gram-positive bacteria. Auto-disinfecting surfaces would allow to decrease survival of pathogens, while limiting resource to achieve a safe environment in patient rooms. METHODS: A controlled trial to evaluate the antimicrobial effectiveness of a polyvinyl chloride foil containing an integrated silver-based agent (containing silver ions 2%) on high-touch surfaces in patient rooms. RESULTS: The overall log reduction of the mean values was 1.8 log10 CFU, the median 0.5 log10 CFU comparing bioburden of control vs antimicrobial foil (p < 0.01). Important pathogens were significantly less likely recovered from the foil, in particular enterococci. These effects were present even after 6 months of in-use. CONCLUSIONS: A foil containing an integrated silver-based agent applied to high-touch surfaces effectively results in lower recovery of important pathogens from such surfaces over a 6-month study period.


Subject(s)
Cross Infection/prevention & control , Disinfectants/pharmacology , Disinfection/methods , Equipment Contamination/prevention & control , Patients' Rooms , Silver/pharmacology , Fomites/microbiology , Hospitals , Polyvinyl Chloride , Prospective Studies , Switzerland , Touch
12.
BMC Infect Dis ; 21(1): 681, 2021 Jul 13.
Article in English | MEDLINE | ID: covidwho-1317122

ABSTRACT

BACKGROUND: Mobile phones used by healthcare workers (HCWs) are contaminated with bacteria, but the posterior surface of smartphones has rarely been studied. The aim of this study was to compare the prevalence of microbial contamination of touchscreens and posterior surfaces of smartphones owned by HCWs. METHODS: A cross-sectional study of smartphones used by HCWs employed at two intensive care units at a Japanese tertiary care hospital was performed. Bacteria on each surface of the smartphones were isolated separately. The primary outcomes were the prevalence of microbial contamination on each surface of smartphones and associated bacterial species. Fisher's exact test was used to compare dichotomous outcomes. RESULTS: Eighty-four HCWs participated in this study. The touchscreen and posterior surface were contaminated in 27 (32.1%) and 39 (46.4%) smartphones, respectively, indicating that the posterior surface was more frequently contaminated (p = 0.041). Bacillus species and coagulase-negative staphylococci were isolated from each surface of the smartphones. CONCLUSIONS: The posterior surface of a smartphone was more significantly contaminated with bacteria than the touchscreen, regardless of having a cover. Therefore, routine cleaning of the posterior surface of a smartphone is recommended.


Subject(s)
Bacillus/isolation & purification , Equipment Contamination , Health Personnel/statistics & numerical data , Smartphone , Staphylococcus/isolation & purification , Cross Infection/prevention & control , Cross-Sectional Studies , Equipment Contamination/prevention & control , Equipment Contamination/statistics & numerical data , Humans , Infection Control/methods , Intensive Care Units/statistics & numerical data , Japan , Prevalence
13.
J Prev Med Hyg ; 62(1): E104-E109, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1264705

ABSTRACT

BACKGROUND: Healthcare workers' (HCW) hands and personnel belongings are vehicles of transmission of nosocomial infections. Knowledge, attitude, and practice of hand hygiene have been extensively studied suggesting adequate knowledge but poor compliance. Similar data on aprons, mobile phone and stethoscope disinfection practices are lacking. This becomes an extensively important topic of discussion in current COVID-19 pandemic where inadequacy in hygiene practices is devastating. AIM: To study the knowledge, attitude, and infection prevention practices of HCWs aprons, electronic devices, stethoscopes, and hands. METHODS: A cross sectional questionnaire-based survey was conducted among HCWs of Medicine ward and ICU. RESULTS: Sixty-six HCWs responded to the survey. Awareness that hands, aprons, mobile phones, stethoscopes could cause cross transmission and knowledge of correct practices was present in majority of the respondents. Hand hygiene was performed by 65.2% of the respondents before touching a patient and 54.5% after touching the patient surroundings while 13.6% performed only when it was visibly soiled. Mobile phones and stethoscopes were disinfected by 13.6 and 30.3% of the respondents after each patient encounter, respectively. Aprons were washed after using them at a stretch for a median duration of 5 days (1-30 days). Forgetfulness, lack of reinforcement, lack of time, inadequate awareness on standard disinfection practices and fear of damaging electronic devices from disinfectants use were reasons for poor compliance. CONCLUSIONS: There is an urgent need to spread awareness and formulate standard guidelines on disinfection practices especially for mobile phones, stethoscopes, and aprons in addition to reinforcing hand hygiene practices.


Subject(s)
COVID-19/prevention & control , Equipment Contamination/prevention & control , Guideline Adherence , Hand Hygiene/standards , Health Personnel/psychology , Cross Infection/prevention & control , Cross-Sectional Studies , Hand Disinfection , Health Facilities , Health Knowledge, Attitudes, Practice , Humans , Intensive Care Units , SARS-CoV-2 , Surveys and Questionnaires
14.
Viruses ; 13(6)2021 05 22.
Article in English | MEDLINE | ID: covidwho-1244142

ABSTRACT

The SARS-CoV-2 pandemic has highlighted the need for protective and effective personal protective equipment (PPE). Research has shown that SARS-CoV-2 can survive on personal protective equipment, such as commonly used surgical masks. Methods are needed to inactivate virus on contaminated material. We show here that embedding viral-disinfecting compounds during the manufacturing of surgical masks inactivates a high dose (up to 1 × 105 pfu) of live, authentic SARS-CoV-2 within minutes.


Subject(s)
Ammonium Compounds/pharmacology , Antiviral Agents/pharmacology , Masks/virology , SARS-CoV-2/drug effects , Virus Inactivation , Equipment Contamination/prevention & control , Humans
16.
Infect Control Hosp Epidemiol ; 42(6): 740-742, 2021 06.
Article in English | MEDLINE | ID: covidwho-1233676

ABSTRACT

Healthcare-acquired infections are a tremendous challenge to the US medical system. Stethoscopes touch many patients, but current guidance from the Centers for Disease Control and Prevention does not support disinfection between each patient. Stethoscopes are rarely disinfected between patients by healthcare providers. When cultured, even after disinfection, stethoscopes have high rates of pathogen contamination, identical to that of unwashed hands. The consequence of these practices may bode poorly in the coronavirus 2019 disease (COVID-19) pandemic. Alternatively, the CDC recommends the use of disposable stethoscopes. However, these instruments have poor acoustic properties, and misdiagnoses have been documented. They may also serve as pathogen vectors among staff sharing them. Disposable aseptic stethoscope diaphragm barriers can provide increased safety without sacrificing stethoscope function. We recommend that the CDC consider the research regarding stethoscope hygiene and effective solutions to contemporize this guidance and elevate stethoscope hygiene to that of the hands, by requiring stethoscope disinfection or change of disposable barrier between every patient encounter.


Subject(s)
Equipment Contamination/prevention & control , Stethoscopes/standards , COVID-19/prevention & control , COVID-19/transmission , Centers for Disease Control and Prevention, U.S./standards , Cross Infection/prevention & control , Cross Infection/virology , Disinfection/methods , Disposable Equipment , Hand Disinfection , Humans , Practice Guidelines as Topic , Stethoscopes/adverse effects , Stethoscopes/virology , United States
17.
J Occup Environ Hyg ; 18(6): 265-275, 2021 06.
Article in English | MEDLINE | ID: covidwho-1228372

ABSTRACT

The COVID-19 pandemic has caused a high demand for respiratory protection among health care workers in hospitals, especially surgical N95 filtering facepiece respirators (FFRs). To aid in alleviating that demand, a survey of commercially available filter media was conducted to determine whether any could serve as a substitute for an N95 FFR while held in a 3D-printed mask (Stopgap Surgical Face Mask from the NIH 3D Print Exchange). Fourteen filter media types and eight combinations were evaluated for filtration efficiency, breathing resistance (pressure drop), and liquid penetration. Additional testing was conducted to evaluate two filter media disinfection methods in the event that the filters were reused in a hospital setting. Efficiency testing was conducted in accordance with the procedures established for approving an N95 FFR. One apparatus used a filter-holding device and another apparatus employed a manikin head to which the 3D-printed mask could be sealed. The filter media and combinations exhibited collection efficiencies varied between 3.9% and 98.8% when tested with a face velocity comparable to that of a standard N95 FFR at the 85 L min-1 used in the approval procedure. Breathing resistance varied between 10.8 to >637 Pa (1.1 to > 65 mm H2O). When applied to the 3D-printed mask efficiency decreased by an average of 13% and breathing resistance increased 4-fold as a result of the smaller surface area of the filter media when held in that mask compared to that of an N95 FFR. Disinfection by dry heat, even after 25 cycles, did not significantly affect filter efficiency and reduced viral infectivity by > 99.9%. However, 10 cycles of 59% vaporized H2O2 significantly (p < 0.001) reduced filter efficiency of the media tested. Several commercially available filter media were found to be potential replacements for the media used to construct the typical cup-like N95 FFR. However, their use in the 3D-printed mask demonstrated reduced efficiency and increased breathing resistance at 85 L min-1.


Subject(s)
COVID-19/prevention & control , Disinfection/standards , Equipment Contamination/prevention & control , Materials Testing/standards , N95 Respirators/virology , Occupational Exposure/prevention & control , Pandemics/prevention & control , Air Pollutants, Occupational/analysis , Equipment Failure Analysis/statistics & numerical data , Guidelines as Topic , Humans , Inhalation Exposure/analysis , SARS-CoV-2
18.
Expert Rev Respir Med ; 15(6): 773-779, 2021 06.
Article in English | MEDLINE | ID: covidwho-1165209

ABSTRACT

Introduction: Bronchoscopy and related procedures have unambiguously been affected during the Corona Virus Disease 2019 (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS COV-2). Ordinary bronchoscopy practices and lung cancer services might have changed over this pandemic and for the years to come.Areas covered: This manuscript summarizes the utility of bronchoscopy in COVID-19 patients, and the impact of the pandemic in lung cancer diagnostic services, in view of possible viral spread during these We conducted a literature review of articles published in PubMed/Medline from inception to November 5th, 2020 using relevant terms.Expert opinion: Without doubt this pandemic has changed the way bronchoscopy and related procedures are being performed. Mandatory universal personal protective equipment, pre-bronchoscopy PCR tests, dedicated protective barriers and disposable bronchoscopes might be the safest and simpler way to perform even the most complicated procedures.


Subject(s)
Bronchoscopy , COVID-19/epidemiology , COVID-19/therapy , Cross Infection/prevention & control , Practice Patterns, Physicians' , Bronchoscopes/microbiology , Bronchoscopes/standards , Bronchoscopes/virology , Bronchoscopy/instrumentation , Bronchoscopy/methods , Bronchoscopy/standards , COVID-19/prevention & control , COVID-19/transmission , Equipment Contamination/prevention & control , History, 21st Century , Humans , Lung Neoplasms/diagnosis , Medical Oncology/instrumentation , Medical Oncology/methods , Medical Oncology/standards , Pandemics , Personal Protective Equipment/virology , Practice Patterns, Physicians'/standards , Practice Patterns, Physicians'/trends , SARS-CoV-2/physiology
19.
Emerg Infect Dis ; 27(4): 1229-1231, 2021 04.
Article in English | MEDLINE | ID: covidwho-1147201

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 can persist on surfaces, suggesting possible surface-mediated transmission of this pathogen. We found that fomites might be a substantial source of transmission risk, particularly in schools and child daycares. Combining surface cleaning and decontamination with mask wearing can help mitigate this risk.


Subject(s)
COVID-19 , Disease Transmission, Infectious/prevention & control , Fomites/virology , Infection Control , SARS-CoV-2/isolation & purification , Aged , Basic Reproduction Number , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Child , Child Day Care Centers/standards , Decontamination/methods , Equipment Contamination/prevention & control , Hand Disinfection/methods , Humans , Infection Control/instrumentation , Infection Control/methods , Masks , Nursing Homes/standards , Schools/standards , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL